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Resumo

A concepção e interpretação de modelos em geologia estrutural, especialmente os numéricos, são eminentemente 

baseadas nos princípios da mecânica do contínuo clássico, onde a formulação intrínseca possui alto grau de simetria 

em sua própria essência. No entanto, as estruturas geológicas apresentam em todas as escalas de observação um nível 

notável de assimetria. Por outro lado, a mecânica do contínuo generalizado de Cosserat, ao incorporar comprimentos 

característicos da estrutura da matéria em suas leis constitutivas e em seus critérios de ruptura, conduz naturalmente à 

assimetria e à heterogeneidade dos campos cinemáticos e dinâmicos responsáveis pela estruturação presente em rochas. 

Baseado na formulação intrínseca dos meios contínuos de Cosserat, o presente trabalho enfatiza modelos conceituais, 

analíticos e numéricos que sugerem uma ampliação na interpretação da gênese e do desenvolvimento de estruturas geo-

lógicas, em particular as encontradas em zonas de falhas.

Palavras-Chave: Contínuo de Cosserat; Geologia Estrutural; Modelagem Numérica

Abstract

The conception and interpretation of models in structural geology, specially the numerical ones, are eminently 

based on the principles of classic continuum mechanics, where the intrinsic formulation has high degree of symmetry 

in its very essence. However, the geological structures carry in all scales a remarkable level of asymmetry. On the other 

hand, the mechanics of Cosserat generalized continuum, by incorporating characteristic lengths of the matter structure 

in its constitutive and strength laws, leads by itself to the asymmetry and the heterogeneity of the kinematic and dyna-

mic fields responsible for rock fabric. Based on the intrinsic formulation of the Cosserat continuum, the present work 
emphasizes conceptual, analytical and numerical models that suggest the expansion in the interpretation of the genesis 

and development of geological structures, in particular those found in fault zones.
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1 Introduction

Models in structural geology, being concep-

tual or coming from rock testing laboratory, from 

analogue experiments or, even more, from analytical 

and numerical methods, use the concepts of conti-

nuum mechanics in their design and particularly 

along the interpretation of their results. In particular, 

the recognition of the role of numerical modelling 

in structural geology has increased tremendously in 

recent decades mainly because of the possibility to 

test different concepts and physical conditions rela-

ted to the development of geological structures in 

rocks. However, most of these models are based on 

the classic continuum mechanics.

In the classic continuum mechanics the stress 

and strain fields and the material physical properties 
are collapsed to points having three degrees of free-

dom for displacements in 3D. On the other hand, the 

mechanics of Cosserat generalized continuum, pio-

neered by the Cosserat brothers (Cosserat & Cosser-

at, 1909), incorporates finite lengths in microscale 
and, in addition to the three degrees of freedom for 

displacements, it allows three independent degrees 

of freedom for rotations. As this length with such 

properties is directly inserted in the mechanical 

formulation of a Cosserat continuum, asymmetries 

are generated for the stress and strain tensor fields, 
opening possibilities to improve the description of 

the mechanical behaviour of the materials, specially 

rocks in their different geological environments.

In the specific case of engineering, many 
works in the literature have dealt with the application 

of the generalized continuum mechanics, specially 

since the 1960s, although much less in comparison 

with works that use the classic continuum mechan-

ics. Most of the works are devoted to the study of 

mechanical behaviour and strain localization in gran-

ular media, composite and fractal materials, soils 

and rocks (e.g. Mindlin, 1963; Sternberg & Muki, 

1967; Besdo, 1985; Mühlhaus & Vardoulakis, 1987; 

Vardoulakis & Sulem, 1995; Adhikary et al., 1999; 

Tordesillas et al., 2004; Tejchman, 2008; Khoei et 

al., 2010; Muller et al., 2011; Coetzee, 2014; Esin 

et al., 2017, Rattez et al., 2018; Ostoja-Starzewski 

et al., 2019). However, quite strange, in structural 

geology, a discipline that deals directly with the de-

formation of rocks, a granular material frequently 

structured by fractures in its essence, the number of 

works is still very small, being possibly pioneering 

the works of Biot (1965, 1967) on the mechanics of 

folding. In addition, studies can be highlighted on 

the general pattern of deformation in the processes 

of folding and faulting (Latham, 1985a,b; De Paor, 

1994; Figueiredo, 1999; Mühlhaus et al., 2002; Bi-

goni & Gourgiotis, 2016), on the genesis of the inner 

structure in fault zones (Bauer & Tejchman, 1995; 

Figueiredo et al., 2004; Moraes, 2004; Veveakis 

et al., 2012; Zheng et al., 2016), on the mechani-

cal interaction between blocks delimited by faults 

(Žalohar, 2012; Žalohar, 2015), on paleostress in-

version from faults (Twiss et al., 1991, 1993; Twiss 

& Unruh, 1998; Žalohar & Vrabec, 2010) and on the 
understanding of earthquake seismology (Twiss & 

Unruh, 2007; Lee, 2011; Teisseyre, 2012; Žalohar, 
2014; Žalohar, 2018).

