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Abstract

One of the critical processes in the exploration of hydrocarbons is the identification and prediction of lithofacies that constitute the 
reservoir. One of the cheapest and most efficient ways to carry out that process is from the interpretation of well log data, which are 
often obtained continuously and in the majority of drilled wells. The main methodologies used to correlate log data to data obtained 
in well cores are based on statistical analyses, machine learning models and artificial neural networks. This study aims to test an 
algorithm of dimension reduction of data together with an unsupervised classification method of predicting lithofacies automatically. 
The performance of the methodology presented was compared to predictions made with artificial neural networks. We used the 
t-Distributed Stochastic Neighbor Embedding (t-SNE) as an algorithm for mapping the wells logging data in a smaller feature space. 
Then, the predictions of facies are performed using a k-nearest neighbors (K-NN) algorithm. The method is assessed in the public 
dataset of the Hugoton and Panoma fields. Prediction of facies through traditional artificial neural networks obtained an accuracy of 
69%, where facies predicted through the t-SNE+K-NN algorithm obtained an accuracy of 79%. Considering the nature of the data, 
which have high dimensionality and are not linearly correlated, the efficiency of t SNE+KNN can be explained by the ability of the 
algorithm to identify hidden patterns in a fuzzy boundary in data set. It is important to stress that the application of machine learning 
algorithms offers relevant benefits to the hydrocarbon exploration sector, such as identifying hidden patterns in high-dimensional 
datasets, searching for complex and non-linear relationships, and avoiding the need for a preliminary definition of mathematic relations 
among the model’s input data.
Keywords: Facies prediction; Well logging; t-SNE

Resumo

Um dos processos críticos na exploração de hidrocarbonetos é a identificação e previsão das litofácies que compõem o reservatório. Uma 
das maneiras mais eficientes e mais baratas de realizar esse processo é a partir da interpretação de dados de perfilagem de poço, que são 
frequentemente obtidos de forma contínua e na maioria dos poços perfurados. As principais metodologias utilizadas para correlacionar 
dados de perfilagem aos dados obtidos em testemunhos de poço são baseados em análises estatísticas, modelos de machine learning e 
redes neurais artificias. O objetivo deste trabalho foi testar um algoritmo de redução de dimensionalidade de dados em conjunto com 
um método de classificação não supervisionado para predição automática de litofacies. O desempenho da metodologia apresentada foi 
comparado com predições feitas com redes neurais artificiais. Utilizamos a Incorporação Estocástica de Vizinho Distribuída (t-SNE) 
como um algoritmo para mapear os dados de registro de poços em um espaço menor. Em seguida, as previsões de fácies são realizadas 
usando um algoritmo K-NN. O método é avaliado no conjunto de dados público dos campos Hugoton e Panoma. A previsão de fácies 
através de redes neurais artificiais tradicionais obteve uma precisão de 69%, enquanto as fácies previstas através do algoritmo t-SNE 
+ K-NN obtiveram uma precisão de 79%. Considerando a natureza dos dados, que têm alta dimensionalidade e não são linearmente 
correlacionados, a eficiência de t-SNE+K-NN pode ser explicada pela capacidade do algoritmo de identificar padrões ocultos em um 
limite nebuloso no conjunto de dados. É importante ressaltar que a aplicação de algoritmos de machine learnign apresenta benefícios 
significativos para o setor de exploração de hidrocarbonetos, dentre eles a identificação de padrões ocultos em um conjunto de dados 
de alta dimensionalidade, a busca de relações complexas e não-lineares, além de evitar a necessidade da definição prévia das relações 
matemáticas entre os dados de entrada do modelo. 
Palavras-chave: Predição de fácies; Perfilagem de poços; t-SNE
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1  Introduction 
Challenges related to the intense demand for 

natural resources such as hydrocarbons, minerals, and 
groundwater, makes it increasingly necessary to have 
a detailed understanding of subsurface geology. This 
knowledge is essential to develop geological models that 
serve as support for exploration and exploitation projects 
of these resources in a sustainable and economically viable 
manner. The most efficient way of recognizing lithological 
sequences in the subsurface is through the description 
of well-cores. However, the core collection process is 
considerably expensive and not always having coverage 
of the entire study area (Cunha et al., 2003; Albuquerque 
et al., 2005; Rosa et al., 2008).

