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Abstract
The rendering of virtual three-dimensional (3D) structures represented by Point Cloud (PC) allows the representation of internal and/
or external environments to buildings. However, the compilation of 3D geometric models is influenced by the intrinsic characteristics 
of PCs, which can be mitigated by the application of an PC simplification operator. According to the mathematical norms of fractal 
geometry, it was assumed that a PC is characterized by self-similarity. Two experimental datasets acquired with an SLT in static mode 
indoors were used. Four tasks were accomplished: sampling and structuring of a PC to solve the problem of random distribution, from 
an octree structure; estimation of the curvature of the points and the roughness of a neighbourhood for the extraction of edge points 
by the analysis of self-similarity and application of the Statistical Outliers Remove (SOR) algorithm, for the elimination of outliers 
points; uniform voxelization, to simplify the intermediate points; application of the Iterative Closest Point (ICP) algorithm to register 
the sets generated in the same local coordinate system. The use of voxelization was satisfactory, but once the voxel size is manually 
defined, the PC can be oversimplified and lose essential characteristics. This can be minimized by the primary analysis of the edge 
points, generating a set that is uniform, less noisy, and self-similar to the original set. To achieve a minimum density of points to model 
an environment three-dimensionally, one must analyse the geometric self-similarity characteristics of the PC to produce a simplified 
set self-similar to the original, considering the premises of fractal geometry. It is recommended to create an automatic simplification 
process to minimize the subjectivity coming from the analyst.
Keywords: Simplification methods; Geometric models; Roughness

Resumo
A renderização de estruturas tridimensionais (3D) virtuais representadas por Nuvem de Pontos (NP) permite a representação de 
ambientes internos e/ou externos a edificações. Porém, a compilação de modelos geométricos 3D é influenciada pelas características 
intrínsecas às NPs, o que pode ser mitigado pela aplicação de um operador de simplificação de NPs. Partiu-se do princípio de que uma 
NP é caracterizada por autossemelhança, conforme as normatizações matemáticas da geometria fractal. Utilizou-se dois conjuntos de 
dados experimentais adquiridos com um SLT no modo estático em ambientes internos. Foram empregadas quatro tarefas: amostragem 
e estruturação de uma NP para solucionar o problema da distribuição aleatória, a partir de uma estrutura octree; estimativa da curvatura 
dos pontos e da rugosidade de uma vizinhança para a extração de pontos de borda pela análise da autossimilaridade e aplicação do 
algoritmo Statistical Outliers Remove (SOR), para a eliminação de pontos espúrios; voxelização uniforme, para simplificação dos 
pontos intermediários; aplicação do algoritmo Iterative Closest Point (ICP) para registrar os conjuntos gerados em um mesmo sistema 
de coordenadas local. O emprego da voxelização foi satisfatório, mas devido à determinação do tamanho do voxel ser definido de 
forma manual, a NP pode ser simplificada de forma demasiada e perder características essenciais. Isso pode ser minimizado pela análise 
primária dos pontos de borda, gerando um conjunto menos ruidoso, uniforme e autossimilar ao conjunto original. Para alcançar uma 
densidade mínima de pontos para modelar tridimensionalmente um ambiente deve-se analisar características de autossimilaridade 
geométrica da NP para produzir um conjunto simplificado autossemelhante ao original, considerando as premissas da geometria fractal. 
Se recomenda a confecção de um processo de simplificação automático visando minimizar a subjetividade proveniente do analista.
Palavras-chave: Métodos de simplificação; Modelos geométricos; Rugosidade
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1  Introduction
Technological advances and the design of new 3D 

geospatial data acquisition sensors have made it possible 
to render virtual three-dimensional (3D) structures (Benita 
et al. 2020; Nikoohemat et al. 2020). These technologies 
allow the design of 3D models of cities in the context of 
Smart Cities (Kumar et al. 2017; Neuville et al. 2018) 
and Digital Twins (Benita et al. 2020; Döllner 2020; 
Lehner & Dorffner 2020), to represent internal and/or 
external environments (Nikoohemat et al. 2020). Among 
the alternatives for representing content in virtual reality, 
Point Cloud (PC) gains popularity due to its efficiency in 
capturing data in loco and encoding it into 3D renderable 
structures in computing environments.

