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Abstract 

Downslope windstorm known as Vento Norte (VNOR; Portuguese for “North Wind”) is a common phenomenon that occurs in southern 
Brazil during the winter season. Hence, this study attempted to investigate the climatological characteristics of VNOR using seventeen 
years (2004–2020) of hourly observations collected at seven meteorological stations distributed over the central region of Rio Grande 
do Sul State. The VNOR windstorm episodes are identified by intense wind gusts and warm air advection from the northern direction. 
They were selected from the data set obtained during the winter in the city of Santa Maria (SM). Statistical analysis showed that the 
detected VNOR events were characterized by mean wind gusts ≈15 m.s-1, mean wind direction of 350° and mean air temperature of  
27 °C. Average duration of the events was about 9 h, with the longest event lasting 21 h. Characteristics and effects of this phenomenon 
were compared with those in other locations (meridional and zonal sections). Average values of wind gusts from the northern direction 
presented a significant increase of ≈200% for the winter period in SM. Nonetheless, a less significant increase in wind gusts was recorded 
in the meridional (28%) and zonal (41%) sections away from SM. The central location of SM has favorable topographic characteristics 
for this amplification, with a sharp altitude difference caused by the plateau-plain interface of ≈300 m. Our findings showed that the 
VNOR phenomenon mainly affects the climate of the southern region of Brazil, with a local amplification in the city of SM.
Keywords: Downslope winds; Regional advection; Local topography

Resumo

A tempestade de vento conhecida como Vento Norte (VNOR) é um fenômeno comum que ocorre no sul do Brasil   durante o inverno. 
Assim, este estudo buscou investigar as características climatológicas do VNOR utilizando dezessete anos (2004-2020) de observações 
horárias coletadas em sete estações meteorológicas distribuídas na região central do Rio Grande do Sul. Os episódios de VNOR, 
identificados por rajadas de vento intensas e advecção de ar quente da direção norte, foram selecionados a partir do conjunto de dados 
obtidos durante o inverno na cidade de Santa Maria (SM). A análise estatística realizada mostrou que os eventos de VNOR detectados 
foram caracterizados por rajadas de vento médias ≈15 m.s-1, direção média do vento de 350° e temperatura média do ar de 27°C.  
A duração média dos eventos foi de cerca de 9 horas, sendo que o evento mais longo durou 21 horas. As características e efeitos deste 
fenômeno foram comparados com os de outras localidades (seções meridional e zonal). Os valores médios de rajadas de vento da 
direção norte apresentaram um aumento significativo de ≈200% para o período de inverno em SM. Por outro lado, registou-se um 
aumento menos significativo das rajadas de vento nas secções meridional (28%) e zonal (41%) afastadas de SM. A localização central 
de SM apresenta características topográficas favoráveis   a esta amplificação, com uma acentuada diferença de altitude causada pela 
interface planalto-planície de ≈300 m. O estudo mostrou que o fenômeno VNOR afeta principalmente o clima da região sul do Brasil, 
com uma amplificação local na cidade de SM.
Palavras-chave: Ventos descendentes; Advecção regional; Topografia local
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1 Introduction 
Various topographic features of the Earth’s surface 

