
1

https://revistas.ufrj.br/index.php/aigeo/
ISSN 0101-9759

Anuário do Instituto de Geociências
Universidade Federal do Rio de Janeiro

e-ISSN 1982-3908

Development of a Low-Cost Terrestrial Mobile Mapping System for Urban 
Vegetation Detection Using Convolutional Neural Networks
Desenvolvimento de um Sistema de Mapeamento Móvel Terrestre de Baixo Custo para Detecção da 
Vegetação Urbana Usando Redes Neurais Convolucionais

Kauê de Moraes Vestena1  & Daniel Rodrigues dos Santos2 

1 Universidade Federal do Paraná, Departamento de Geomática, Curitiba, PR, Brasil
2 Instituto Militar de Engenharia, Seção de Engenharia Cartográfica, Rio de Janeiro, RJ, Brasil 

Corresponding author: Kauê de Moraes Vestena; kauemv2@gmail.com

Abstract

Urbanization brought a lot of pollution-related issues that are mitigable by the presence of urban vegetation. Therefore, it is necessary 
to map vegetation in urban areas, to assist the planning and implementation of public policies. As a technology presented in the last 
decades, the so-called Terrestrial Mobile Mapping Systems - TMMS, are capable of providing cost and time effective data acquisition, 
they are composed primarily by a Navigation System and an Imaging System, both mounted on a rigid platform, attachable to the top of 
a ground vehicle. In this context, it is proposed the creation of a low-cost TMMS, which has the feature of imaging in the near-infrared 
(NIR) where the vegetation is highly discriminable. After the image acquisition step, it becomes necessary for the semantic segmentation 
of vegetation and non-vegetation. The current state of the art algorithms in semantic segmentation scope are the Convolutional Neural 
Networks - CNNs. In this study, CNNs were trained and tested, reaching a mean value of 83% for the Intersection Over Union (IoU) 
indicator. From the results obtained, which demonstrated good performance for the trained neural network, it is possible to conclude 
that the developed TMMS is suitable to capture data regarding urban vegetation.
Keywords: Mobile geospatial data acquisition systems; NIR Imaging; Semantic segmentation

Resumo

A urbanização acarretou muitas problemáticas relacionadas com a poluição, mitigáveis pela presença de vegetação urbana. Por 
conseguinte, é necessário mapear a vegetação nas áreas urbanas, de modo a apoiar o planejamento e a implementação de políticas 
públicas. Como tecnologia apresentada nas últimas décadas, os denominados Sistemas de Cartografia Móvel Terrestre - SMMT, 
capazes de proporcionar uma aquisição de dados eficaz em termos de custo e tempo, são compostos principalmente por um Sistema 
de Navegação e um Sistema de imageamento, ambos montados sobre uma plataforma rígida, fixáveis à parte superior de um veículo 
terrestre. Neste contexto, propõe-se a criação de um SMMT de baixo custo, dotado da capacidade de gerar imagens contendo o 
infravermelho próximo (NIR), onde a vegetação é altamente discriminável. Após a etapa de aquisição das imagens, se faz necessária a 
segmentação semântica da vegetação e a não-vegetação. Os atuais algoritmos de estado da arte no âmbito da segmentação semântica 
são as Redes Neurais Convolucionais - CNNs. Neste estudo, as CNNs foram treinadas e testadas, atingindo um valor médio de 83% 
para o indicador Intersecção sobre União (IoU). A partir dos resultados obtidos, que demonstraram bom desempenho para a rede neural 
treinada, é possível concluir que o TMMS desenvolvido é adequado para captar dados relativos à vegetação urbana.
Palavras-chave: Sistemas móveis de aquisição de dados geoespaciais; Imageamento NIR; Segmentação semântica
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1 Introduction
Nowadays, the outcomes of the urbanization process 

are increasingly more visible. There are a myriad of issues 
related to this process that have direct influence on the urban 
population quality of life, like all kinds of pollution. Many 
of these problems can be mitigated by a solid presence of 
vegetation in the urban scenarios, accordingly to Nicodemo 
& Primavesi (2009) , the major notably gains provided 
by them are: 1) Microclimate Control, by the alleviation 
of the local temperature, reducing the occurrence of heat 
islands; 2) Air Pollution reduction, with the surface of leaves 
absorbing some of the air pollutants and holding some of 
the biggest solid particles; 3) Noise Reduction, the leaves 
acts as barriers against the sound waves, and also grass is 
a good pavement against sound propagation; 4) Rainfall 
interception, the process of the growing of the plant roots 
and the deposition of organic material, both contribute to 
improve the urban soil permeability; 5) Carbon Retention, 
by the natural plant breathing process, that absorbs more 
carbon dioxide than delivers to the atmosphere; 6) cultural 
and aesthetic values, some places prizes the presence of 
vegetation, e.g. by legal fostering and tax reductions. 