However, the compilation of 3D geometric 
models comes up against a recurring problem: the 
intrinsic characteristics of PCs. When dense, they can 
portray an environment in three-dimensions. However, 
they constitute massive, purely geometric data, which 
presents incompleteness, due to areas of occlusions, and 
randomness in the distribution of points (Döllner 2020). 
The central problem consists of the redundancy of a raw 
PC that, depending on the size of the profiled area and the 
frequency of profiling of the sensor used, the memory and 
disk storage requirements can make additional processing 
impossible without the application of 3D cartographic 
generalization methods, which are not yet fully available 
(Sester 2020).

The application of a PC simplification operator 
represents an alternative to reduce this problem, basically 
consisting of the process of minimizing the set of points, 
maintaining the mathematical and statistical characteristics 
according to the original set, that is, the self-similarity 
between the original set and its derivatives. Technically, 
this means that the simplification process must present 
invariance in its form as the Level of Detail (LoD) changes, 
keeping its structure identical to the original, falling in the 
context of a structure fractal (Mandelbroi 1975).

The term fractal is generally applied to diverse 
constructions, both in the so-called abstract forms and 
those inherent to nature (Edgar 2008) and are objects of 
study in the fields of Mathematics and Physics, as laws of 
formation and scale (Edgar 2008; Mandelbroi 1975). In the 
context of a PC, the set of points that geometrically defines 
it must present mathematical self-similarity according to 
a deterministic fractal structure (Mandelbroi 1975), that 
is, the mathematical characteristics must be independent 
of the density of points of a PC. Therefore, the spatial 
configuration of point distribution must present exact self-
similarity, that is, the geometric configurations related to 

the original set must be repeated in successive simplified 
configurations. The great challenge lies in defining a 
threshold between the loss of geometric characteristics 
and the minimization of the redundancy of a PC.

Thus, this research started from the principle that a 
PC, regardless of the profiled environment, is characterized 
by self-similarity, according to the mathematical norms 
of fractal geometry. Therefore, from the partitioning of 
a PC, a simplification operator of the 3D cartographic 
generalization can be seen as a replica of the whole, in 
a lower LoD calculated in a recursive procedure, that is, 
composed of subprocedures that allow the calculation of a 
fractal dimension that represents the degree of occupation 
and self-similarity that a structure in space can contain.

1.1  Related Research

Recent advances in 3D data acquisition technologies, 
such as Terrestrial Light Detection and Ranging (LiDAR) 
(SLT) sensors, enable the acquisition of PCs with high 
density per m². However, increasing details usually 
introduce computational costs in terms of processing and 
viewing operations. 3D simplification methods allow 
the minimization of data complexity while maintaining 
the description of relevant structures. This allows the 
minimization of problems in the processing of PCs that can 
become impractical on a large-scale dataset. In particular, 
there are three ways to simplify PC: A) Mesh-based;  
B) Based on direct optimization, and; C) Based on sampling; 
as described in the following subtopics:

– Mesh-based methods: It is the preliminary 
adjustment of a PC to a surface, which undergoes successive 
simplification processes (Garland & Heckbert 1997). They 
are iterative methods, present inefficiency in profiling large 
portions and can be divided into two groups: based on 
decimation (Asgharian & Ebrahimnezhad 2020) or collapse 
(Hinderink, Mandad & Campen 2022). The first iteratively 
removes vertices and then performs a retriangulation 
process, while the second employs approaches based on 
edge blending to estimate an optimal position for a vertex 
(Asgharian & Ebrahimnezhad 2020). These methods assign 
a weightrelated to the importance of each point in the 
representation of a surface S based on statistical attributes, 
such as normal vectors (Hinderink, Mandad & Campen 
2022) or the curvature of the point cloud (Asgharian & 
Ebrahimnezhad 2020). In addition, the determination of an 
energy function is commonly used to extract edge points 
(Hinderink, Mandad & Campen 2022).

– Methods based on direct optimization: The 
points of a PC are selected and simplified according to 
their local mathematical properties (Zou et al. 2020). 

﻿
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The simplification process based on this method assesses 
the importance of each point in a PC. Normal vectors 
are often applied and considered the base information to 
obtain the description of the local geometric characteristics 
of a neighbourhood of points from iterative strategies. 
However, although efficient, the algorithms present a high 
computational cost when applied at larger profiling scales.