Regarding the high cost of collecting cores 
throughout the exploration area, geophysical profiling 
has proved to be a viable tool for gathering information 
about sequences of rocks from the subsurface (Burke et al., 
1969; Delfiner et al., 1987). The above is possible because 
the measurements are practically continuous in the well, 
and the response of the physical properties of the profiles 
provides a close approximation of the rocks present in the 
well. According to Dubois et al. (2007), the classification 
of different types of rocks based on geophysical profiling 
data is fundamental for geological researches.

Notwithstanding presenting a lower cost, the 
measurements acquired by profiling tools not only represent 
the variations in lithology but also express changes in the 
medium’s physical properties. Besides, for each class or 
intervals of continuous facies, there is a wide range of 
responses for each measured property, so that such responses 
can overlap information related to different facies. Then, 
this uncertainty in the measurement makes a challenge 
the characterization of the rock based just on geophysical 
profiling data.

An alternative has been attempting to establish 
correlations between data obtained from geophysical 
profiling and information from wells-cores. The main idea 
is to take advantage of both approaches to get a better 
characterization of rocks. Accordingly, several authors 
have tested traditional machine learning algorithms for 
this purpose (Busch et al., 1987; Rogers et al., 1992; 
Hsieh et al., 2005; Dubois et al., 2007), among others. 
However, these methods required wells-core samples 
for each corresponding profile sample which make the 
process costly. For instance, Dubois et al. (2007) used an 
artificial neural network for classifying facies based on 
profiling data. In this method, the well-core information 
was given indirectly from the facies label information. 
Results were satisfactory in comparison with traditional 
statistical methods and other machine learning algorithms, 
for instance, classical parametric methods using Bayes’ rule, 
k-nearest neighbor, fuzzy logic, among others.

In this work, we propose a new semi-supervised 
method that requires a few sets of labeled profiling samples. 
We present a hybrid method based on the t-Distributed 
Stochastic Neighbor Embedding (t-SNE) (Maaten & 
Hinton, 2008) and K-Nearest Neighbors (K-NN) (Piegl 
& Tiller, 2002) methods which represents a more realistic 
scenario where wells-cores samples are usually scarce. The 
experiments were carried out in a public dataset, and the 
performance of the models was compared with a state of 
the art totally supervised method.

2  Fundamentals

2.1  t-Distributed Stochastic Neighbor 
Embedding

t-Distributed Stochastic Neighbor Embedding 
(t-SNE) is a probabilistic technique introduced by Maaten 
& Hinton (2008) for visualizing high dimensional data into 
the 2D or 3D dimensional space, attempting to preserve as 
much as possible the local structure of the data in the low-
dimensional space. Although it was initially proposed for 
data visualization, it has been extended as a technique for 
the clustering of high dimensional data in any Euclidean 
space (Shahan & Steinerberger, 2017; Aibar et al., 2017; 
Linderman & Steinenerberger, 2019).

The t-SNE transforms the Euclidian distances 
between datapoints, at both the high-dimensional space 
and defined low-dimensional space, into conditional 
probabilities, such that nearby datapoints present high 
conditional probabilities, whereas, for widely separated 
datapoints, they are close to zero. Let xi and xj indicate two 
high-dimensional datapoints with conditional probability 
pj|i, and yi and yj the associated mapped low-dimensional 
datapoints with conditional probability qj|i, the t-SNE 
algorithm is trained to reduce the difference between pj|i 
and qj|i. Mathematically, the conditional probabilities pj|i 
and qj|i for each datapoint are defined as follow, where σi 
represents the variance of the Gaussian.

(1)

(2)

The distance between pj|i and qj|i is reduced by 
minimizing the sum of Kullback-Leibler (KL) divergences 
over all datapoints using a gradient descent algorithm. 
Then, the cost function is given by
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2.2  Artificial Neural Network

An Artificial Neural Network (ANN) is a 
mathematical or computational model for processing 
information that mimics the way the biological nervous 
systems process information. As illustrated in Figure 1, it 
is a directed graph composed of processing units (neurons), 
organized by layers and interconnected layer-wise. These 
interconnections correspond to the weights, also known as 
the network’s parameters, that are adjusted during training 
by minimizing a specific lost cost function using the back-
propagation algorithm. A regular ANN is made by an input, 
a hidden or a stack of hidden layers, and an output layer. 
For multi-class classification is usually preferred the cross-
entropy as the cost function, while for regression is selected 
the mean square error.