The present work strives to strengthen the po-

tential of the application of the mechanics of Cos-

serat generalized continuum in structural geology. 

Through the presentation of its basic formulation, 

it will be highlighted how simple models based on 

the mechanics of Cosserat generalized continuum 

may suggest the genesis and development of some 

geological structures, specifically those related to 
fault zones.

2 Background on the Mechanics 
of Cosserat Generalized Continuum

This section presents the basic formulation of 

the mechanics of Cosserat generalized continuum, 

regarding the main points addressed in this work. 

Further details on the mechanics of the generalized 

continuum media and their variants can be found 

in the classic work of Germain (1973) and also in 

Maugin (2017). Specifically, a comprehensive for-
mulation on the mechanics of Cosserat generalized 

continuum is showed in Figueiredo et al. (2004).

Fundamentally, the mechanics of Cosser-

at generalized continuum, also called micropolar 

continuum mechanics, is a particularization of the 

mechanics of generalized continuum. In a Cosser-
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at continuum, it is conceived the existence of rigid 

particles with finite lengths in microscale that suffers 
displacements and rigid rotations but do not deform 

(i.e., they do not change shape or volume), and these 

rotations are independent of the macroscale be-

haviour. In kinematic terms, being u’
i
 the microscale 

displacements (relative to the local coordinate sys-

tem x’
i
), u

i
 the macroscale displacements (relative to 

the global coordinate system x
i
) and wc

ij
 the Cosserat 

micro-rotation tensor, we can write:

Cosserat micro-rotation vector (dual-vector of wc

ij
) 

and k
i
 as the macroscopic gradient of the micro-rota-

tions vector (dual-vector of k
ijk

), from Equation 1 to 

Equation 4, we can write in 2D:

(1)

The indexes i and j range from 1 to 3 in 3D 

(1 to 2 in 2D). The first index refers to the unit nor-
mal vector acting on the face of the elementary unit 

of the continuum and the second index refers to the 

direction that que component acts. The relative dis-

placement gradient tensor g
ij
 is defined as:

(2)

Therefore, wc

ij
 = (∂

j
u’

i
 – ∂

i
u’

j
)/2, where ∂

i
 rep-

resents the gradients in the i directions. One can di-

vide g
ij
 into its symmetric part, symbolized by index-

es between ( ), and anti-symmetric part, symbolized 

by indexes between [ ], in the form:

(3)

where ɛ
ij
 is the strain tensor in macroscale and w

ij
 

is the macroscale rotation tensor. Equation 3 is of 

fundamental importance for the mechanical im-

plications of a Cosserat continuum. It is seen that 

the symmetric part of g
ij
 coincides with the mac-

rostrains, since there are no microscale strain, and 

the anti-symmetric part of g
ij
 contains the rigid rota-

tion difference between the macroscale and the mi-
croscale. As a result, it is seen that g

ij
 is an asymmet-

ric tensor. Additionally, the macroscopic gradient 

of the micro-rotations tensor k
ijk

 (unit of inverse of 

length) is defined as:

k
ijk

 = ∂
k
wc

ij
                               (4)

representing the curvatures along the continuous me-

dium. Note that k
ijk

 is the gradient of wc

ij
, and thus it 

is also an anti-symmetric tensor. Defining wc

i
 as the 

(5)

In terms of stresses, as shown in Figueiredo 

et al. (2004), there are stress fields energetically re-

lated to the kinematic fields presented above. In this 
sense, the relative stress tensor τ

ij
 is directly related 

to the anti-symmetric tensor wc

ij
, so that it is also an 

anti-symmetric tensor. Since s
ij
 is the stress tensor 

of the classic continuum, the Cosserat stress tensor 

sc

ij
 is defined as:

(6)

As a consequence, being the sum of a sym-

metric tensor with an anti-symmetric tensor, sc

ij
 is 

an asymmetric tensor. As a result, as shown in Fig-

ure 1 in 2D , the equilibrium conditions required for 

the Cosserat continuum arise from the emergence of 

moment (or couple) stresses m
i
 (unit of stress times 

length) applied to the arm dx’
j
 orthogonal to m

i
 in the 

elementary unit of the continuum. Thus, the moment 

stresses vectors m
1
 and m

2
 induce local momentum 

forces that balance the forces relative to the shear 

stresses sc

12
 and sc

21
 of the Cosserat stress tensor. 