– Sampling-based methods: They consist of a point 
selection scheme whose focus is to maintain the general 
structure of the object and not its geometric structure, based 
on the importance of representing the analysed surface. 
Methods such as the Farthest Point Sampling Histogram 
(Rusu, Blodow & Beetz 2009), SampleNet (Lang, Manor 
& Avidan 2020), and S-Net (Dovrat, Lang & Avidan 2019) 
can be classified as sampling-based methods. The main 
impasse is related to the non-preserving of the important 
geometric details of a PC, which can lead to problems in 
the interpretation and generation of a 3D model.

Regardless of the family of methods, the simplification 
of PCs inevitably introduces distortions and errors in the 
rendering of 3D models. The problem lies in the need to 
develop algorithms that interpret the distribution of the point 
cloud coherently, imitating a process of human cognition 
in a computational language. To achieve this objective, this 
research seeks to select variables and geometric attributes 
that allow the computational interpretation of the set of points 
and minimization of their redundancy. The application of 
mathematical and statistical elements, such as the calculation 
of normal vectors and the curvature of points belonging to 
a PC, allows the analysis of the self-similarity of a set P, 
which is called in this research perceptual metrics.

Motivated by the need to develop 3D generalization 
operators and by the aforementioned research, it was sought 
to develop a hybrid process for the simplification of a 
PC, based on aspects of fractal geometry and perceptual 
metrics of self-similarity. Therefore, assuming that a PC 
has mathematical and statistical characteristics (Döllner 
2020) and forms a fractal and deterministic structure, to 
reach a minimum point density condition, a PC composed 
of a set of points P = (p1, p2, pn1–1 … pn1) that undergoes an 
isotropic simplification process (with the same intensity 
in all directions), based on the geometric and statistical 
distribution of a PC is minimized and transformed to the set 
P’ = (p’1, p’2, p’n2–1 … p’n2), where n2 < n1. Consequently, 
the set P is self-similar to the simplified set P’, if P’ is 
invariant after this transformation and is assumed as the 
main set to model a surface S.

In this context, with the objective of simplifying 
a PC and minimizing the computational cost the main 
contributions that this research seeks to provide are: 1) The 
use of the self-similarity of a fractal structure to specify the 
sample number of points sufficient to reconstruct a surface 
S without the need for iterations; 2) Adaptive sampling of 
edge points based on the roughness calculation of points 
belonging to a PC in an isotropic process and 3) Preservation 
of the visual and geometric quality of the dataset in a lower 
LoD without significant loss of precision.

2  Material and Methods
Two experimental datasets acquired with an SLT in 

static mode indoors were used, as illustrated in Figure 1.
It was assumed that a PC has mathematical and 

statistical characteristics (Döllner 2020) and forms a 
fractal and deterministic structure, to reach a condition 
of minimum point density. Thus, a PC is composed of a 
set of points P = (p1, p2, pn1–1 … pn1) that undergoes an 
isotropic simplification process based on the geometric and 
statistical distribution of a PC is minimized and transformed 
to the set P’ = (p’1, p’2, p’n2–1 … p’n2), where n2 < n1. In 
this research, geometric characteristics were considered 
for data minimization and not for topological conditions. 
Figure 2 shows the methodological flow used to derive P’ 
from a set P. 

It is considered that a simplification operator of 
a PC can be obtained from partitioning the original set 
into subsets from the establishment of restrictions and 
analysis of the self-similarity of the neighbourhood of 
points. The objective is to reduce noise and PC redundancy 
while preserving edge characteristics and uniformity of the 
total density of the set. The strategy employed seeks to 
optimize algorithms in a framework for the development 
of a point clouds simplification strategy in the context of 
3D cartographic generalization, based on statistical self-
similarity of the data and calculation of the importance 
of each point belonging to PC as simplification metrics.

The methodological flow used is subdivided into 
four tasks (Figure 2). The first consists of the process of 
sampling and structuring a PC to solve the first problem: 
random distribution. For this, an octree structure was 
applied (Rusu & Cousins 2011) that effectively provides 
a representation and structuring for 3D data. It was chosen to 
use an octree as the base data structure due to its efficiency 
in serialization.

﻿
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Figure 1 Experimental data: A. Set I; B. Set II.

Figure 2 Application flowchart of the proposed method. 