influence the patterns of meteorological airflows acting on 
the planetary boundary layer (PBL) at different scales. In 
particular, mesoscale geophysical flows induced by sloping 
topography influence climatological and turbulent patterns 
in different regions of the planet (Abatzoglou et al. 2021; 
Arbage et al. 2008; da Rosa et al. 2021b, 2022; Stefanello et 
al. 2020; Wang et al. 2016). In this aspect, various authors 
have reported some well-known phenomena associated 
with these types of flow, including the Chinook wind in 
the east of the Rocky Mountains and northwestern Canada 
(MacDonald, Pomeroy & Essery 2018; Math 1934), the 
Foehn wind in the Austrian Alps (Richner & Hächler 2013; 
Würsch & Sprenger 2015), the Bora wind, Spitsbergen 
and Yuzhak (in Pevek), in the Russian Arctic (Efimov & 
Komarovskaya 2018; Láska, Chládová & Hošek 2017; 
Moore 2013; Samuelsen & Graversen 2019; Shestakova & 
Moiseenko 2018; Shestakova, Toropov & Matveeva 2020), 
the Santa Ana wind in southern California (Abatzoglou, 
Barbero & Nauslar 2013; Mass & Ovens 2019; Raphael 
2003; Smith, Hatchett, & Kaplan 2018) and the Zonda 
wind in the Andes Mountains of central-western Argentina 
(Norte 2015; Otero & Araneo 2021). These phenomena are 
characterized by well-defined periods and specific weather 
patterns. Despite their individuality, these events combine 
strong winds with extreme magnitudes of temperatures and 
relative humidity.

There is currently great interest in understanding 
downslope windstorms as they play an important role, such 
as in the vertical evolution of the PBL structure (Jensen et 
al. 2017; Lehner et al. 2015; Lothon et al. 2014; Román-
Cascón et al. 2015; Sun et al. 2006; Whiteman 1982), the 
formation of fog and ice (Hang et al. 2016), their influence 
on the exchange of heat, humidity, CO

2
 and other scalars 

between the surface and the atmosphere (Arrillaga et al. 
2019) and the regional atmospheric dispersion of pollutants 
(Li et al. 2018). Moreover, a better knowledge of downslope 
flows is important not only in the area of meteorology but 
also in various fields such as agriculture, transport, civil 
defense, livestock, construction and other human activities 
(Cooke, Rose & Becker 2000; Cruz et al. 2020; Heldwein 
et al. 2003; Sartori 2016).

The city of Santa Maria (SM) is located in the central 
region of Rio Grande do Sul State (RS) in southern Brazil 
and is characterized by a particular topography. The steep 
edge of the Brazilian Meridional Plateau, which borders 

SM, is oriented approximately in an east-west direction with 
an elevation slope of 300 m. Among the many significant 
weather patterns affecting this region, the occurrence of 
strong northerly gusts, accompanied by an abrupt increase 
in temperature and a drop in relative humidity, is a typical 
pattern known as “Vento Norte” (VNOR; Portuguese for 
“North Wind”; Arbage et al. 2008; da Rosa et al. 2021a, 
2021b, 2022; Sartori 2003; Stefanello et al. 2020). This 
phenomenon often occurs in the winter and is associated 
with the prefrontal systems. The large-scale synoptic 
environmental conditions responsible for developing the 
VNOR flow can be associated with cyclogenesis in the La 
Plata Basin and a high-pressure system near the coast of 
southern Brazil, as described by Stefanello et al. (2020).

Although the VNOR windstorm is a frequent 
phenomenon widely known in southern Brazil and with 
significant impacts on society, it has been little studied in 
the literature (Arbage et al. 2008; da Rosa et al. 2021a, 
2021b, 2022; Sartori 2003; Stefanello et al. 2020). The 
above mentioned studies have contributed to the systematic 
understanding of the VNOR phenomenon in the central 
region of RS. However, its characterization is challenging 
from the climatological and micrometeorological points of 
view and in terms of its relationship to large-scale synoptic 
features such as the Pacific Decadal Oscillation and the El 
Niño-Southern Oscillation.

Given the above, this study aims to perform a temporal 
statistical analysis of hourly atmospheric observations in 
SM, covering the winter period from 2004 to 2020, in order 
to obtain a local climatology of the VNOR windstorm 
phenomenon. In addition, a comparison of the atmospheric 
anomaly patterns during the VNOR development in large 
a part of RS will also be addressed.

The paper is structured as follows: Section 2 
introduces the experimental site and the approach used 
to detect VNOR episodes and Section 3 describes the 
climatological analysis of VNOR; this section also compares 
the main atmospheric variables for the winter periods with 
VNOR and No-VNOR for seven weather stations in RS. 
Lastly, Section 4 provides the conclusions.