Despite all of these benefits, urban vegetation can 
cause damage if grown under improper conditions, so both 
faces are sources for purposing the mapping activity of this 
critical matter. The demand for this kind of data is a very 
challenging one, as a regular city can accommodate several 
kilometers of roads, setting up a scenery that is susceptible 
to quick changes along the years. So, the mapping technique 
must fulfill the feature of quick data capture of an entire 
study area (that can be an entire city). 

According to El-Sheimy (2005), the so-called 
Terrestrial Mobile Mapping Systems - TMMS can attend 
to that demand. This kind of system should contain four 
essential subsystems: an imaging system; a navigation 
system; a control, storage and power supply system; and 
a rigid platform. The TMMS can exist in many shapes and 
configurations, and there are a lot of possible choices for 
their components that can exist in every range of monetary 
cost. TMMS can rely on active and/or passive imaging 
systems, but generally only photographic cameras (passive 
sensors) are viable for a low-budget setup. Low-cost systems 
are generally desirable, as they allow for multiple agents to 
act in the field, in a way that can reduce largely the demand 
of time to accomplish a survey. And also, capturing data 
in Near-Infrared (NIR) spectrum is an additional feature 
to acquire relevant information about vegetation (Myneni 
et al. 1995).

Imagery is a feature-rich kind of data, especially in 
urban scenes, they can have a lot of other themes as well 

as vegetation: pavement, cars, people, buildings, the sky, 
etc. So, for any later activity aiming for the vegetation 
mapping is mandatory the segmentation and labeling 
(semantic segmentation) of every pixel in each photograph 
into vegetation or the other features. Nowadays, in line 
with many authors, like (Chen et al. 2018; Mostjabi, 
Yadollahpour & Shakhnarovich 2015; Badrinarayanan, 
Kendall & Cipolla 2017). The best kind of algorithms for 
semantic segmentation are the ones based on Convolutional 
Neural Networks - CNNs, that are networks trained by Deep 
Learning algorithms, this means that no explicit directions 
are given to it in order to accomplish its goals, actually, 
only examples of correct classifications are given, then 
the network will iteratively adjust its weights to improve 
their own performance. 

In order to achieve those goals, the present paper 
presents the development of a low-cost TMMS capable 
of capturing the NIR spectrum and the use of CNNs for 
the segmentation process of the acquired imagery. The 
main steps in this work are: the proposal and selection of 
the TMMS components; establish the data collection and 
processing protocols; train a CNN capable to carry out the 
semantic segmentation process; evaluate the accuracy of 
the semantic segmentation, by cross-checking the obtained 
results with ground-truth samples. The highlights of the 
proposed method are: 

 ● The development of a Low-Cost TMMS, capable of 
IR imaging; and 

 ● The employment of the state-of-art algorithm for 
semantic segmentation.

2 Material and Method

2.1 Materials and Resources

In order to develop the present piece of work, a bunch 
of devices and resources that are physical, computational 
or even procedural have been employed. The process of 
resource selection has been carried out by some guidelines: 
the low cost; the availability; and mandatory preference 
for open-sourced materials. 

The TMMS itself was built upon a rigid platform 
that is made of medium-density fiberboard painted in white. 
On its “bottom side” there are two bars with universal 
suction couplers. In its “upper side” there are the functional 
devices of the system, sorted here by the relevance of 
each one: A “Raspicam V2” camera module with 8MP 
resolution with infrared capturing capacity, serving as 
the exteroceptive (imaging) sensor; An Adafruit BNO055 
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Inertial Measurement Unit (IMU); An GNSS-UBX-M8030 
module, capable of capturing data up to 3 constellations 
simultaneously, that alongside with the IMU compounds 
the positioning system of the TMMS; A Raspberry Pi 3B 
board, the computer of the platform, that acts both as the 
hardware-level integrator of the imaging and positioning 
systems, power-sourcing them and providing a unified 
time scale for data capture, and also as a software-level 

integrator, running the sensors drivers and the data recording 
and preprocessing software. Besides the functional part, 
there are other essential pieces that are necessary for the 
TMMS working, such as the 12 V battery used as power-
source, the SD Card used as storage and a red-light Filter 
that acts blocking the green and blue part of the visible 
spectrum. The platform, which is presented in Figure 1, 
had its actual cost at around BRL 1200. 

