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Abstract

This work presents a comprehensive analysis of the verification and evaluation of a system designed for forecasting hydrometeorological 
risks, with a specific focus on landslides and floods in a defined region. The proposed system continuously integrates real-time 
meteorological and hydrological data to provide precise and timely information on potential risk events. Through a meticulously 
conducted case study, the practical application of the system is highlighted, demonstrating its effectiveness in monitoring and 
forecasting risk events in real-world scenarios. The work addresses fundamental challenges associated with the validation of complex 
systems, emphasizing the imperative need for robust verification and validation methods. Furthermore, the unique characteristics 
of complex systems are discussed, and their implications for effective modeling and validation processes are elucidated. A detailed 
presentation of the benchmark case study results includes analyses of rainfall intensity, dynamic mapping of landslide susceptibility, 
river height monitoring, and forecast comparisons. These findings are complemented by visual aids in a web interface that facilitate 
a comprehensive understanding of the system’s performance under real conditions. Key insights are emphasized, highlighting the 
crucial role of the proposed system in advancing knowledge in the field of hydrometeorological risk assessment and forecasting. 
The conclusions succinctly summarize the main results and underscore the critical importance of systems like the proposed one in 
mitigating these risks.
Keywords: Data integration; Dynamical risk mapping; Validation methods

Resumo

Este trabalho apresenta um estudo abrangente sobre a verificação e avaliação de um sistema para a previsão de riscos hidrometeorológicos, 
com foco específico em deslizamentos de terra e inundações em uma região delimitada. O sistema proposto integra continuamente 
dados meteorológicos e hidrológicos em tempo real, proporcionando informações precisas e oportunas sobre possíveis eventos de 
risco. Através de um estudo de caso meticulosamente conduzido, destaca-se a aplicação prática do sistema e evidenciam-se sua 
eficácia no monitoramento e previsão de eventos de risco em cenários reais. O trabalho aborda os desafios fundamentais associados à 
validação de sistemas complexos, enfatizando a necessidade imperativa de métodos robustos de verificação e validação. Além disso, 
são discutidas as características únicas dos sistemas complexos e elucidadas as implicações para processos de modelagem e validação. 
A apresentação detalhada dos resultados do estudo de caso de referência inclui análises da intensidade da chuva, mapeamento dinâmico 
da suscetibilidade a deslizamentos de terra, monitoramento da altura dos rios e comparações de previsões. Esses resultados são 
complementados por recursos visuais em uma interface web, que facilitam a compreensão do desempenho do sistema em condições 
reais. Destacam-se os insights obtidos, que enfatizam o papel crucial da proposta no avanço do conhecimento na avaliação e previsão 
de riscos hidrometeorológicos. As conclusões sintetizam os principais resultados e ressaltam a importância crítica de sistemas como o 
proposto na mitigação desses riscos.
Palavras-chave: Integração de dados; Mapeamento dinâmico de risco; Métodos de validação
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1 Introduction
The research problem addresses the need to 

develop an effective system for assessing and predicting 
hydrometeorological risks, such as landslides and floods, 
in a specific region. This system should integrate real-time 
meteorological and hydrological data to provide accurate 
and timely information about potential risk events.

The validation step, particularly the assessment of 
complex systems, is arguably the most challenging task, 
requiring a strong correlation between the model system’s 
development and data acquisition (Gentil & Blake 1981). 
Operational behaviors inevitably prompt consideration 
of methodological requirements for system validation, 
which encompass efficiency and adaptability to changes 
in response to operator behavior (Stager 1993).

The methodological structure for validating 
environmental indicators can be categorized into three types: 
“project validation,” “output validation,” and “final use 
validation.” The latter, initially applied in engineering, is not 
inherently sufficient for verifying and validating complex 
systems, such as intricate agricultural systems (Bockstaller 
& Girardin 2003), and meteorological modeling.