2 Methodology and Data
Geographical location of the meteorological data 

used in this study refers to South America, east of the Andes. 
More specifically, data were acquired in southern Brazil, 
in the central region of RS between latitudes 28°36’ and 
30°32’S and longitudes 52°22’ and 55°31’W (Figure 1A). 

 



3

Climatological Features of the Vento Norte Phenomenon in the Extreme South of Brazil da Rosa et al. 

Anu. Inst. Geociênc., 2023;46:52599

The observations were carried out in the central 
region of the state, in the city of SM (S

c
; Figure 1B [Station 

A803 - red]). Starting from Section S
c
, the study area is 

divided into two sections: a meridional section (S
m
; Figure 

1C [green]), which includes a network of weather stations 
from the North to the South, passing through the cities of 
Cruz Alta (CRA; Station A853), Tupanciretã (TUP; Station 
A886) and Caçapava do Sul (CAP; Station A812). And a 
zonal section (S

z
; Figure 1D [blue]), oriented approximately 

from the West to the East and passing through the cities of 
Alegrete (ALG; Station A826), São Vicente do Sul (SVS; 
Station A889) and Rio Pardo (RPA; Station A813). 

The specifications of the measurement locations and 
INMET operational automated weather stations installed in 
each city are listed in Table 1. Hourly meteorological data 

used in this study were obtained from INMET stations 10 
m above the ground for velocity and 2 m for temperature 
measurements for seventeen consecutive winters between 
2004 and 2020 (from 21/06 to 21/09).

The study region has particular geographical features 
and a marked topography contrast. The land surface consists 
of a plateau relive and a ridge extending from the East to 
the West. In this environment, the topography of SM is 
characterized by a steep slope with an altitude difference of 
about 400 m, which marks the abrupt transition between the 
high plateau in the North and the depression in the South. 
The cities in Section S

z
 have a slight elevation change of 

about 110m compared to SM and follow the edge of the 
central depression. In contrast, the cities in Section S

m
 are 

located in higher regions than section S
c
.

Figure 1 A. Location of the Rio Grande do Sul state (RS) in relation to South America; B. Terrain elevation of RS (in m; see color 
convention); C. Cross-section along the north-south line indicated on panel B; D. Cross-section along the west-east line indicated on 
panel B. Colored circles indicate the location of the automated weather stations. Data source: United States Geological Survey (USGS, 
2022). Shuttle Radar Topography Mission (SRTM) data spatialized in the geographic information system (GIS) ArcGIS 10.6.1. WGS84 
cartographic projection system.
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2.1 Definition VNOR in Section Sc 

During the winter months, atmospheric variables in 
SM show a climatological pattern characterized by average 
temperatures varying from -2 to 35 °C and average wind 
gusts of 5 m.s−1; the preferential wind direction in this region 
is predominantly from the East and the Southeast. The 
average atmospheric pressure and relative humidity values 
during these periods are 1007 hPa and 82%, respectively.

As illustrated in Figure 2, a pattern characterized by 
strong wind gusts from the northern quadrant significantly 
alters the flow regime in winter. These strong gusts are 
accompanied by temperatures much higher than the 
climatological normal for winter; such characteristics are 
commonly referred to as the VNOR phenomenon (Arbage et 
al. 2008; da Rosa et al. 2021b, 2022; Sartori 2016; Stefanello 
et al. 2020). The criteria used to identify VNOR episodes 
correspond to those suggested by da Rosa et al. (2022) 
and Nascimento and Chamis (2012). According to these 
authors, the detailed criteria are:

I. Wind direction: in the northern quadrant ranging 
between 300° (West-Northwest) and 30° (North-
Northeast);

II. Wind velocity: gusts greater than 11 m.s−1;
III. Surface air temperature: maximum air temperature 

with values above the 90% percentile (90P) of the 
respective time and month during at least half of 
the VNOR event;

IV. Duration: all the above conditions are met for at 
least four consecutive hours.

The above criteria are applied to INMET’s hourly 
atmospheric observations presented in the previous section 
for the SM site. Figure 2 summarizes these criteria in relation 
to data collected for seventeen consecutive winters (2004–
2020), highlighting the presence of VNOR windstorms 
indicated by purple color dots. It is not surprising that the 
strongest wind gusts during this period are related to the 
northerly wind direction, as has been documented elsewhere 
(da Rosa et al. 2022; Stefanello et al. 2020).