In this way, the equilibrium equations for a Cosserat 

continuum in 2D are:

(7)

where ρ is the density, X
i
 are volumetric forces, Θ is 

the volumetric moment and sa is the anti-symmetric 

shear stress given by:

(8)
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representing at some extent a measure of the degree 

of asymmetry of sc

ij
. In fact, by inspection of the 

last expression in Equation 7, it is clear that with 

the emergence of non-zero moment stresses gradi-

ents the shear components sc

ij
 and sc

ji
 of the Cos-

serat stress tensor are no longer necessarily equal, 

resulting, in general, in an asymmetric Cosserat 

stress tensor.

physical meaning. As suggested by Mindlin (1963) 

it is written:

Figure 1 Representation in 2D of the cause of Cosserat stress 
tensor asymmetry. Moment stress vectors m

1
 and m

2
 induce lo-

cal moment forces that equilibrate forces related to the different 
shear stresses sc

12
 and sc

21
 of the Cosserat stress tensor.

The kinematic and dynamic characteristics of 

the mechanics of Cosserat generalized continuum 

presented above make it possible to delineate cons-

titutive relationships and flow criteria that are parti-
cularly important in structural geology. An isotropic 

elastic Cosserat continuum, as presented by Figuei-

redo et al. (2004) by slightly modifying the formu-

lation of Teodorescu (1975), can be expressed by:

(9)

where δ
ij
 is the Kronecker delta (values of 1 for i = 

j and 0 for i ≠ j), λ and G are parameters analogous 

to the Lamé’s parameters, G
r
 is the rotational mod-

ulus and B is the flexural modulus. The rotational 
modulus controls how much the microstructure in-

fluences the distribution of the macroscale stresses, 
being the parameter that couples the expressions of 

Equation 9. The relationship between the shear mod-

ulus G and the flexural modulus B has an interesting 

(10)

where l is the called characteristic length. The char-

acteristic length may be regarded as the length of 

the microstructure of the medium. In this sense, 

the presence of characteristic lengths, a single one 

when is considered an isotropic medium, is the sem-

inal difference between the Cosserat and the classic 
continuum mechanics. Equation 10 shows that for l 

approaching zero, and therefore B also approaching 

zero, from the last expression of Equation 9, it can 

be seen that the moment stresses tend to vanish.

There are many proposals for working with 

elastoplasticity in a Cosserat continuum (e.g., Li-

ppmann, 1969; Besdo, 1985; Bogardanova-Bontche-

va & Lippmann, 1975; Vardoulakis & Sulem, 1995). 

The one implemented in the numerical models pre-

sented below is a modification of Bogdanova-Bon-

tcheva & Lippmann (1975) proposed by Figueiredo 

(1999). Specifically, flow criteria f and plastic poten-

tial functions g are formulated for the instauration 

of mechanical instability for shear, for the moment 

stresses and for the rotation of the microstructure 

with a characteristic length l. Thus, analogously to 

the Mohr-Coulomb criterion, one can write:

(11)

where J
2
 is the second invariant of the symmetric 

part of the Cosserat deviatoric stress tensor, I
1

e is the 

first invariant of the Cosserat effective stress tensor, 
s

0
 is the cohesion, φ is the internal friction angle and 

ψ is the angle of dilatancy. The flow criterion involv-

ing the moment stresses is given by:

(12)

where J
2

m is the second invariant of the symmetric 

part of the deviatoric moment stresses tensor. In its 

turn, the flow criterion for the rotation of the micro-

structure, originally proposed by Figueiredo (1999), 

is written as:
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where s
N

ec is the Cosserat effective normal stress 
acting in the plane of rupture and φ

r
 is the rotational 

friction angle, to be defined below.

3 Modelling Geologic Materials as  
Cosserat Generalized Continuum Media

The mechanics of Cosserat generalized con-

tinuum allows broadening the interpretation and im-

plications of structural models for rocks. In fact, its 

core characteristics as formulation with characteris-

tic lengths of the medium, the possibility of micro-

structure rotations as an independent field from mac-

roscale and the establishment of tensor asymmetry 

can cast another light in structural geology model-

ling. In this sense, it will be suggested some simple 

but illustrative examples based upon conceptual, an-

alytical and numerical arguments.

As shown in Figueiredo et al. (2004), the 

properties of Mohr diagrams in 2D classic contin-

uum can be extended to a Cosserat continuum. In 

their parametric form, the equations for the Cosserat 

normal sc

N
 and Cosserat shear sc

C
 stresses in a plane 

can be written as a function of the angle θ between 

the maximum principal stress and the plane as:

pointed by De Paor (1994), one can suggest that 

the asymmetric structuring patterns in shear zones 

may perhaps be better compatibilized by using the 

mechanics of Cosserat generalized continuum. In 

fact, as synthesized in Simpson & De Paor (1993), 

shear zones bear strain non-coaxial fields, vorticity 
complexes fields and non-orthogonal strain rates ei-
genvectors for defining the apophyses, elements not 
yet satisfactorily explained by the classic continuum 

mechanics. In this sense, it could be possible to ex-

tend expressions relating stresses and strains in shear 

zones in a more cause-consequence fashion.