Figure 1 The developed TMMS platform.

Also, in order to handle the data capture and let the 
user of the platform take control of this process, there are the 
software stuff running on the embedded computer: Lubuntu 
16.04 as the operating system; the Robot Operating System 
(ROS) as the framework interfacing the equipment along 
with the realization of the time system and the creation of the 
data files; and the Real VNC (Virtual Network Computing) 
implementation of the VNC protocol as a server for remote 
controlling. 

Outside the platform, in order to use a CNN 
architecture in order to train, evaluate and use the neural 
networks, Google’s Tensorflow library has been used, for 

statistics, the functions from the SciPy library have been 
used. All the codes used for data processing are available 
at the repository: https://github.com/kauevestena/snav. 

2.2 Methodology

The proposed method is divided in two main stages: 
data acquisition and data processing. The preliminary stage 
covers the entire process for training and evaluation of the 
CNN. After, it starts the planning of a surveying, passing 
to its execution. Finally, the data are processed and the 
geotagged vegetation-only images are obtained. Figure 2 
presents the workflow of the proposed method.

https://github.com/kauevestena/snav
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For the data acquisition stage, there are two parts 
worth considering: data recording and data collection. The 
first refers to how the system as a whole will spawn the 
data files, aside from its purpose. The latter refers to the 
surveying execution process itself.

The data recording was made based on the ROS 
Kinetic, all the data is stored in a file that is made by it. 
So, each equipment in the TMMS will generate its own 
data: the camera generates RED/NIR images at a rate up 
to 90 Hz and a resolution up to 8 MP; the IMU captures at 
up to 100 Hz the unitary quaternion that magnetic-north 
oriented absolute orientation, the free linear acceleration 
and the angular velocity; and the GNSS receiver will record 
the position as geodetic coordinates and the velocity as an 

east-north-up vector. The control schema, which is depicted 
in Figure 3, is done by running the Real VNC server at 
the computer, which allows one to put a remote device 
(generally a smartphone, connected to the same network) 
in charge of the record process, both to start and to stop 
it. Once the recording process finishes, we have the data 
file in a binary format.

The data collection part depends on some planning, 
with the route to be ran as the main part. Three factors must 
be taken in account for route planning: the area of interest; 
the coverage, that is ensuring that the planned route will 
attend to supply all the necessary data; and the viability, 
which means that the planned route does not violate any 
traffic law. Figure 4 shows the platform mounted in a car.

Figure 2 The workflow: 0 is data acquisition; 1 is the use of the CNN; 2 to 4 is the remaining part aiming to the final product.

Figure 3 The Platform Control Scheme.
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After the data collection, we extract the images and 
positioning data from the binary file, then we process them 
separately. In order to align both the positional data and the 
images within the time domain, we have used interpolation: 
for the GNSS data we used linear interpolation, since it 
records data at 1 Hz, we also first linearized the geodetic 
coordinates to ENU (East North Up) vector coordinates, 
interpolated, to then go back to geodetic coordinates; for 
the IMU data, we have employed the nearest neighbor, 
since it generally operates at 100 Hz.

In Figure 5, the digital images are used for the 
training of the CNN, and for the application of the CNN. As 
samples for the CNN training, we have classified manually 
a total of 50 classification masks (binary images, where 
white is vegetation), subdivided in three categories: I) 
“Train”, the images used to effectively train the CNN; II) 
“Validation”, the images used as internal validation by 
the CNN, and therefore for the fine tuning of the CNN 
parameters; and III) “Test”, that are images not used by 
the training algorithm at all, which finality is to externally 
evaluate the quality of the classification done by the CNN. 
As a model of CNN. We have opted for the full-resolution 
residual networks (FRRN) (Pohlen et al. 2017), since it 
was designed for street scenes. They make use of skip 
connections with both full and reduced resolution images. 