Formally, let´s denote the input, hidden and 
output layers as the x, h, and z vectors, respectively. The 
information fed to the ANN is forward processed layer-
wise, as follows.

(4)

(5)

Where Wi and bi, and Wo and bo denote the input 
and output weight matrices and bias vectors, respectively, 
and σ (*) and γ (*) the activation functions, which usually 
are non-linear, such as sigmoid, softmax, ReLu or others.

3  Methodology
In this work, we propose the use of a semi supervised 

methodology for classifying facies based on profiling data 
and the well-core information provided by the labeled 
classes. Particularly, we use a hybrid method that combines 
the capability of the t-SNE algorithm for dimensionality 
reduction and clusterization in conjunction with the K-NN 
classification algorithm, which usually requires a few sets 
of labeled samples to operate.

The adopted methodology is divided into two 
stages: unsupervised learning and supervised classification, 
as illustrated on the right side of Figure 2. During the 
unsupervised phase, the t-SNE algorithm learns to map the 
input feature space to another feature space where samples 
are grouped based on the Kullback-Leibler similarity metric. 
Then, the K-NN classifies the non-labeled samples in the 
new feature space according to the minimum Euclidian 
distance to the labeled samples.

As illustrated on the left side of Figure 2, before 
applying the t-SNE, the samples are almost grouped in just 
one cluster so that it is difficult to be discriminated using a 
linear classifier. Then, after applying the t-SNE, it can be 
observed well defined clusters that can be easily discerned 
by a simple linear classifier as K-NN method.

In this scheme, we first organize the samples per 
well and order them by the well-depth. Then, following the 
sliding windows procedure with overlapping, we sampled 
across the well-logging variables to create the features 
vectors. The objective of this process is to introduce 
correlations between the well-depth and the measured 
physical properties. Therefore, the samples input data vector 
for the t-SNE algorithm is formed by sequences of well-
logging variables, as described in Equation 6.

(3)

Figure 1 Base multilayer neural network architecture. 
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where the subscript seq indicates the set of continuous measures according to the depth of the well, being n the window 
size used for sampling.

Figure 2 Methodology adopted for classification of geological facies. The stars and pentagons represent non-labeled and labeled 
samples, respectively. For a given non-label sample (green star) is computed the Euclidean distance regarding each labeled sample, 
and the labeled is assigned according to the samples with lower distance (K-NN method).

(6)

(7)

4  Experiments

4.1  Dataset 

The dataset refers to the Hugoton and Panoma gas 
fields, in Kansas - USA (Dubois et al., 2003; Dubois et al., 
2006; Dubois et al., 2007). Those fields are located in the 
Anadarko Basin, bordered by the arch of Las Animas and by 
Kansas’ central elevation, a Foreland-type basin associated 
with the beginning of the orogenesis of the Pensylvanian 
Ouchita-Marathon (Kluth, 1986; Perry, 1989). The main 
reservoirs are carbonate rocks, but, secondarily, there are 
sandstone reservoirs with high permeability and porosity. 
Sealing rocks are mostly very fine to coarse silstones and 
evaporites (Heyer, 1999; Dubois et al., 2003). 

The Hugoton and Panoma fields are concentrated 
in the Chase and Council Grove groups, which represent 

vertical successions of lithofacies of well-known cyclic 
nature. Facies successions present a rising pattern, resulting 
from depositional environments controlled by quick 
floatation at relative sea level (Olson et al., 1997). Details 
concerning to the depositional model attributed to the Chase 
and Council Grove groups cam be found in the study by 
Dubois el al. (2006) and references therein.

Data related to the Hugoton and Panoma fields, used 
in this study, were provided by the University of Kansas 
and obtained with the challenge of predicting lithologies 
organised by the Society of Exploration Geophysicists. 
The same dataset was used in the studies of Dubois et al. 
(2003, 2006, 2007), and those data were used in their raw 
form, without any quality control.

This dataset contains a total of 3232 records from 
eight wells (SHRIMPLIN, SHANKLE, LUKE G U, 
CROOS H CATTLE, NOLAN, Recruit F9, NEWBY and 
CHURCHMAN BIBLE), corresponding to measurements at 
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0.15 m intervals of gamma rays (GR), resistivity (ILD_log10), 
mean porosity and neutron density (PHIND). Additionally, 
it is included the difference between porosity and neutron 
density (DeltaPHI), and the information corresponding to 
the relative position (RELPOS). Global statistics of this 
dataset are summarized in Table 1, which lists the mean, 
standard deviation, min, and max values of the well-logging 
variables (GR, ILD_log10, DeltaPHI, and PHIND).