Tests are vital components of the Verification and 
Validation (V&V) process but not the sole components. 
The V&V process can be “informal” (e.g., audits, process 
console research), static (e.g., cause-effect analysis and 
interface analysis), dynamic (e.g., acceptance, purpose, 
comparison, compliance, and failure analysis), and formal 
tests (i.e., inductive and deductive analysis and using 
evidence of predication). This has led to the technical 
development of the V&V process and the establishment of 
“Recommended Practice Guides” (RPG), contributing to an 
evolutionary dynamic between conceptual and procedural 
models (Cook & Skinner 2005).

Therefore, certification depends not only on 
calibration but also on the statistical trust established through 
initial and continuous tests during operation (e.g., using 
Receiver Operator Curves ROC, and Receiver Operator 
Area under Curve evolution analysis).

Complex Systems (CS) possess distinctive defining 
characteristics, including sensitivity to initial conditions, 
emergent behavior, and composition of components. 
Their increasing prevalence in modeling efforts implies 
additional challenges in both effective modeling and 
validation. CS exhibit also other characteristics such as 
uncertain boundaries, nesting (since components of CS can 
themselves be CS), state memory, non-linear relationships, 
and feedback loops (Petty 2018). Some workshops, such as 
WWRP/WGNE (2017), have provided a comprehensible 
review of verification methods for numerical models.

Type I error, which is less severe, occurs when 
inadequate Verification and Validation (V&V) processes 
result in the model builder not utilizing a ‘valid model’. 
This situation exposes the final user to risks, particularly if 
they are overly critical, averse to false alarms, or encounter 
complexities in achieving the open-box approach goal. 
Conversely, Type II error, the most serious, arises when 
incorrect V&V procedures lead to the model builder 
employing an ‘invalid model’. This exposes the final user 
to significant risks, especially if they assume a gray box 
approach, accept greater risk, experience a large number 
of false alarms, or encounter very small gradients on the 
Receiver Operator Curve (Petty 2018).

Sensitivity to initial conditions can present validation 
challenges, such as the analysis of the distribution of 
results, sensitivity analysis, and input imprecision analysis. 
Typically, three methods are employed to mitigate validation 
challenges: more trials, sensitivity analysis (e.g., by error 
propagation or a gradient descent method for greater 
efficiency, simplex calibration, etc.), and awareness of 
the required accuracy (Petty 2018).

Resolution of emerging behaviors (extreme or very 
dangerous) in risk events can be addressed with additional 
observations (e.g., by Kalman filter assimilation), validation 
assessments organized in the form of previously planned 
scenarios under consensus (e.g., using a complexity 
hierarchy of validation tests), establishment of a test bench 
or reference scenario space (i.e., set benchmarks), and 
semi-automatic model adaptation (i.e., the ability to support 
automated multi-scale analysis and long-term variability, 
such as that obtained with spectral models or inter-scale 
interactions and second-order parametrization) (Petty 2018; 
Kalnay 2003; Li et al. 2009; Groesser & Schwaninger 
2012; Ota et al. 2013).

V&V of complex systems based on Human Factors 
(HF) criteria are gaining widespread recognition, as HF 
practices aim to improve system performance when applied 
systematically and systemically (i.e., in a participative and 
solution-based approach, beyond regulatory compliance) 
(Teperi et al. 2023). Failures and uncertainties in input data 
and events outside the validity conditions of equations can 
lead to interruptions in the continuous solution of the CS 
process. Considering that the system runs uninterruptedly, 
either a division by zero or an instability of solutions can 
lead to overflow (Thompson 1961; Mesinger & Arakawa 
1976; Marchuk 2012; Durran 2013).

When coding CS equations, it is crucial to implement 
specific localized continuous tests (‘weaving test’) for the 
continuity of the model solution. The implementation of 
try-and-catch codes can be anticipated by modular tests, 
avoiding processor interruption by proposing an alternative 

2

A Nowcasting System for Hydrometeorological Hazard Assessment ... Karam

Anu. Inst. Geociênc., 2024;47:62979

https://creativecommons.org/licenses/by/4.0/deed.en


resolution. In general, an ‘if-then-else’ or ‘while’ block is 
used in the ‘try-and-catch’ procedure (e.g., Tatar & Mauss 
2014).