(13)

(14)

Note that the anti-symmetric shear stress, 

given by Equation 8, appears in the expression for 

the Cosserat shear stress. As such, Equation 14 im-

plies, as shown in Figure 2, that the shear stresses 

of the classic continuum are “displaced” in the sc

N
 

x sc

C
 space along the shear stress axis by a amount 

sa. An immediate consequence is that the principal 

stresses (i.e. those acting on planes where sc

C
 van-

ishes) should not be orthogonal as in the classic 

continuum and, depending on the value of sa, could 

even no longer exist. Taking these stress and strain 

equivalent frameworks, as at some extent already 

Figure 2 Mohr diagram in 2D showing as shear stresses are “dis-
placed” in the sec

N
 x sc

C
 space along the shear stress axis by a 

amount sa, the anti-symmetric shear stress. Stress state for the 
classic continuum in gray and for Cosserat continuum in black. 
Flow criteria for shear in full line and for rotation in dashed line. 
In this case, there is a combined effect of rotation and sliding as 
both envelopes are reached by the stress state.

In addition, considering the failure envelopes 

analogous to Equation 11 and Equation 13 in the 

space sec

N
 x sc

C
, Figure 2 suggests how the asymme-

try of the Cosserat stress tensor may favour the emer-

gence of fault zones with a single orientation and not 

as conjugated structures. In this case, there would 

be a combination of rotation of the microstructure 

and sliding as the two envelopes are touched by the 

Cosserat stress state. Indeed, in nature fault zones 

appear less frequently as conjugate and symmetric 

structures. An inspection of several seismic sections 

and analogue physical models, for example as shown 

in Jackson & Hudec (2017), suggests that the most 

expressive faults have rough parallel geometry and 

hardly appear as sistematic conjugated faults.
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The spatial arrangement of the microstruc-

tures in rocks, coming from either the geometry of 

single mineral grains or of their associations due to 

the stress loading conditions forming chains of min-

eral grains, may determine the rock strength. Similar 

to what was performed by Nascimento & Teixeira 

(1971), Figure 3 represents an allegory illustrating 

the impact of the structure geometry on the study of 

the mechanical stability in any material. Ultimately 

it is the classic slope plane-block problem in which 

the conservation of linear and angular moments for 

the block is analyzed by regarding the weight, nor-

mal and friction forces. Considering a the height and 

b the base of a block with mass m and g the accel-

eration due to gravity, for the case in Figure 3a it is 

known that in the limit for block sliding (slope α):

inner microstructures in rocks. Note that the base 

and height ratios for the blocks are inverse in Figs. 

4a and 4b. Thus, though the shear strength criteria is 

the same for both the rotation criteria are different. 
For the sake of an example, it is assumed that sc

11
 = 

sc

22
 and sc

21
 > sc

12
, implying a negative anti-sym-

metric shear stress sa in both cases, in according to 

Equation 8, and f
r
 is greater in Figure 4a than in Fig-

ure 4b, in according to Equation 16. Note that the 

difference between sc

21
 and sc

12
 is balanced by the 

emergence of moment stresses according to the last 
expression of Equation 7. After imposing the load 
condition, the Mohr diagrams show only shearing 
in the sub-horizontal direction in the basal contacts 
among the blocks in Figure 4a and clockwise rota-
tion of the blocks and later shearing in the contacts 
among the blocks in Figure 4b. It is very sugges-
tive that the rotation patterns and relative shearing 
of the microstructures in the rock could explain, for 
example, the sinthetic Y, R and P and the antithetic 
R’ and X structures of the classic Riedel-Tchalenko 
experiment, favoring one to other in the progress of 
deformation. Regarding the specific conditions in 
Figure 4, we could postulate the onset of Y structures 
in Figure 4a and, due to the clockwise rotation of the 
blocks, of R’ or even of X structures (depending on 
the amount of rotation) and of Y structures in Figure 
4b. Of course, a paramount of scenarios may arise 

depending on the stresses conditions and the spatial 

arrangement of the microstructure in rocks.

(15)

where m
e
 is the static friction coefficient and φ

e
 is 

the static friction angle. In this case, the base of the 

block has a length greater than its height, so that 

it can slide without rolling when the plane reaches 

the angle α corresponding to the sliding condition. 

The resulting torque is zero as the torque due to the 

weight force is balanced by the torque due to the 

contact forces (normal and friction forces). On the 

other hand, in Figure 3b the base of the block has 

a length smaller than its height. Assuming that φ
e
 is 

high enough to prevent sliping, the torque due to the 

weight calculated relatively to the lower right corner 

of the block for the toppling limit condition (slope 

β) is given by:

(15)

where φ
r
 is the rotational friction angle. In words, the 

occurrence or not of block rotation is dramatically 

dependent on the relationship between its geometry 

and the load distribution. When b > a we have β > α 
and φ

r
 > φ

e
, what would cause the block to slip. Oth-

erwise, when b < a we have β < α  and φ
r
 < φ

e
, what 

could lead the block to rotate.