Likewise, in Table 2 is exhibited the description of 
the geological facies codes that can be found in the wells, 
as well as the number of samples per facies. Notice that 
the dataset is completely imbalanced, being CSIS and 
FSIS the most representative classes whereas D is the less 
representative.

Additionally, in Figure 3 is illustrated an arrange 
of sixteen plots that describe the distribution of samples 
for each facies concerning the well-logging variables. 
Specifically, it is presented in the main diagonal of the 
arrange, the distribution of samples for each well-logging 
variable regarding each facies, while in the off-diagonal 
locations, there are presented scatter plots of bivariate 
diagrams of well-logging variables for each facies. Notice 
that most of the facies samples overlap between them 
making difficult the classification of the samples in the 
original feature space. This analysis can also be performed 
considering the boxplot diagram shows in Figure 4. It can 

be observed the overlapping of facies samples regarding 
the well-logging variables.

4.2  Experimental Setup 

We first split randomly the dataset into two sets, one 
set for training and another set for testing, using a proportion 
of 2/3 and 1/3, respectively. Figure 5 shows two sets of 
bar diagrams associated with the distribution of samples 
per facies for the training and testing set, respectively. 
The distribution of samples regarding the facies is similar 
for both sets.

For improving the convergence of the assessed 
models, we normalized the well-logging variables to 
zero-mean and unit variance. Then, we balanced the 
dataset downsampling the most representative classes and 
replicating the less representative for training. This process 
was performed to avoid the models to be biased for the 
most representative classes.

Besides, to evaluate the capacity of the t-SNE+K-NN 
approach against the number of training labeled samples, we 
decided to consider only 50% of the training samples during 
the classification stage performed by the K-NN algorithm. 
For the t-SNE, we used the scikit-learn implementation, 
setting the learning rate to 120, the batch size to 32, and the 
training was stopped when no improvements were observed 

Table 1 Statistic distribution of well logging variables used for automatic faces classification.

GR ILD_log10 DeltaPHI PHIND NM_M RELPOS
Count 3232 3232 3232 3232 3232 3232
Mean 66.14 0.64 3.55 13.48 1.5 0.52
Std 30.85 0.24 5.23 7.7 0.5 0.29
Min 13.25 -0.03 -21.83 0.55 1 0.01
Max 361.15 1.48 18.6 84.4 2 1

Table 2 Description and geological facies code.

Code Description Facies Samples
1 Nonmarine sandstone SS 259
2 Nonmarine corse siltstone CSiS 738
3 Nonmarine fine siltstone FSiS 615
4 Marine siltstone and shale SiSh 184
5 Mudstone MS 217
6 Wackestone WS 462
7 Dolomite D 98
8 Packstone-grainstone PS 498
9 Phylloid-algal bafflestone BS 161
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Figure 3 Bivariate diagrams for evaluating the behavior of the measured properties (GR, ILD_log10, DeltaPHI and PHIND) in each of 
the nine facies. The facies are represented by colored dots that form a cloud where the boundaries between facies cannot be defined 
due to overlapping data.
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Figure 4 BoxPlot diagrams in which it can be observed the overlap in the space of the measured properties for each of the facies; A. 
PHIND; B. ILD_log10; C. GR; D. DeltaPHI. Facies are represented by colored rectangles that show the variation of the measured data 
and the points scattered by the diagrams represent the outliers in each variation.

Figure 5 Separation of training and test sets at random, maintaining the proportionality of the samples; A. The number of samples from 
each facies in the training set is shown; B. The number of samples in the test set is shown.
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in the KL lost, and for the K-NN, the K parameter was set to 
two. The repository containing codes in Python used to build 
this methodology are publicly available and can be accessed 
at: https://github.com/geoloriato/AUTOMATIC-FACIES-
CLASSIFICATION-WITH-T-SNE-AND-K-NEAREST-
NEIGHBORS-ALGORITHM 

Regarding the ANN, we used the same network 
architecture presented in by [6]. Here, the number of 
hidden layers was set to 50 neurons, and the output layer 
to nine, corresponding to the equal number of classes. The 
experiments were carried out in the Keras framework, 
setting the batch size to 32, learning rate to 0.1, stochastic 
gradient descent (SGD) as optimization algorithm, and the 
number of epochs to 100.