Heat Wave episodes in southern Brazil are identified 
using the method proposed by dos Reis, Boiaski and Ferraz 
(2019). This method defines a heat wave as an interval of 
over four days in which the daily maximum temperature 
is above the percentile (P90) of daily temperature  
anomalies; the authors determined the P90 for the 1981–2010 
 reference period.

Section Station City Latitude (S) Longitude (W) Altitude (m)

Sc A803 Santa Maria (SM) 29°43’29.27’’ 53°43’13.67’’ 103.10
Sm A853 Cruz Alta (CRA) 28°36’12.38’’ 53°40’13.95’’ 426.69
Sm A886 Tupanciretã (TUP) 29°05’21.77’’ 53°49’13.94’’ 462.00
Sm A812 Caçapava do Sul (CAP) 30°32’43.14’’ 53°28’13.38’’ 420.82
Sz A826 Alegrete (ALG) 29°42’32.70’’ 55°31’13.75’’ 120.88
Sz A889 São Vicente do Sul (SVS) 29°42’07.60’’ 54°39’13.55’’ 134.00
Sz A813 Rio Pardo (RPA) 29°52’19.61’’ 52°55’13.13’’ 106.99

Table 1 Geographical coordinates and terrain elevation of INMET’s automated weather stations.

Figure 2 Relationship between wind direction and magnitudes of the wind gust (in m.s−1) for SM. Conditions that meet the VNOR 
criteria (I), (II) and (III) are shown in purple. Cyan lines correspond to the limit wind direction and wind gust criteria for VNOR events.
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3 Results and Discussion

3.1 VNOR Characteristic in Section Sc

Previous studies have systematically documented the 
presence of VNOR windstorms during the winter months 
in central RS by analyzing local and regional atmospheric 
patterns and identifying them globally using reanalysis data 
(Abatzoglou et al. 2021; da Rosa et al. 2022; Stefanello et al. 
2020). Intense warm air advection from a northerly direction 
commonly affects local meteorological conditions. Here, 
this downslope windstorm is studied using the anomaly of 
the main atmospheric variables for the winter months in 
the 2004–2020 period. The conditional probability function 
(CPF) is an effective method for obtaining information on 
the high percentile of atmospheric variables that can help 
identify unseasonable patterns, such as the VNOR windstorm 
(Ashbaugh, Malm & Sadeh 1985). The CPF can be expressed 
by the following Equation 1 (Iratxe & Carslaw 2014):

𝐶𝐶𝐶𝐶𝐶𝐶∆� = �∆�,���
�∆� 

                             (1)

where 𝑚𝑚∆�  is the number of measurements in the wind 
quadrant 𝜃𝜃   whose values of a given atmospheric quantity C 
are greater than or equal to a threshold 𝑥𝑥  (90P) and 𝑛𝑛∆�   is the 
total number of measurements from the wind quadrant ∆𝜃𝜃 .