Although this allegory is quite naive at a first 
glance, its mechanical context can be heuristically 

extend to what occurs to rocks. Figure 4 shows the 

loading condition in a set of blocks representing the 

Figure 3 Impact of block geometry in the analysis of its stabil-
ity in the classic slope plane-block system problem. Different 
aspect ratios between block base b and height a determine if the 
block slides or topples. Considering Equation 16, in (a) as b > a 
and φ

r
 > φ the block could slide without toppling; in (b) as b < a 

and φ
r
 < φ block could topples before sliding.
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From what was pointed out, it is suggestive 

that the relation between the spatial arrangement of 

the rock structure and the normal and shear stresses 

that it can support depends not only on the analysis 

of the slip conditions but also on the analysis of the 

microstructure rotation conditions. Regarding the 

internal friction angle of rocks as the fundamental 

concept related to their strength, although without 

intending to offer a physical interpretation for it (as 
it is an empirical parameter), we can do some di-

gressions. The basic one is that the internal friction 

angle could be weighted either by the static friction 

angle and by the rotational friction angle depending 

on the spatial distribution of the rock structure in re-

lation to the stresses. In this context, the formulation 

of the mechanics of Cosserat generalized continuum 

should be very important in assessing the role of mi-

crostructure rotation in what is classically called in-

ternal friction coefficient for rocks.

Pristine rock fabric can readily be expressed 

by the characteristic lengths in the formulation of the 

mechanics of Cosserat generalized continuum. In or-

der to assess the role of the characteristic length in the 

inner structure of fault zones, some numerical mod-

els were conducted by using the computer system 

TECTOS, a finite-element based system developed 
by Petrobras and the Catholic University of Rio de 

Janeiro (Moraes et al., 2002). Figure 5 provides the 

geometry, the mesh and the boundary conditions for 

the models. They have a non-associated elastoplastic 

rheology with an internal friction angle of 30° and 

a dilatancy angle of 12°. A rotational modulus G
r
 of 

25 GPa was used as well as isotropic characteristic 

lengths l of 0.01 m, 0.1 m, 1 m, 2.5 m and 10 m. 

Further properties as well the boundary conditions 

are suitable for the conditions at a depth of 5 km in 

the crust. A progressive dextral shear stress from 10 

to 90 MPa was prescribed at the top and the bottom 

of the models. Figure 6 shows the results for rup-

ture and the anti-symmetric shear stress at the latter 

stage for the models. A model for the classic contin-

uum is also shown for comparison. Here, the con-

cept of anti-symmetric shear stress rigorously does 

not apply, being basically zero. Comparing the fail-

ure patterns in the models, it is seen that the model 

carried by the classic continuum mechanics shows 

a generalized rupture in the fault zone. In contrast, 

the models governed by the mechanics of Cosserat 

generalized continuum show a strong banded pat-

tern for the strain localization, with intercalation of 

sub-parallel strands with and without rupture that are 

in general proportional to the characteristic lengths. 

These results suggest a consistent spatial complex-

ity in the onset of faulting not captured by the the 

classic continuum mechanics model. By observing 

the anti-symmetric shear stresses, negative values 

for clockwise rotations, the role of the characteristic 

length in structuring a fault zone becomes clear. The 

complexity in terms of microscale rotation fields, 
with heterogeneous clockwise and counter-clock-

wise distribution, is larger for smaller characteristic 

lengths and less pronouced for larger characteristic 

lengths. As previously stated, fault structural fabric, 

specially Riedel-Tchalenko structures with their sin-

thetic or antithetic shearing patterns, could be a con-

sequence of the heterogeneous moment stresses field 
along the fault zone. In a broad sense, the results of 

the numerical models suggest that models using the 

mechanics of Cosserat generalized continuum bear 

a greater appeal to discuss the inner organization of 

fault zones in terms of  rupture pattern and genera-

tion of their asymmetric fabric.