The models were assessed in terms of Precision, 
Recall, and F1-score performance metrics for each class 
and average. Additionally, we also present a classification 
visual inspection analysis for two selected wells. Finally, 
the performance of the methods is evaluated considering 
the genesis of the rocks. We divide facies into four groups 
like a (Dubois et al., 2007):

	● Group 1: sediments of non-marine origin (SS, 
CsiS, and FsiS);

	● Group 2: clay of marine origin (SiSh);
	● Group 3: chemical / physical carbonate rocks 

(MS, WS, D, and PS); and
	● Group 4: corals (BS).

5  Results and Discussions
First of all, it is important to stress that the data 

available online needs to be used with caution. In this study, 
we use data with high degree of trustworthiness, which 
have been used in previous studies, such as Dubois et al. 
(2003, 2006, 2007),  besides having been validated by the 
Society of Exploration Geophysicists. It is also relevant to 
stress that data of that nature are seldom made available to 
the public for free, which makes it even more difficult for 
studies like this to be developed.

Tables 3 and Table 4 summarize the performance 
obtained by the proposed method and the baseline, 
respectively, in terms of confusion matrix. Besides, in the 
same tables, it is also reported the precision, recall, and F1-
score performance metrics per facies class. By comparing 
the confusion matrices, it is observed that the t-SNE+K-
NN approach classified correctly more samples than the 
ANN counterpart for all classes. Notice that the lower 
improvement occurred for the SiSh facies, from 39 to 42 
samples, and the best for the CSiS, which passed from 145 
to 202 samples classified correctly. Regarding the major 
misclassifications, they existed between CSiS and FSiS, 
and WS and PS facies samples for both assessed methods.

Considering the performance in terms of Averages 
precision, recall and F1-score, the t-SNE+K-NN method 
achieved an improvement of 10% approx. in comparison 
with the baseline that presented a classification rate close to 
70%. This behavior is consistent with almost all individual 

Table 3 Confusion matrix obtained for the t-SNE+K-NN approach. In addition, it also presented the precision, recall, and F1-Score 
performance metrics.

Predict

Tr
ue

SS CSiS FSiS SiSh MS WS D PS BS Total
SS 67 4 1 72

CSiS 7 202 39 1 1 1 1 252
FSiS 3 36 158 1 2 200
SiSh 1 1 42 2 5 1 5 57
MS 1 1 4 50 3 3 11 73
WS 2 8 4 113 1 21 149
D 1 2 26 6 35

PS 1 7 9 17 2 129 1 166
BS 1 1 1 1 59 63

Precision 0.86 0.83 0.78 0.66 0.75 0.80 074 0.73 0.98 0.79
Recall 0.93 0.80 0.79 0.74 0.68 0.76 0.74 0.78 0.94 0.79

F1 0.89 0.82 0.78 0.69 0.71 0.78 0.74 0.75 0.96 0.79
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facies. For instance, the lower precision rate for the ANN 
was 56 (MS) while for the t-SNE+K-NN was 66 (SiSh); the 
remaining facies got precisions scores from 73 (PS) up to 
98 (BS). In terms of recall, the differences in performance 
were more notorious, presenting the t-SNE+K-NN recall 
rates from 68 (MS) up to 94 (BS), while the ANN was 
from 36 (MS) up to 91 (BS). The unique facies where the 
ANN obtained better results correspond to the SiSH class, 
where this method was superior in just 2%.

Figure 6 shows a graph that contrasts the performance 
of the models in terms of F1-Score. The blue and orange 
lines indicate the t-SNE+K-NN and ANN methods, 
respectively. It is observed that the higher improvement 
scored for the proposed methodology occurred for the MS 
facies, going from 44 up to 71. In contrast, for the SiSH, 
both methods performed similarly, 69 and 70. Regarding 
the performance over the other facies, it can be discerned 

Table 4 Confusion matrix obtained for the ANN approach. In addition, it also presented the precision, recall, and F1-Score performance 
metrics.