The CNN training was done along hundreds of 
cycles named epochs, as shown in Figure 6, in which the 
entire dataset is passed through the CNN. The images 

are downsampled to the resolution of 512 x 512, such 
as suggested by Sabotke & Spieler (2020) and Kannojia 
& Jaiswal (2018), since the full resolution causes more 
computational burden than benefit in terms of accuracy. 
In order to input a random factor to mitigate the effects 
of the sensor position and its particular sensibility for 
the light, a random brightness variation of 10% as an 
image augmentation technique was used (Mikołajczyk 
& Grochowski 2018). The performance of the CNN is 
continuously accessed by some error metrics, at each epoch 
they are evaluated internally using the imagery of group 
II. At the early epochs, the CNN will perform poorly, then 
will continuously raise, until it reaches a certain plateau, 
from then it would not improve further, hence the training 
can be stopped. 

The employed error metrics are based on a statistical 
confusion-matrix (Fawcett 2006), comparing for each pixel 
respectively the ground truth with the classification done by 
the CNN: V (vegetation) and V is a True Positive (TP); NV 
(non-vegetation) and NV is a True Negative (TN); V and 
NV is a False Negative; NV and V is a False Positive. In 
the binary classification of this work, we consider the TP as 
much more meaningful hits, since in the R-NIR images there 
are much more features distinguishable from vegetation 
than the opposite. Furthermore, the FP are considered as the 
worst error, as one can run analysis in the “vegetation-only” 
imagery that was meant to be run in vegetation pixels only. 

Figure 4 The Platform mounted in a car. Detail: remote controlling the System. 
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Figure 5 Samples of digital images taken by the TMMS.

Figure 6 The CNN Training Process.



7

Development of a Low-Cost Terrestrial Mobile Mapping System for Urban Vegetation Detection... Vestena & Santos

Anu. Inst. Geociênc., 2022;45:46008

The total of pixels for each of the four possibilities 
is added, and the five employed metrics (Fawcett 2006) 
is computed: Hit Rate (HR) that is the rate between hits 
and total pixels; Positive Predictive Value (PPV) that is 
the rate between TP and the pixels classified as vegetation; 
Sensitivity (S) that is the rate between TP and pixels that 
are actually vegetation; F1-Score (F1) that is the harmonic 
mean between S and PPV; and Intersection Over Union 
(IoU) that is the ratio between the intersection of vegetation 
predictions and vegetation ground truth (that are the TP) 
and the union of the same groups. All those metrics are 
formulated as follows, in the Equations 1-5, respectively. 

  HR = (TP + TN) / (TP + FP + TN + FN) (1)
  PPV = TP / (TP + FP) (2)
  S = TP / (TP + FN) (3)
  F1 = (PPV * S) / (PPV + S) = 2TP / (2*TP + FP + FN) (4)
  IOU = TP / (TP + FP +FN) (5)

Thus, the mean value of any metric for each epoch 
is calculated. In this work, the best epoch was chosen as the 

one who achieved the best average IOU. After the algorithm 
chooses the best epoch one can use it as the CNN to do the 
classification for any image taken by the TMMS.

3 Experiments

3.1 Experiment Design 

The experiments taken on the behalf of this work 
were two: 1) a complete survey with the TMMS; and 2) 
training and validation of many epochs for the CNN. 

For 1), the parameters employed for the capture 
are the following: recording at 100, 1 and 10 Hz for the 
IMU, GNSS and camera respectively; GPS, GLONASS 
and GALILEO are the employed GNSS constellations; 
the “automotive mode” (non-holonomic constraints) was 
activated for the GNSS; the images were recorded at a 
1280x960 pixels of resolution with an exposure time of 
1/1000 s. In a route of 2.1 km traversed in 11.9 minutes, 
depicted in Figure 7, 7111 photos were taken, with 4.6 GB 
of uncompressed data generated.

Figure 7 Part of the survey route, with the orientation quaternion along in detail. 
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Then, for 2), we classified considering every feature 
with leaves as vegetation (including grass); the imagery 
was downsized to 512x512 pixels; 1100 epochs as the stop 
criteria; 40 images as the size of the dataset, for the training 
that was done with a batch size of 20 pixels; the FRRN 
(Pohlen et al. 2017) with a InceptionV4 frontend are the 
model for CNN. We employed Google’s Colab Servers with 
GPU acceleration for the training, each epoch was trained 
in approximately 5 min, taking almost 4 days to train.