The choice of a benchmark case study is highly 
relevant to the research problem as it permits the 
demonstration of the practical application of a complex 
system for evaluating hydrometeorological risks. By 
utilizing regularly updated contingency tables and long-
term analyses, the study directly addresses the need for a 
comprehensive, real-time system to monitor and forecast 
risk events. Additionally, by examining the system’s 
effectiveness in a real-world scenario, the case study 
provides valuable insights into its ability to address real 
challenges related to hydrometeorological risks.

2 Methodology
The methodology employed for assessing forecast 

quality incorporates nine fundamental attributes, as 
delineated by WWRP/WGNE (2017): Bias, Association, 
Accuracy, Skill, Reliability, Resolution, Sharpness, 
Discrimination, and Uncertainty. Here is a brief explanation 
of each index:

• Bias: This metric quantifies the congruence between 
the mean forecast and the observed mean.

• Association: It gauges the potency of the linear 
relationship between forecasts and observations, 
often expressed through the correlation coefficient.

• Accuracy: This parameter denotes the degree of 
concordance between the forecasted values and the 
actual observations, with the disparity representing 
the error.

• Skill: It assesses the relative accuracy of the forecast 
in comparison to a baseline forecast, considering the 
cognitive capabilities of the forecast system.

• Reliability: This attribute measures the average 
agreement between forecasted and observed values, 
which may vary depending on forecast stratification.

• Resolution: It evaluates the forecast’s capacity 
to categorize events into subsets characterized by 
distinct frequency distributions.

• Sharpness: This characteristic describes the 
propensity of the forecast to predict extreme values.

• Discrimination: It quantifies the forecast’s efficacy 
in differentiating among various observations.

• Uncertainty: This index reflects the variability 
inherent in observations, which can influence the 
complexity of forecasting endeavors.

These indices guide the selection of charts and 
analysis methods in our case study. Our methodology 
involves updating contingency tables every 15 minutes to 
cover a 24-hour analysis period, with cumulative tables 
compiled daily at midnight for long-term evaluation. We 
utilize Relative Operating Characteristic (ROC) curves to 
assess the system’s performance against observational data 
proxies for landslide occurrence, derived from generalized 
linear regression models based on accumulated precipitation. 
The area under ROC curves serves as a robust metric 
for evaluating both the operational status and potential 
development enhancements of our nowcasting system. 
Furthermore, confidence scores derived from contingency 
table elements undergo temporal smoothing using digital 
filters to accurately capture temporal variations.

Numerous researchers have conducted extensive 
investigations into environmental concerns and risks in Rio 
de Janeiro and its Metropolitan Region, yielding valuable 
insights into the socio-environmental dynamics of the 
area. For example, Malta and Costa (2021) undertook an 
assessment of vulnerability to socio-environmental risks 
in Rio de Janeiro, likely utilizing an index that integrates 
social and environmental indicators.

Their study aims to understand vulnerability 
by analyzing factors such as socioeconomic status, 
infrastructure, and exposure to natural hazards, with potential 
implications for disaster preparedness and urban planning. 
Similarly, Sandholz et al. (2018) explored ecosystem-based 
strategies for mitigating landslide risk in Rio de Janeiro, 
emphasizing the importance of nature-based solutions.

The Metropolitan Region of Rio de Janeiro faces 
numerous severe environmental, social, and economic 
challenges, including thousands of hydro-meteorological 
risk areas, and water assessment issues (e.g., Bourguignon 
et al. 2023). These studies, among others, contribute to our 
understanding of environmental challenges in the region, 
including the impacts of environmental degradation on 
water, air, and soil quality. They underscore the importance 
of further research into local communities’ perceptions of 
environmental risks and the effectiveness of mitigation 
policies.