Predict

Tr
ue

SS CSiS FSiS SiSh MS WS D PS BS Total
SS 57 22 2 81

CSiS 16 145 35 2 1 199
FSiS 6 28 120 1 1 5 161
SiSh 2 39 3 5 2 51
MS 2 4 4 23 18 1 12 64
WS 4 10 7 84 1 32 138
D 1 3 1 2 18 3 3 31

PS 3 7 3 6 13 2 98 2 134
BS 1 1 3 48 53

Precision 0.70 0.72 0.70 0.64 0.56 0.68 0.78 0.63 0.91 0.69
Recall 0.70 0.73 0.75 0.76 0.36 0.61 0.58 0.73 0.91 0.69

F1 0.70 0.72 0.72 0.70 0.44 0.64 0.67 0.68 0.91 0.69

Figure 6 Evaluation metrics for each facies calculated for the classifications with t-SNE+K-NN (in blue) and based on the artificial neural 
network used by [6] (in orange).
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that the blue line is always above the orange line, exhibiting 
the lowers differences in the SiSH, PS and BS facies.

We also present a visual inspection analysis in 
Figure 7 and Figure 8 corresponding to the classification 
of samples belonging to the NOLAN and SHRIMPLIN 

wells, respectively, organized with respect to the Well 
depth. In these figures, from left to right, it can be seen the 
behavior of the measures of the four physical properties 
as the well’s depth increases. The last three columns of 
the figures show in colored horizontal lines the real facies 

Figure 7 A. Comparison between real facies; B. Facies predicted by t-SNE+K-NN; C. Facies predicted with the Dubois et al. (2007) ANN 
in the NOLAN. There are also illustrated the gamma ray curves (GR), resistivity on a logarithmic scale on a base 10 basis (ILD_log10), 
the difference between porosity and neutron density (DeltaPHI) and the average porosity and the neutron density (PHIND).
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Figure 8 A. Comparison between real facies; B. Facies predicted by t-SNE+K-NN; C. Facies predicted with the Dubois et al. (2007) 
ANN in the SHRIMPLIN well. There are also illustrated the gamma ray curves (GR), resistivity on a logarithmic scale on a base 10 basis 
(ILD_log10), the difference between porosity and neutron density (DeltaPHI) and the average porosity and the neutron density (PHIND).
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classes, the predictions made by the t-SNE+KNN, and the 
ANN approaches, respectively. Examining the behavior 
of the wells measures variables respecting the real facies 
classes, it can be noted that abrupt fluctuations in whatever 
of these variables are usually correlated to changes in the 
facies classes. Then, this analysis supports the methodology 
proposed, which considers a sampling window of measures 
as input features for learning the t-SNE mapping, instead 
of the methodology followed by Dubois et al. (2007).

By analyzing the predictions of the methods 
presented in the last two columns of Figure 7 and Figure 
8, it can be observed that the t-SNE+K-NN graph is almost 
indistinguishable than the corresponding to the real facies. 
Contrary, the graph corresponding to the ANN predictions 
presents remarkable discrepancies with regards to the 
reference. These results show consistency in our proposed 
method in getting better performance than the baseline. 
It is important to emphasize that for the t-SNE+K-NN 
experiments, we just selected 50% of the training samples 
for making the predictions. It demonstrates the capability 
of the t-SNE+K-NN for capturing complex patterns so that 
samples belongings to the same class are mapped closer in 
a defined Euclidian feature space.

Finally, Table 5 presents the t-SNE+K-NN confusion 
matrix organized according to the genesis of the rock groups. 
Results demonstrated that the t-SNE+K-NN was able to 
capture the patterns associated with the genesis of rock. It 
can be discerned that most of the misclassifications between 
classes disappear. For group 1, 98:5% of the samples were 
correctly classified, while for group 3 it was 93:9%. Note 
that, group 2 and group 4 represent the SiSn and BS facies, 
respectively, such that the performance was the same, i.e., 
73:7%, and 3:7%, respectively.

Two elements can be approached to explain 
differences among lithofacies in terms of predictive capacity. 
The first is related to an unbalance in the lithofacies of the 

test set and the training set, which is expected, as they 
are piles of lithofacies that depend on several geological 
conditions. Facies with a larger number of label samples 
offer a greater predictive capacity. The second element is 
related to data variability in each lithofacies. In all facies, 
there is log data overlapping, nevertheless, among carbonate 
facies, data overlapping is higher, with little or almost no 
difference among average properties in those facies. In 
non-marine facies, however, average properties in logs 
present at least some differences among lithofacies.