Figure 4 Loading in sets of blocks representing the inner micro-
structure in rocks. Shear strength criteria (full line) is the same 
in (a) and (b) whereas the base and height ratios for the blocks 
are inverse in (a) and (b) the rotation criteria (dashed line) are 
also different. As an example, with sc

11
 = sc

22
 and sc

21
 > sc

12
, sa 

is negative, in according to Equation 8, and φ
r
 is greater in (a) 

than in (b), in according to Equation 16. Mohr diagrams and de-
formed configuration show shearing in the basal contacts among 
the blocks in (a) and clockwise rotation of the blocks and shear-
ing in the basal contacts among the blocks in (b).
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In this way, we postulate that the discussion on 

the spatial arrangement of the fabric in fault zones is 

rarely extended as most of the works in fault zones 

modelling usually makes use of the classic contin-

uum mechanics. For example, many authors in the 

structural geology literature endeavour to explain 

the very common antithetic features relying only on 

classic continuum mechanics. Ramsay (1967), page 

283, points out the need to have a “disequilibrium 

component” in the stress tensor as “the disequilib-

rium components cause the material to undergo a 

rotation in space”. In fact, this component need not 

to exist as the relative stress tensor t
ij
, the anti-sym-

metric part of the Cosserat stress tensor, leads to 

anti-symmetric shear stresses and related rotations. 

Mandl (1999) recognizes the need for the emergence 

of antithetic features when studying many structur-

al and geodynamic problems (e.g. antithetic faults, 

bookshelf mechanism, San Andreas Fault Paradox). 

However, the author follows a complex path for the 

explanation of these geodynamic contexts by mak-

ing several transformations in the space se

N
 x s

C
 

together with the Mohr-Coulomb criterion. Never-

theless, by using the mechanics of Cosserat gene-

ralized continuum, many antithetic features may 

easily emerge. Ahlgren (2001) places R’ structures 

as “enigmatic features” and considers that “the an-

tithetic shear sense of these bands ... is difficult to 
interpret mechanically”. Once again, the presence of 

the anti-symmetric shear stresses could provide an 

adequate interpretation.

Figure 5 Geometry, mesh and boundary conditions for the finite-
-element models. The models have 25 m by 100 m and a non-s-
tructured mesh. Boundary conditions are suitable for a depth of 
5 km in the crust. A progressive dextral shear from 10 to 90 MPa 
was prescribed at the top and the bottom of the models.

Figure 6 Results of the 
numerical models for 

a classic continuum 
and for some Cosserat 
continua with different 

characteristic lengths 
of 0.01 m, 0.1 m, 1 m, 

2.5 m and 10 m; (a) 
rupture; (b) anti-sym-
metric shear stresses 
(negative values for 

clockwise rotations).
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4 Concluding Remarks

It is suggestive that asymmetric geological 

structures are generated by asymmetric physical 

fields. According to what was discussed, we ponder 
that the mechanics of Cosserat generalized conti-

nuum allow a better comprehension when building 

and interpreting conceptual and, in special, numeri-

cal models in structural geology. In a broad sense, in 

comparison to the classic continuum mechanics, the 

mechanics of Cosserat generalized continuum deals 

more widely with heterogeneous and anisotropic 

media, that is, the seminal characteristics present in 

rocks. In this sense, we argue that by using the Cos-

serat continuum mechanics it would be possible to 

better define the observation scales to be considered 
in defining how heterogeneous is the deformation 
responsible for the structural symmetry/asymmetry 

in rocks.

Considering future perspectives, it would be 

of fundamental importance to develop more refined 
models based on the intrinsic formulation of a Cos-

serat’s continuum and to extend its relationship with 

the experimental base and the observations in nature. 

In particular, it would be very useful to characterize 

the role of the characteristic lengths either in isotro-

pic or in anisotropic rocks and their physical mea-

ning and relevance in studying any particular set of 

geological structures.

5 Ackowledgements

Anderson Moraes is grateful to Petrobras 

for allowing to publish this work. We thank two 

anonymous reviewers who greatly helped to im-

prove the manuscript.

6 References

Adhikary, D.P.; Mühlhaus, H.B. & Dyskin, A.V. 1999. Model-
ling the Large Deformations in Stratified Media - the 
Cosserat Continuum Approach. Mechanics of Cohe-
sive-frictional Materials, 4:195-213.

Ahlgren, S.G. 2001. The Nucleation and Evolution of Riedel 
Shear Zones as Deformation Bands in Porous Sand-
stones. Journal of Structural Geology, 23:1203-1214.

Bauer, E. & Tejchman, J. 1995. Numerical Study of the Effect of 
Grain Rotations on Material Behavior in a Fault Zone. 

In: ROSSMANITH, A. (ed.). Mechanics of Jointed and 
Faulted Rock. Balkema, p.317-322.

Besdo, D. 1985. Inelastic Behaviour of Plane Frictionless 
Block-Systems Described as Cosserat Media. Archives 
of Mechanics, 37:603-619.

Bigoni, D. & Gourgiotis, P.A. 2016. Folding and Faulting of an 
Elastic Continuum. Proceedings of the Royal Society, 
A472:20160018.

Biot, M.A. 1965. Mechanics of Incremental Deformations. 
Nova Iorque, John Wiley and Sons, 504p.

Biot, M.A. 1967. Rheological Stability with Couple-Stresses 
and Its Applications to Geological Folding. Proceedings 
of the Royal Society of London, A2298:402-423.