The probability of measuring anomalies of 
maximum temperature, relative humidity and atmospheric 

pressure above 90P with wind direction and gusts is shown 
in Figure 3. In Figures 3A and 3B, the highest probability 
(≥ 50%) of maximum temperature and relative humidity 
values above 90P (Tmax ≥ 25 °C; RHmax ≤ 54%) is 
associated with a wind gust above 9 m.s−1. Moreover, 
the wind direction is well consolidated from the northern 
quadrant (≥ 60%), ranging between 300 and 30°. In 
addition, the probability of air pressure anomalies (Pmax 
≤ 999 hPa) is also observed in the pressure field but is less 
pronounced than the RHmax and Tmax anomalies (Figure 
3C). Therefore, the large probabilities of anomalies in 
atmospheric variables during the winter are associated 
with a range of wind directions from the northern regions 
and strong wind gusts. These patterns and particular 
features of the atmospheric variables reveal the presence 
and manifestation of the VNOR windstorm in central 
RS. Moreover, it can be seen that there are Tmax and 
Pmax anomalies in the southwestern quadrant but not in 
RHmax. It is important to note that this last variable is 
not included in the criteria for detecting VNOR (Section 
2.1). Nonetheless, it may help identify and characterize 
the phenomenon since Tmax, Pmax and RHmax have 
significant anomalies in the northern quadrant.

120 VNOR episodes were identified by applying this 
discussed VNOR detection method (Section 2.1), spanning 
about 1050 h, with a mean duration of each event of about 
9 h. Such events are characterized by average gusts (G) of 
≈15 m.s−1, an average wind direction (Dir) of ≈350° and 
an air temperature (Tmax) of ≈27 °C.

Figure 3 Polar plot showing the conditional probability function of the anomalies of: A. Tmax; B. RHmax; C. Pmax. The radial axis shows 
wind gust intervals and the colors of the probability of reaching > 90P values. This is shown for each bin composed by wind direction 
and wind gust (in m.s−1) in Section Sc. The plot was produced in R with the Openair package (Carslaw & Ropkins 2012).
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Figure 4A shows the time series of total annual 
hours (duration) of VNOR in seventeen consecutive winters 
(2004–2020). The years 2006 and 2007 had the highest 
accumulations of VNOR hours, with 2007 having the 
highest average duration of VNOR cases (average lifetime 
of each event of 13 h). In addition, 2004, 2005, 2010, 2013, 
2014, 2015 and 2017 had episodes of heat waves that 
occurred when VNOR was detected and 2015 recorded this 
overlap of events in over 56% of recorded VNOR hours. 
This year also recorded the largest event with 21 h. The 
year 2015 is associated with intense El Niño phenomenon 
(Pereira, Reboita & Ambrizzi 2017).

Figure 4B shows the mean annual frequency of events 
over the 16-year climatology, which was about seven events 
per year (Figure 4B, cyan line). The most active year was 
2006, with 12 events; the most inactive years were 2008 and 
2009, with only four events recorded. Note that 2018 had only 
one event, but this fact is related to the data gaps in which 
2018 had over 80% of hours disregarded in the analysis, as 
well as 2011, 2012 and 2020 (Figure 4B, blue dots) with 
outages of more than one month. In the winter period, July 

and August showed the highest frequency of VNOR events, 
while September they were much less frequent.

3.2 VNOR Characteristics in the Sections Sc, Sm 
and Sz

The characteristics and effects of the VNOR 
windstorm observed in SM were compared with those 
measured in different regions of southern Brazil (Figure 5). 
As shown in Figure 5, the probability density functions 
(p.d.f.) of temperature, wind gust and direction, air pressure 
and relative humidity are bimodal in Sections S

c
, S

z
 and S

m
. 

In this figure, there is a maximum in the p.d.f. associated 
with the VNOR cases and another maximum associated 
with the non-VNOR cases. The results showed that two 
different patterns characterize the frequency distributions of 
the meteorological variables, even when all the data from 
different days are considered together, which may contain 
wind events generated by different mechanisms. Therefore, 
this analysis points to the usefulness of comparing weather 
patterns in VNOR and non-VNOR cases.