The difference in performance between the proposed 
method and the baseline relies on the capability of t-SNE for 
projecting into a close Euclidean distance the samples that 
follow a similar pattern. Due to this process is performed 
unsupervised, the algorithm is not affected by possible errors 
of labeling, providing a better capacity of generalization, 
and requiring less labeled samples when using with the 
K-NN. However, the artificial neural network, based on 
multi-layer perceptions (MLP), requires a great amount 
of label data to train the prediction model. Dubois et al. 
(2007) used few indicators in their MLP, which made this 
network incapable of capturing complex or non-linear 
relationships within datasets. Expanding the amount of 
MLP indicators would require even more label samples, 
and it would run the risk of overfitting. Another important 
point to make is that Dubois et al. (2007)’s MLP could be 
affected by incorrectly labelled samples, while the model 
based on t-SNE + K-NN does not offer that risk, as it is 
an unsupervised model.

Apart from the methodology presented in this 
study, there are other methodologies based on machine 
learning targeting prediction of lithofacies, such as Support 
Vector Machine (SVM), Random Forest (RF), Bayesian 
Network (BN) and even Artificial Neural Networks (ANN) 
in different settings (Dubois et al., 2007; Al-Anazi & Gates, 
2010; Salehi & Bizhan, 2014; Sebtosheikh & Salehi, 2015; 

Table 5 Confusion matrix with separation between the proposed groups based on petrogenetic criteria. The hits in group 1 are represented 
in blue, for group 2 in gray, for group 3 in yellow and for group 4 in green.

Predict

Tr
ue

SS CSiS FSiS SiSh MS WS D PS BS Total
SS 67 4 1 72

CSiS 7 202 39 1 1 1 1 252
FSiS 3 36 158 1 2 200
SiSh 1 1 42 2 5 1 5 57
MS 1 1 4 50 3 3 11 73
WS 2 8 4 113 1 21 149
D 1 2 26 6 35

PS 1 7 9 17 2 129 1 166
BS 1 1 1 1 59 63
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Bhattacharya & Carr, 2016; Mishra & Datta-Gupta, 2017; 
Bhattacharya & Mishra, 2018). Notwithstanding, except 
for Bayesian Network, other methodologies, although 
robust, fail to overcome the conception of the correlation 
coefficient as a measure of accuracy, which makes it hard to 
classify sets of complex and non-linear data in 2-D space.

Despite the satisfactory results obtained with the 
t-SNE+KNN approach, the classification of facies using 
data from wells is still a complicated problem, with high 
ambiguity, and solutions that can be unrealistic. This 
is because of the properties measured in well present 
uncertainties on three levels: for each facies, there exists 
a wide range of responses for the properties measured, 
each tool presents different intervals of measuring, and 
the conditions of the well change.

6  Conclusions
The results presented in this study demonstrate the 

efficacy of the combination of an algorithm of dimensional 
reduction like t-SNE with an unsupervised classifier (K-NN) 
for the prediction of lithofacies in diversified reservoirs, 
as in the cases of the Hugoton and Panoma fields, which 
represent repeated vertical successions of lithofacies of 
cyclic nature, with a rising pattern, and resulting from 
quick floatation at relative sea level.

The results demonstrate the ability of the proposed 
method in comparison with the baseline; the t-SNE+K-NN 
consistently outperformed the baseline up to 10 for all 
evaluated performance metrics. Most importantly, these 
results were obtained using 50 of the training labeled 
samples employed by the ANN approach. The small amount 
of labelled data (identified lithofacies) necessary to train the 
model based on the combination of t-SNE + K-NN makes 
this methodology ideal for fields with a small amount of 
well cores. It is important to say that, due to the lack of 
public-domain data from other types of reservoirs, this 
methodology could not be tested for different types of 
reservoir, such as reservoirs that are exclusively siliciclastic, 
leaving that stage for future studies.

The success of the method is due to the t-SNE+K-
NN ability to deal with high dimensional and nonlinearly 
correlated data. It can find patterns embedded in the dataset 
that are not found by traditional facies prediction methods. 
Considering the nature of the data and the nature of the 
problem to be solved, t-SNE+K-NN proved to be a robust 
tool for the prediction of facies in wells without description 
of cores. 
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