3.2 Results and Analysis

Firstly, regarding the positioning data, no numerical 
analysis has been carried out, but, as shown in Figure 7, the 
collected data suited finely to an existing map data, totally 
independent from the TMMS data, showing its consistency 
both in an absolute manner as well in a relative aspect 
(appropriate straight and curved paths without jumps). The 
orientation data also performed well, with variations mostly 
on “z” and “w” components of the orientation quaternion, 
showing a correctly level-oriented system.

For the CNN data, in Figure 8 are depicted the 
detailed IoU evolution for the CNN training, with the mean 
value for the test dataset per epoch, along with min, max 

values and the positive and negative interval including the 
standard deviation.

Figure 8 shows the expected evolution for the CNN 
performance, with a high gain in the initial epochs, then 
it progressively slows down until it stops evolving (hence 
vulnerable to overparameterization), so the training can 
be stopped. The epoch numbered 1059 was chosen as the 
best epoch, since it achieved a IoU mean ratio of 0.8397, 
the best one among the data.

In Figure 9 the boxplot with the summary of all the 
employed error metrics are depicted.

As shown in Figure 9, the HR metric overestimates 
the CNN quality, as it considers the TN values that can be 
background and are less relevant in this binary classification 
as stated in Chapter II. Regarding the PPV and Sensibility as 
complementary, as the CNN performed better in the latter, 
we can see that the CNN commits less FN as it weighs less 
compared to the TP. Comparing the IoU with the F1 index, 
the latter gives too much weight to the FPs, overestimating 
the CNN quality. So, the IoU was chosen as the best metric 
to meaningfully summarize the CNN performance, with 
0.8397 as mean score with 0.0217 of standard-error.

As this work is intending to provide geotagged 
vegetation-only R-IR imagery as the main goal, in Figure 
10 a sample is presented.

Figure 8 The evolution of the IoU error metrics along the epochs.
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Figure 9 The boxplot with the summary of the error metrics with mean in red.

Figure 10 Samples of resulting vegetation-only images.
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Figure 11 Preview of the generated sample map.

As a final result, a sample map has been generated 
with the experiment data, with a simple approach: the 
degree of incidence of vegetation is shown as the percentage 
of vegetation pixels. The complete version (in Brazilian 
Portuguese) of the generated map is available at the “map” 
folder of the GitHub repository presented on Chapter II, a 
preview of it is rendered at Figure 11.

4 Conclusions and Future Works
This paper presented two pertinent themes 

concerning the geosciences area: a development of a 
complete mobile mapping system; and the classification 

of its imagery as a preparatory step in order to use them 
for urban vegetation studies, along with the positioning 
and orientation data. 

The assembly of the TMMS platform was a success 
and the system is fully operational and can be used to collect 
data, as well as its project is fully open at the author’s 
master thesis, in Portuguese, available at: https://rebrand.ly/
dissertacao_kaue. So anyone with the technical knowledge 
can replicate the hardware part as well as the software part 
which are available on GitHub. The platform design and 
the project as a whole has successfully reached its goal as 
a low-cost purpose. 

https://rebrand.ly/dissertacao_kaue
https://rebrand.ly/dissertacao_kaue
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The presented results are satisfactory, then it can 
be said that the project objectives have been fulfilled. The 
TMMS have potential to be employed in a large-scale data 
collection schema, as it can be replicated and be embedded 
in several vehicles in order to map an entire big city. The 
collected data has a huge vocation to be used in urban 
vegetation studies, including vegetation health and presence, 
with high-resolution data, since the camera capture imagery 
notably close from the subjects, although this strong point 
is also its most notorious limitation: this imagery only 
shows vegetation attached to streets, one cannot see inside 
city blocks without help from aerial/orbital imagery, aside 
from really tall trees.

As future work, the following are suggested: to train 
specific CNN to identify shadows, tree trunk, tree foliage, 
tree pathologies, etc.; to develop a tree counting algorithm, 
to calculate the 3D coordinate of the tree base; to employ a 
luminance sensor to adapt sensor gains accordingly to light 
changes; to use many epochs in order to create a voting 
schema, to improve classification; and to integrate more 
geometric constraints.
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