Subsequently, the process of estimating the curvature 
of points and the roughness of a neighbourhood is applied 
to extract edge points by the analysis of self-similarity 
(Pauly, Gross & Kobbelt 2002) and then the algorithm 
developed by Rusu and Cousins ​​(2011), Statistical Outliers 
Remove (SOR), is applied to eliminate outliers points in 
the generated sets. Subsequently, in task 3, the voxelization 
process based on uniform Lv, Lin and Zhao (2021) is applied 
to simplify the points classified as intermediate. Finally, 
the Iterative Closest Point (ICP) algorithm (Besl & McKay 
1992) is applied to register the sets generated in the same 
local coordinate system.

2.1  Extracting edge Points from the Perceptual 
Roughness Metric

The extraction and simplification of edges of the 
profiled structures were based on local mathematical metrics 
of self-similarity, from the analysis of the curvature of the 
points belonging to the PC, according to Pauly, Gross and 
Kobbelt (2002). A variance and covariance matrix are an 
intuitive method for determining the curvature and normal 
vectors of a PC (Hoppe et al. 1993). Then, considering a 
neighbourhood Ni around a point 3

ip R∈ , it is possible 
to define the covariance matrix presented in Equation 1. 

﻿
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From the self-decomposition of C, one can derive 
the eigenvalues (λ0, λ1, λ2) corresponding by principal 
components to define an orthogonal reference at the point 
pi. According to Hoppe et al. (1993), the eigenvalues with 
the highest value cover a tangent plane at the point pi, while 
those of lesser value are used to approximate the normal 
surface ni. Therefore, given the smallest eigenvalue related 
to pi of a surface, one can estimate the curvature values (k) of 
pi (Pauly, Gross & Kobbelt 2002), according to Equation 2.
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λ λ λ
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+ +                (2)

Assuming that λ0, λ1, λ2 are the eigenvalues of a local 
neighbourhood of pi and v0, v1, v2 correspond to the normal 
vectors that define a plane T(x) = (x – pi)v0 = 0, priority 
is given to the sum of squared distances to neighbours  
of pi (Figure 3).

The estimation of the local curvature of pi is the 
ideal mathematical variable to analyse the geometric self-
similarity and minimization of the redundancy of a set of 
points. Therefore, using the initial estimate of the curvature 
of a point pi, it is possible to estimate the weighted Gaussian 
mean of the curvatures around a neighbourhood (Equation 
3) (An et al. 2021).
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Where h is the search radius of a neighbourhood of 
pi. The roughness estimate of a point cloud can be defined 
as the difference between the curvature (k) and the mean 
curvature ( ˆ)k  on point pi (Rodríguez-Cuenca et al. 2015). 
The roughness of each point is represented by a simple 
operator calculated by the variation of the profiled surface. 
However, for simplification purposes, the output result 
(segmentation of edges and intermediate points) is still 
not completely uniform and contains noise that can be 
minimized. The solution is to resample the data using a 
simplification and de-noise operator, as presented in the 
Subsection that follows.

2.2  Voxelization-based Simplification

After extracting the points that allow the 
identification of edges in the profiled objects, the original 
PC is subdivided into edge points and intermediate points. 
It is observed that using only the points belonging to the 
edges can introduce errors in the processes of defining 
3D representations. Therefore, the points classified as 
intermediate must be associated and used in the previously 
mentioned set. However, it is necessary to simplify it 
uniformly over the S surface. For this process, the method 
developed by Lv, Lin and Zhao (2021) was adapted. The 
strategy of this step is to subdivide the point cloud into 
voxel structures (Figure 4).

A voxel is a geometry in a 3D space and corresponds 
to pixels in a 2D context. From a conceptual point of 
view, a voxel has a cubic geometry, composed of six 
faces, eight vertices, and twelve edges. Despite this, the 
representation is not made according to a polyhedral 
cube, but from a central point or through the points that 
represent its vertices (Xu, Tong & Stilla 2021). Therefore, 
in the context of simplification, a voxel is considered a 
basic unit that abstracts and structures a space of discrete 
points, representing a position in a regular cubic grid. In 
this perspective, the PC classified as an intermediate is 
subdivided by voxel.

Figure 3 Determination of the curvature of a point.