2.1 Case Study Selection

In this study, a case study was chosen to demonstrate 
the system’s capabilities during the transition from normal 
operating conditions (low risk) to a high-risk scenario 
involving landslides and river overflow. Specifically, it 
enables the assessment of temporal and spatial variations 
in risk indicators, emphasizing their susceptibility to 
spatial structure and temporal changes in precipitation 
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patterns. This research investigates the efficacy of a 
weather forecasting system during severe storms and 
rainfall accumulation in the Baixada Fluminense, located 
in the Metropolitan Region of Rio de Janeiro (MRRJ), on 
January 11th and 14th, 2024. The primary focus of this 
analysis is on the system’s ability to predict and respond 
to hazardous weather events, particularly in storm-prone 
regions. By evaluating the system’s performance under 
varying conditions, this study aims to provide insights into 
its reliability and effectiveness in enhancing strategies for 
disaster preparedness and response.

2.2 Contingent Table and Confidence Scores

In this section, we present a detailed description 
of the evaluation indices employed to verify and validate 

the proposed nowcasting system. While the methodology 
includes a broad range of indices to offer a comprehensive 
overview of the available evaluation tools, the results 
analysis focuses on a selected subset of these indices.

The contingency table is a fundamental tool for 
identifying forecast errors. Ideally, a perfect forecasting 
system would yield only hits and correct negatives, with no 
misses or false alarms. Derived from the contingency table, 
a range of categorical statistics offers insights into various 
dimensions of forecast performance. The contingency 
table used in this study is illustrated in Table 1. These 
indices collectively provide a comprehensive assessment 
of forecast accuracy and skill, considering various aspects 
such as detection, bias, reliability, and overall skillfulness. 

Commonly used evaluation indices based on contingency tables include:

Probability of Detection (POD or po) (range: 0 to 1, perfect score: 1) measures the fraction of actual events that were 
correctly predicted by the forecast, as given by Equation 1.

(1)

False Alarm Ratio (FAR) (range: 0 to 1, perfect score: 0) indicates the rate of false alarms relative to the total number of 
forecasted events. This is computed using Equation 2.

(2)

Threat Score (TS) or Critical Success Index (CSI) (range: 0 to 1, with 1 indicating a perfect score) assesses the accuracy 
of the forecast in predicting observed events, considering both hits and false alarms, as demonstrated in Equation 3.

(3)

Accuracy (AC) is a metric used to evaluate the correctness or precision of a forecast model, typically expressed as a value 
between 0 and 1. Also referred to as “fraction correct”, it quantifies the proportion of accurate forecasts relative to the total 
number of forecasts made. A higher accuracy value, closer to 1, indicates greater precision and reliability in the forecast 
model’s predictions. The accuracy is expressed by Equation 4.

(4)

 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑝𝑝� =
𝑎𝑎

(𝑎𝑎 + 𝑐𝑐)
 (1) 

 

 
 

 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑏𝑏

(𝑎𝑎 + 𝑏𝑏) + 0.1
 (2) 

 

Table 1 Contingent table.
Observed Yes No Total
Forecast Yes a (hits) b (false alarms) a + b
Forecast No c (misses) d (correct negatives) c + d
Total a + c b + d n = a + b + c + d

 

𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑇𝑇𝐶𝐶 =
𝑎𝑎

(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 0.1)
 (3) 

  
 

 

 

𝐴𝐴𝐴𝐴 =
𝑎𝑎 + 𝑑𝑑

(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑) + 0.1
 (4) 

  
 4

A Nowcasting System for Hydrometeorological Hazard Assessment ... Karam

Anu. Inst. Geociênc., 2024;47:62979

https://creativecommons.org/licenses/by/4.0/deed.en


Bias Score (BS) or Frequency Bias or Bias Ratio (BR) [0-1] assesses the correspondence between the mean forecast 
and observation mean, indicating the presence of systematic errors, as shown by Equation 5.

(5)

Probability of False Detection (F) [0-1] measures the probability of incorrectly predicting an event when it does not 
occur, calculated using Equation 6.

(6)

Success Ratio (SR) represents the ratio of successful forecasts to total forecasts, providing an overall measure of forecast 
accuracy (Equation 7).

(7)

Heidke Skill Score (HSS) or Cohen’s k (kCohen) measure the improvement in forecast skill relative to random chance, as 
shown in Equations 8 and 9.