Figure 4 Data frequency: A. VNOR hours (yellow). Blue fill indicates the simultaneous occurrence of VNOR and Heat Waves; B. Cases 
of VNOR observed in the seventeen consecutive winters (2004–2020). Cyan line indicates the average of events, the orange line is 
the smoothed average with a gray margin indicating the 95% confidence level interval (linear model) and the blue dots represent the 
years of tower malfunction, with gaps greater than 30 days.
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Figure 5 Probability density functions (p.d.f.): A–C. Wind direction; D–F. Wind gust (in m.s−1); G–I. Maximum air temperature (in °C); J–L. 
Maximum atmospheric pressure (in hPa); M-O. Maximum relative humidity (in %) in the winter period from 2004 to 2020 for Sections 
Sz [blue], Sm [green] and Sc [red] for VNOR cases [dark color boxes] and no-VNOR cases [light color boxes]. Dashed vertical lines 
represent the means of the respective parameters.
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In particular, during the VNOR, Sections S
c
, S

m
 and 

S
z
 recorded a temperature increase of about 70% compared 

to the winter period. In addition, the average values of wind 
gusts from the northerly direction in Section S

c
 significantly 

increased by about 200% compared to the period without 
VNOR. A less significant increase in wind gusts was recorded 
in the S

m
 (28%) and S

z
 (41%) sections. Our findings also 

showed that the effects of this geophysical flow cause a 
decrease in atmospheric pressure in all the sectors studied 
and are associated with low relative humidity conditions. 
The average values of relative humidity during the VNOR 
show lower indices in Section S

c
 (48%) compared to those 

observed in Sections S
z
 (59%) and S

m
 (64%). The present 

analysis shows that flow characteristics are enhanced in SM 
(Section S

c
) compared to the other regions. Such an effect 

seems to be provoked by local topographical features that 
favor this strengthening of the properties of the VNOR in 
the central region of RS. Thus, the analysis highlights that 
the VNOR phenomenon mainly influences the regional 
climate of southern Brazil and that its intensified features 
mainly occur in the central region of RS.

4 Conclusion
Large-scale synoptic conditions are responsible 

for developing intense airflow accelerated by local 
topographical effects. The development and amplification of 
these wind regimes depend on interactions with local surface 
heterogeneity. The central region of Rio Grande do Sul (RS) 
state has particular topographical features, with contrasting 
terrain elevations that can lead to topographically induced 
mesoscale circulations. These conditions favor developing a 
downslope air-flow pattern characterized by intense warm, 
dry winds from the northern quadrant, known as the “Vento 
Norte” (VNOR) phenomenon.

Based on seventeen years of meteorological 
observations collected by seven weather stations from 
INMET in southern Brazil, this study detected the occurrence 
of VNOR, investigated its climatological patterns in the 
city of Santa Maria (SM) and contrasted the main features 
of this phenomenon in different locations of RS.

120 VNOR episodes with an average duration of  
9 h were detected throughout the winter. The year with the 
highest number of VNOR hours and episodes was 2006. 
Characteristic manifestations of the VNOR phenomenon 
were observed in a large region of southern Brazil. However, 
the different meteorological variables (i.e., temperature, 
wind gusts, relative humidity and atmospheric pressure) 
showed distinct magnitudes between Sections S

m
, S

z
 and S

c
.

The VNOR phenomenon was observed with greater 
intensity in the city of SM, with wind gusts that showed an 
average increase of 200% compared to the period without 
VNOR. In the other regions, the rise in this variable was more 
discrete, 28 and 41% in Sections S

m
 and S

c
, respectively. 

Furthermore, the higher probabilities of anomalies in 
temperature, relative humidity, and atmospheric pressure 
during winter in SM were associated with strong wind 
gusts from the North.

Results of this study suggest that VNOR windstorm 
intensification in SM is influenced by a topographic forcing 
associated with an abrupt elevation change separating the 
plateau to the North from the central depression to the South 
of RS. In the present analysis, no regularity of occurrence 
was observed in the years studied. Future investigations 
should relate VNOR to large-scale generation systems, such 
as Pacific Decadal Oscillation and the El Niño-Southern 
Oscillation.
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