﻿
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The implemented algorithm is performed in three 
steps: 1) Calculation of an enclosing rectangle for the PC 
that defines the space to be segmented; 2) The space defined 
in the first step is subdivided into regularly spaced 3D 
cuboids of predetermined size (defined by the executor), 
which become the cells of the voxel structure and; 3) The 
PC is segmented into small portions from the cuboids, and 
finally the subdivided set of points is represented by voxels, 
in which the position and characteristics of the points are 
calculated from the analysis of the set extracted in each plot. 
Then, from a set of points P = (p1, p2, pn1–1 … pn1) where n 
is the number of points inside a voxel Vk, and k the voxel 
index in the voxelized space V = {V1, V2, … Vm}, being m 
the number of all voxels generated.

From this task, the edge points and the intermediate PC 
are registered using the ICP algorithm to form a generalized 
cloud ready to serve as a base for the construction of 3D 
models. To evaluate the effectiveness and the performance 
of the proposed approach, two validation experiments were 
used based on data acquired with the SLT from indoor 
environments. The data processing platform was a Laptop 
computer with Windows 10, a 1.8 GHz processor and 8 GB 

of RAM. The Python 3.0 programming language and its 
libraries, such as the open3D Library (Zhou, Park & Koltun 
2018) and Point Cloud Library (PCL) (Rusu & Cousins 
2011) were used to estimate the geometric parameters.

3  Results and Discussion 
As a first step, it was decided to organize the data sets 

in the form of an octree, as illustrated in Figure 5. The Octree 
structure is an efficient way of organizing data, in which a 
PC is subdivided into nodes (represented by a cube). Each 
node includes eight secondary nodes (except the leaf, the 
primary node). The total space is divided into 2nx2nx2n (Rusu 
& Cousins 2011), in this case, the cloud is decomposed 
recursively (one node into eight other subnodes).

This strategy is mainly applied for structuring the PC 
and minimizing computational costs for future processing 
steps. With the structured experimental sets, it was possible 
to determine the roughness of the points that form the PC. 
From this geometric component, it started the process of 
analysing the roughness of self-similarity related to the 
points that compose a sample set.

Figure 4 Point cloud voxelization: A. Original; B. 3D grid (voxel).

Figure 5 Octree structure: A. Set I; B. Set II.

﻿
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3.1  Determination of Edge and Intermediate 
Points

The extraction of points belonging to the edges 
of the buildings was carried out from the analysis of the 
roughness of the points. Figure 6 illustrates the number 
of points in both experimental sets at the corresponding 
roughness values. In this research, the threshold related 
to the roughness value was 0.01. This value was defined 
from plot tests, being the coherent value found for building 
edges. Points with roughness > 0.01 were classified as edge 
points (green color – Figure 7). Those with values < 0.01 
were categorized as intermediate (blue color – Figure 7).

The analysis of the self-similarity of the geometric 
roughness parameter proved to be efficient and allowed the 
extraction of edge points. However, both the edge points 
and the intermediate sets generated presented outlier points 
that introduce errors in the geometric modeling process of a 
surface. To eliminate them and reduce the redundancy of the 
test PCs, the SRO algorithm was applied. It eliminates noisy 
data from the sample that does not effectively contribute 
to the process of building a 3D model.

The profiling of indoor environments was highly 
complex due to the presence of reflective and translucent 
surfaces (glass) and occluded areas. Therefore, in the 
conception of building a 3D model, the step of removing 
outliers points is relevant to minimize errors in the process 
of the semantic and geometric interpretation of a PC.

Figure 8 shows the result obtained in the process. 
The points in red were classified as outliers and eliminated 

from the sample, while the others were considered as 
remaining, minimizing the number of points by 10%.

From the segmented PCs and the outliers points 
eliminated, the simplification process based on voxelization 
started.

3.2  Voxel-based Simplification

The simplification process based on PC voxelization 
was applied only to the points classified as intermediate, 
since they presented the largest number of points that 
made up the sample and are important in the context of 3D 
modeling of built environments. One of the main problems 
in the application of PC simplification processes is defining 
a specific threshold for reducing the number of points that 
minimizes the computational cost and maintains minimal 
geometric properties (explicit representation of the position 
and topology of a neighborhood of points) stored in abstract 
3D structures containing pre-defined positions and attributes 
so that modeling algorithms can be properly explored (Xu, 
Tong & Stilla 2021).