(8)

where

(9)

Associated Skill Score measures the relative accuracy of the forecast compared to a reference forecast, accounting for the 
forecast system’s skill. For this calculation, the reference model is a uniform distribution model, as defined in Equation 10.

(10)

Cumulated Mean Square Error measures the accumulated error between forecasted and observed values over time, 
assuming a Probabilistic Persistence Binomial Model, as described in Equation 11.

(11)

Cumulated Mean Square Error (MSE) represents the accumulated error between observed and modeled values over 
a given period. It is calculated using indicator functions ( and ), which assign values of 0 or 1 based on the presence or 
absence of observed and modeled landslides, respectively. The MSE provides insights into the overall accuracy of the 
model, considering the cumulative discrepancies between observed and modeled outcomes (Equation 12).

(12)

Skill score (Skill) [0-1]: Represents the overall skillfulness of the forecast compared to a reference forecast (Equation 13).

(13)

 

 

𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 =
(𝑎𝑎 + 𝑏𝑏)

(𝑎𝑎 + 𝑐𝑐) + 2
 (5) 

  
 
 

 

𝐹𝐹 =
𝑏𝑏

(𝑏𝑏 + 𝑑𝑑) + 0.1
 (6) 

  
 

 

 

𝑆𝑆𝑅𝑅 =
𝑎𝑎

(𝑎𝑎 + 𝑏𝑏)
 (7) 

 

 
 

 

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑘𝑘�𝑜�𝑒𝑛 =
(𝑎𝑎 + 𝑑𝑑) − (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑎𝑎𝑟𝑟𝑑𝑑𝑐𝑐𝑟𝑟)

𝑟𝑟 − (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑎𝑎𝑟𝑟𝑑𝑑𝑐𝑐𝑟𝑟)  (8) 

  
 

 
 

(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟) =
�(𝑟𝑟 + 𝑏𝑏)(𝑟𝑟 + 𝑒𝑒) + (𝑒𝑒 + 𝑏𝑏)(𝑒𝑒 + 𝑒𝑒)

𝑟𝑟 + 0.1
 (9) 

  
 

 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆 𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴 = 𝐻𝐻𝑆𝑆𝑆𝑆 (10) 
  

 

 

 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑒� = 𝑒𝑒�1 ≈ 0,367879441 ≈ 36.79% (11) 

  
 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = (𝐼𝐼��� − 𝐼𝐼���)� 𝑛𝑛⁄  (12) 
  

 
 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − �𝑀𝑀𝑆𝑆𝑀𝑀 𝑀𝑀𝑆𝑆𝑀𝑀���⁄ � (13) 
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Threat Score (TR) or Critical Success Index (CSI) measures the effectiveness of a forecast model in predicting events 
of interest, taking into account both successful forecasts and missed events. It is calculated as the ratio of the number of 
correct forecasts to the total number of observed events, including both hits and misses. The TR or CSI ranges from 0 to 
1, where a higher score indicates better predictive accuracy and skillfulness of the model (Equation 14).

(14)

Randomic Success (arand or pe) [0-1] metric evaluates the success of the forecast in predicting events relative to random 
chance. It represents an index indicating the level of success achieved randomly in a given forecast scenario (Equation 15).

(15)

Equitable Threat Score (ETS) or Gilbert Skill Score [0-1] is a statistic on hit prevalence function of three parameters 
(prevalence, sensitivity, specificity). Measures the improvement in forecast skill relative to random chance while accounting 
for the frequency of events (Equation 16).

(16)

Desproportion Ratio (DD) [0-1] indicates the degree of disproportionality between observed and forecasted events. A 
DD value close to 0 suggests a balanced proportionality between observed and forecasted events, while a higher DD value 
indicates a greater degree of disproportionality (Equation 17).

(17)

Probability of False Detection (POFD) [0-1] measures the likelihood of incorrectly detecting an event that did not actually 
occur (Equation 18). A lower POFD value indicates a lower probability of false alarms, while a higher value suggests a 
higher likelihood of incorrectly detecting events.