Bogdanova-Bontcheva, N. & Lippmann, H. 1975. Rotations-
symmetrisches Ebenes Flißen Eines Granularen Mod-
ellmaterials. Acta Mechanica, 21:93-113.

Coetzee, C.J. 2014. Discrete and Continuum Modelling of Soil 
Cutting. Computational Particle Mechanics, 4:409-423.

Cosserat, E. & Cosserat, F. 1909. Théorie des Corps Déform-
ables. Paris, Hermann et Fils, 226p.

De Paor, D.G. 1994. The Role of Asymmetry in the Formation 
of Structures. Journal of Structural Geology, 4:467-475.

Esin, M.; Dyskin, A.V.; Pasternak, E. & Xu, Y., 2017. Mode 
I Crack in Particulate Materials with Rotational De-
grees of Freedom. Engineering Fracture Mechanics, 
172:181-195.

Figueiredo, R.P. 1999. Modelagem de Maciços Rochosos como 
Meios Contínuos Generalizados de Cosserat. Pontifícia 
Universidade Católica do Rio de Janeiro, Tese de Dou-
torado, 249p.

Figueiredo, R.P.; Vargas, E.A. & Moraes, A. 2004. Analysis of 
Bookshelf Mechanisms Using the Mechanics of Cosser-
at Generalized Continua. Journal of Structural Geology, 
26:1931-1943.

Germain, P. 1973. La Méthode des Puissances Virtuelles en 
Mécanique des Milieux Continus. Première Partie: 
Théorie du Second Gradient. Journal de Mécanique, 
12:235-274.

Jackson, M.P.A. & Hudec, M.R. 2017. Salt Tectonics. Princi-
ples and Practice. Nova Iorque, Cambridge University 
Press, 498p.

Khoei, A.R.; Yadegari, S. & Biabanaki, S.O.R. 2010. 3D Finite 
Element Modeling of Shear Band Localization Via the 
Micro-polar Cosserat Continuum Theory. Computation-
al Materials Science, 49:720-733.

Latham, J.P. 1985a. The Influence of Nonlinear Materials Prop-
erties and Resistance to Bending on the Development 
of Internal Structures. Journal of Structural Geology, 
7:225-236.

Latham, J.P. 1985b. A Numerical Investigation and Geologi-
cal Discussion of the Relationship Between Folding, 
Kinking and Fracturing. Journal of Structural Geology, 
7:237-249.

Lee, W.H.K. 2011. Rotational Seismology. In: GUPTA, H.K. 
(ed.). Encyclopedia of Solid Earth Geophysic. Springer, 
p.1344-1355.

Lippmann, H. 1969. Eine Cosserat-Theorie das Plastischen 
Flißens. Acta Mechanica, 8:255-284.

Mandl, G. 1999. Faulting in Brittle Rocks. Berlim, Else-
vier, 434p.

Maugin, G.A. 2017. Non-Classical Continuum Mechanics. A 
Dictionary. Singapura, Springer, 259p.



A n u á r i o   d o   I n s t i t u t o   d e   G e o c i ê n c i a s   -   U F R J

ISSN 0101-9759  e-ISSN 1982-3908  - Vol. 43 - 1 / 2020    p. 366-375 375

Mechanics of Cosserat Generalized Continuum and Modelling in Structural Geology
Anderson Moraes; Rodrigo P. de Figueiredo & Eurípedes do A. Vargas Jr

Mindlin, R.D. 1963. Influence of Couple-Stress on Stress Con-
centrations. Experimental Mechanics, 3:1-7.

Moraes, A. 2004. Comportamento Mecânico de Zonas de Fa-
lhas. Universidade Federal do Rio de Janeiro, Tese de 
Doutorado, 300p.

Moraes, A.; Conceição, J.C.J.; Campos, J.L.; Vargas Jr, E.A. 
2002. TECTOS: Programa de Modelagem Mecânica 
em Geologia Estrutural. In: Congresso Brasileiro de 
Geologia, 41, João Pessoa, 2002. Resumos, João Pes-
soa, SBG, p.627.

Mühlhaus, H.B. & Vardoulakis, I.G. 1987. The Thickness of 
Shear Bands in Granular Materials. Géotechnique, 37: 
271-283.

Mühlhaus, H.B.; Dufour, F.; Moresi, L. & Hobbs, B. 2002. A 
Director Theory for Visco-Elastic Folding Instabilities 
in Multilayered Rock. International Journal of Solids 
and Structures, 39:3675-3691.

Muller, A.L.; Vargas, E.A.; Vaz, L.E.; Figueiredo, R.P. & 
Gonçalves, C.J. 2011. Numerical Analysis of Sand/
Solids Production in Boreholes Considering Fluid-Me-
chanical Coupling in a Cosserat Continuum. Interna-
tional Journal of Rock Mechanics and Mining Sciences, 
48:1303-1312.