Due to this fact, it was decided to perform three 
specific tests for the sample sets, considering voxel sizes 
of 0.01, 0.02, and 0.05 m (Figure 9). It is observed that 
the higher the value of the associated voxel, the lower 
the number of remaining points. Despite this, too much 
minimization leads to interpolation errors and estimates of 
3D models. Regardless of, it is observed that voxel-based 
representations are advantageous and efficient in the data 
compression process.

Figure 6 Roughness values: A. Set I; B. Set II.
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Figure 7 Extraction of edge and intermediate points: A. Set I; B. Set II.

Figure 8 Removal of spirit points: A. Set I; B. Set II.

The objective of the voxel variation is to find 
an optimal suggestion value for an application in the 
simplification of PCs, considering the integration of 
the voxelized set with points categorized as edges in 
the previous step (Table 1). According to Xu, Tong and 
Stilla (2021), voxel techniques have a high potential 
of success to minimize computational cost and, due 
to their 3D structuring, their application is ideal for 
monitoring, planning, and navigating tasks in built 
environments.

For the composition of the final PC, the PC 
registration process was carried out using a variation 
of the ICP algorithm between the edge points and the 
voxelized intermediates, as Figure 10 shows.

The PCs generated were characterized by points 
concentrated on the edges of the buildings, while on flat 
(non-rough) surfaces the points were sparse, depending on 

the size of the voxel used. Table 2 presents the numbers 
of the remaining points. The original set consists of the 
point cloud after applying the octree structuring process.

Figure 11 shows the graphic comparison. The 
addition of edge points in the voxelized data set resulted 
in an average increase of 23% in the number of points, 
considering the three tested configurations.

Despite the 23% increase, in both experiments, 
there was a reduction of 80, 96, and 98%, respectively, 
for voxels with dimensions of 0.01, 0.03, and 0.05 m. In 
this case, for the simplification of a PC from profiling 
of constructions, from the experiments, it was possible 
to verify that the adoption of the 0.01 m voxel presents 
adequate simplification rates since a simplification of 
around 80% is enough to allow processing with lower 
computational and storage costs, allowing 20% of the 
original cloud points to remain for future steps.
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Figure 9 Simplified clouds from voxel: A. Set I; B. Set II.

Experiments
Point numbers

Original 
(Intermediaries) Voxel 0.01 m Voxel 0.03 m Voxel 0.05 m

Set I 4,305,738.00 1,214,465.00 192,063.00 76,504.00
Set II 2,891,867.00 1,033,032.00 135,193.00 53,588.00

Table 1 Number of remaining points in the intermediate set. 

The voxels with dimensions of 0.03 and 0.05 m 
significantly simplified the original sets, remaining less than 
5%. This can lead to interpretation errors by computational 
algorithms in the stages of designing the 3D models. To 
test the efficiency of the proposal, a comparison was made 
with two other methods frequently used to simplify PCs.

3.3  Proposed Method Versus Other 
Simplification Methods

To analyze the experiments, the results obtained 
with the proposed methodology were compared with 
two methods used to simplify and minimize the number 
of points belonging to a cloud. The proposed approach 
seeks to store a compressed output based on the analysis 
of roughness values of points belonging to a PC, keeping 

edge aspects as an essential characteristic of the process. 
That is, it stores a set of points that coherently represents 
the changes in perspectives of an environment, minimizing 
the number of points and consequently the computational 
cost of processing.

In this case, only the results obtained with the voxel 
considered ideal (0.01 m dimension) were compared with 
regularly used algorithms. The Poisson Sample Disk (PSD) 
and the so-called Random Sample (RS) methods were used, 
both implemented, respectively, in MeshLab (https://www.
meshlab.net/) and CloudCompare (https://www. danielgm.
net/cc/). The advantage of the proposed method is the 
maintenance of edge points automatically, while the other 
processes minimize the PC without considering that changes 
in angulations and perspectives can introduce errors in 
estimates and representations in the making of 3D models.

﻿
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Figure 10 Result of the registration of point clouds: A. Set I; B. Set II.

Experiments
Point numbers

Original Voxel 0.01 m Voxel 0.03 m Voxel 0.05 m
Set I 6,068,202.00 1,224,175.00 221,773.00 106,224.00
Set II 4,982,096.00 1,083,476.00 186,359.00 104,032.00

Table 2 Number of points final clouds.