(18)

True Skill Statistic (TSS), Hanssen & Kuipers’ Discriminant (HKD) or Peirce’s Skill Score (PSS) [-1 to 1] provides a 
measure of overall forecast skill, accounting for hits, misses, false alarms, and correct rejections (Equation 19).

(19)

Bias-Adjusted Threat Score (TSA) [-1 to 1] evaluates the skill of the forecast while accounting for systematic bias 
(Equations 20 and 21).

(20)

where 

(21)

 

𝑇𝑇𝑇𝑇 = 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑎𝑎 (𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 0.1)⁄  (14) 
  

  

 

𝑎𝑎�𝑎𝑛� = 𝑝𝑝� = �(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 + 𝑐𝑐) (𝑛𝑛 + 0.1)�  (15) 

  
  

 

𝐸𝐸𝐸𝐸𝐸𝐸 =
(𝑎𝑎 − 𝑎𝑎�𝑎��)

(𝑎𝑎 − 𝑎𝑎�𝑎�� + 𝑏𝑏 + 𝑐𝑐) + 0.1
 

 
(16) 

  

 

𝐷𝐷𝐷𝐷 = �
𝑎𝑎

(𝑎𝑎 + 𝑏𝑏 + 0.1)
−

𝑐𝑐
(𝑐𝑐 + 𝑑𝑑 + 0.1)

� 
(17) 

 
 

 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑏𝑏

(𝑏𝑏 + 𝑑𝑑 + 0.1)
 

 

(18) 
 

  

 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (19) 
  

 

 

 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑚𝑚𝑚𝑚(𝑑𝑑𝑛𝑛𝑛𝑛𝑑𝑑, 0.1)
 

 
(20) 

 
 

 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑎𝑎 + 𝑐𝑐)𝑎𝑢𝑥 − 𝑐𝑐 𝑡𝑡𝑎𝑢𝑥

𝑑𝑑𝑛𝑛𝑛𝑛𝑑𝑑 = (𝑎𝑎 + 𝑐𝑐)𝑎𝑢𝑥 + 𝑐𝑐𝑎𝑢𝑥

𝑎𝑎𝑛𝑛𝑎𝑎 =
1

𝑛𝑛𝑎𝑎𝑎𝑎(0.1, 𝐵𝐵𝐵𝐵)

 (21) 
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Odds Ratio (OR) is a statistical measure used to quantify the association between two events or conditions. It compares 
the likelihood of an event occurring in one group to its likelihood in another group. The formula for OR (as denoted by 
Equation 22) calculates this ratio, with values greater than 1 indicating a positive association, values less than 1 indicating 
a negative association, and a value of 1 indicating no association.

(22)

Odds ratio skill score (ODDS) (Yule’s q) [-1 to 1] measures the improvement in forecast skill relative to random chance 
while considering the odds of events occurring (Equation 23).

(23)

Kappa statistic (κ) [0-1] assesses the agreement between observed and forecasted events while considering chance 
agreement. The equation of κ for a contingency table is given by Equation 24:

(24)

where represents the observed agreement between forecasted and observed events and represents the expected agreement 
due to chance.

 

 

OR =
𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(1 − 𝑃𝑃𝑃𝑃𝑃𝑃)
(1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

 (22) 

  
 

 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
(𝑎𝑎𝑎𝑎– 𝑏𝑏𝑏𝑏)

𝑚𝑚𝑎𝑎𝑚𝑚[(𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏), 0.1]
 (23) 

 

 

 

 

𝜅𝜅 =
𝑝𝑝� − 𝑝𝑝�
1 − 𝑝𝑝�

 
(24) 

 
 

 

 

These metrics offer a comprehensive evaluation 
of forecast performance by addressing various factors 
such as detection accuracy, bias, false alarms, and overall 
skill. Each metric provides unique insights into the quality 
and reliability of the forecast, allowing for a thorough 
assessment of model performance.