Nascimento, U. & Teixeira, H. 1971. Mechanisms of Internal 
Friction in Soils and Rocks. In: SOCIETY OF ROCK 
MECHANICS SYMPOSIUM, Nancy, 1971, II-3.

Ostoja-Starzewski, M.; Li, J. & Demmie, P.N. 2019. Continu-
um Homogenization of Fractal Media. In: VOYIADJIS, 
G.Z. (ed.). Handbook of Nonlocal Continuum Mechan-
ics for Materials and Structures. Springer, p.905-935.

Ramsay, J.G. 1967. Folding and Fracturing of Rocks. Nova Ior-
que, McGraw-Hill, 568p.

Rattez, H.; Stefanou, I.; Sulem, J.; Veveakis, M. & Poulet, T. 
2018. Numerical Analysis of Strain Localization in 
Rocks with Thermo-Hydro-Mechanical Couplings Us-
ing Cosserat Continuum. Rock Mechanics and Rock En-
gineering, 51:3295-3311.

Simpson, C. & De Paor, D.G. 1993. Strain and Kinematic Anal-
ysis in General Shear Zones. Journal of Structural Ge-
ology, 15:1-20.

Sternberg, E. & Muki, R. 1967. The Effects of Couple-Stress on 
the Stress Concentration Around a Crack. International 
Journal of Solids and Structures, 3:69-95.

Teisseyre, R. 2012. Asymmetric Continuum Theories. Fracture 
Processes in Seismology and Extreme Fluid Dynamics. 
In: LIM, H.S. (ed.). New Achievements in Geoscience. 
InTech, p.199-212.

Tejchman, J. 2008. Shear Localization in Granular Bodies with 
Micro-Polar Hypoplasticity. Berlim, Springer.

Teodorescu, P.P. 1975. Dynamics of Linear Elastic Bodies. Bu-
careste, Editura Academiei.

Tordesillas, A.; Peters, J.F. & Gardiner, B.S. 2004. Shear Band 
Evolution and Accumulated Microstructural Devel-
opment in Cosserat Media. International Journal for 
Numerical and Analytical Methods in Geomechanics, 
28:981-1010.

Twiss, R.J.; Protzman, G.M. & Hurst, S.D. 1991. Theory 
of Slickenline Patterns Based on the Velocity Gra-
dient Tensor and Microrotation. Tectonophysics, 
186:215-239.

Twiss, R.J.; Souter, B.J. & Unruh, J.R. 1993. The Effect of Block 
Rotations on the Global Seismic Moment Tensor and the 
Patterns os Seismic P and T Axes. Journal of Geophysi-
cal Research: Solid Earth, 98:645-674.

Twiss, R.J. & Unruh, J.R. 1998. Analysis of Fault Slip In-
versions: Do They Constrain Stress or Strain Rate? 
Journal of Geophysical Research: Solid Earth, 
103:12205-12222.

Twiss, R.J. & Unruh, J.R. 2007. Structure, Deformation, and 
Strength of the Loma Prieta Fault, Northern California, 
USA, as Inferred From the 1989-1990 Loma Prieta Af-
tershock Sequence. Geological Society of America Bul-
letin, 119:1079-1106.

Vardoulakis, I.G. & Sulem, J., 1995. Bifurcation Analysis in 
Geomechanics. Londres, Chapman Hall, 447p.

Veveakis, E.; Sulem, J. & Stefanou, I. 2012. Modeling of Fault 
Gouges with Cosserat Continuum Mechanics: Influence 
of Thermal Pressurization and Chemical Decomposition 
as Coseismic Weakening Mechanisms, Journal of Struc-
tural Geology, 38:254-264.

Žalohar, J. & Vrabec, M. 2010. Kinematics and Dynamics of 
Fault Reactivation: the Cosserat Approach. Journal of 
Structural Geology, 32:15-27.

Žalohar, J. 2012. Cosserat Analysis of Interactions Between In-
tersecting Faults; the Wedge Faulting. Journal of Struc-
tural Geology, 37:105-123.

Žalohar, J. 2014. Explaining the Physical Origin of Båth´s Law. 
Journal of Structural Geology, 60:30-45.

Žalohar, J. 2015. On a New Law of Faulting Along Tectonic 
Wedges: Cosserat Explanation of the Preferred (Paleo)
Stress States in the Earth´s Crust. Journal of Structural 
Geology, 77:107-125.

Žalohar, J. 2018. The Omega-Theory. A New Physics of Earth-
quakes. Amsterdam, Elsevier, 570p.

Zheng, Z.; Sun, W. & Fish, J. 2016. Micropolar Effect on the 
Cataclastic Flow and Brittle-Ductile Transition in 
High-Porosity Rocks. Journal of Geophysical Research: 
Solid Earth, 121: 1425-1440.