The comparison test of simplification methods 
indicated that for both experimental sets, the size of the 
stored and generated file was larger than the others produced 
by the application of the tested algorithms. In addition, 
the geometric quality of the 3D representation of the PC 
generated with the proposed method was superior. Among 
the tested algorithms, the RS presented marked limitations, 
as it is not capable of performing analysis for the definition 
of the remaining points. The process is based only on the 
analysis of the distances between the points, leaving only 
one point as a result of a distance previously established 
by the analyst.

Mathematically, the results were compared with the 
definition of the simplification ratio ε. In this case, 

*100P P
P

ε
′−

= %, where P is the number of points of the 

original PC and P’ of the simplified sets, as listed in Table 3.
The PSD method allows sampling points based 

on the principle of proximity by defining the radius of 
the Poisson disk (user-defined iPCut parameter), which 
is the half-distance between the two closest samples. In 

comparison with the RS algorithm, the PSD presents 
a more uniform distribution over the sampling domain 
(Hou et al. 2013), however, it does not present the analysis 
of characteristic points such as the edge ones. The RS 
strategy allows minimizing the set of points randomly, that 
is, from the original PC the algorithm minimizes the set to 
a pre-established number of points. The position of each 
point does not follow specific rules, but random aspects 
of distribution. For flat surfaces and with little geometric 
variability the method can be applied and will be efficient. 
However, points that are important in the modelling process 
may be excluded from the sample set.

Despite the simplification ratio being on average 18% 
lower than the algorithms compared for both experimental 
sets, there was a simplification rate that allows ensuring 
that the derived set P’ presents adequate geometric self-
similarity to the original set P. It is noteworthy that the tests 
were performed with standard software settings and the 
parameters can be modified to find a lower simplification 
rate, but characteristic points, such as edges, will not  
be preserved.

﻿
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Figure 11 Simplification process: A. Intermediate (original); B. At the end.

Although the voxelization process requires manual 
parameterization of the minimum voxel size, integrating 
edge points into the voxelized PC allows obtaining 
geometric information from the profiled structures, 
which brings advantages when compared to the other 
tested approaches. In principle, the main limitation of 
the voxel application as a simplification strategy is the 
manual insertion of its size, which can cause a significant 
loss of important geometric information for geometric 
modelling processes of point clouds. The association of 
the voxelized cloud and edge points allows for minimizing 
this problem.

The advantage of the procedure is considering 
the self-similarity of the roughness values of the points 

belonging to a PC. From this metric perspective, the 
importance of the points is determined. According to Ji 
et al. (2019), simplification methods usually sacrifice 
dataset accuracy to improve processing speed. A proper 
balance between speed and accuracy must be maintained 
to minimize errors in future steps. The factors raised by 
Ji et al. (2019) corroborate the assumptions defended in 
this research since from the determination of the statistical 
characteristics of the set of points, there is the formation of 
a deterministic fractal structure and statistical self-similarity 
of point distribution, which allows reaching a density 
condition in an isotropic simplification (voxelization) 
process to generate a simplified subset that retains the 
essential geometric features of the original set.
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4  Conclusions
In this work, an approach for the composition of a 

3D cartographic generalization operator for simplification of 
PC using self-similarity based on fractal geometry theories 
is presented. The approach operates in profiling of outdoor 
environments to buildings. The method basically explores 
the estimation of normal vectors and the roughness of 
point belonging to a PC for inheritance of edge points, 
which configure as characteristics the self-similarity genes 
of the set that is associated with a simplified PC. This 
allows to successfully reduce the number of points os PC 
and, consequently, to minimize the computational cost of 
storage and processing. 

The use of the voxelization process showed 
satisfactory results, but due to the manual definition of the 
voxel size, the PC can be oversimplified and lose essential 
characteristics. The primary analysis of the edge points 
allowed to minimize this problem, providing a less noisy, 
uniform set similar to the original set. Therefore, from the 
carried-out analyses, it is possible to assume that to achieve 
a minimum density of points to model an environment 
three-dimensionally, one must analyse the geometric self-
similarity characteristics of a PC to produce a simplified set 
that is self-similar to the original, considering the premises 
of fractal geometry. For future researches, it is recommended 
to create an automatic simplification process to minimize 
the subjectivity of the analyst.
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