The indices are categorized into two main groups: 
Accuracy Metrics and Skill Metrics. Accuracy Metrics 
include the Probability of Detection (POD), False Alarm 
Ratio (FAR), Bias Score (BS), F Score (F), Probability 
of False Detection (POFD), and Sensitivity Ratio (SR). 
These metrics focus on aspects such as the system’s ability 
to correctly identify events, the proportion of incorrect 
predictions, and the reliability of the forecast. On the other 
hand, Skill Metrics encompass Threat Score (TS), Critical 
Success Index (CSI), Heidke Skill Score (HSS), Mean 
Squared Error (MSE), Reference Mean Squared Error 
(MSEref), Skill Score, Random Accuracy (arand), Equitable 
Threat Score (ETS), Kappa Statistic (κ), Discrimination 
Distance (DD), True Skill Statistic (TSS), Threat Score 
Adjusted (TSA), and Odds Ratio (ODDS). These metrics 
provide insights into the overall effectiveness and skill of 
the prediction system, considering both correct detections 
and false alarms.

The indices TSS, TSA, and ODDS are commonly 
recommended to be presented together due to their 
complementary nature in providing a comprehensive 
evaluation of forecast performance. Conversely, POD and 

FAR are critical in the analysis of ROC curves, serving as 
coordinated axes for evaluating forecast accuracy. 

• For the analysis presented in this work, we focused 
on the following indices:

• Probability of Detection (POD): Used to assess 
the system’s ability to correctly identify the events 
of interest.

• False Alarm Ratio (FAR): Selected to measure the 
proportion of incorrect event predictions.

• Threat Score (TS): Used to determine the overall 
skill of the prediction system, considering both correct 
detections and false alarms.

The other indices mentioned in the methodology 
were included to provide a didactic context and review, 
allowing for a broader understanding of the various 
evaluation metrics available. However, the results discussed 
in this study are based exclusively on the indices POD, 
FAR, and TS.

2.3 Relative Operating Characteristic (ROC)

The evaluation and verification of weather forecasts 
play a fundamental role in continuously improving models 
and ensuring the accuracy of predictions. One essential 
tool in this process is the ROC Curve (Relative Operating 
Characteristic), which provides valuable insights into a 
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model’s ability to discriminate between events and non-
events. Some researchers have explored in detail the 
meaning and application of the ROC Curve in weather 
forecast verification, addressing both theoretical and 
practical aspects (Jolliffe & Stephenson 2012, WWRP/
WGNE 2017, Brown et al. 2021).

The ROC Curve is a graphical representation that 
relates the hit rate (POD - Probability of Detection) to the 
false alarm rate (POFD - Probability of False Detection) 
at different probability thresholds. Through this curve, 
it is possible to assess the model’s ability to distinguish 
between events and non-events. The ideal trajectory of the 
ROC curve goes from the bottom-left corner to the top-
left corner and then up to the top-right corner, indicating 
perfect performance. A diagonal line represents a lack of 
discriminatory skill.

The Area Under the ROC Curve (AUROC) is a 
crucial measure in evaluating model performance. It provides 
a quantitative measure of the model’s discriminatory ability, 
with values ranging from 0 to 1. An AUROC of 0.5 indicates 
random performance, while a score of 1.0 represents perfect 
performance. In addition to providing a general measure of 
the model’s discriminatory ability, AUROC is also useful 
for comparing different forecast models.

The ROC Curve and the area under the curve 
(AUROC) are powerful tools in weather forecast 
verification. They provide valuable insights into a forecast 
model’s ability to discriminate between events and non-
events. By understanding and effectively applying these 
metrics, meteorologists can continuously improve their 
models and ensure more accurate and reliable predictions.

3 Results
Operational standards during high-risk days were 

assessed through case studies, focusing specifically on 
the disaster event that occurred between January 11th and 
12th, 2024. The analysis provides a detailed overview of 
the unfolding event, highlighting key observations and 
preliminary conclusions. The chosen case scrutinized the 
specific meteorological scenario of sequential rainfall in the 
area to evaluate the responsiveness of the meteorological 
system. Operational challenges encountered during the 
transition from low-risk to high-risk days were documented, 
providing comprehensive narratives of the incidents, 
significant findings, and interim conclusions.

Below is a succinct overview of the case study 
findings, accompanied by relevant visual aids. These visual 
aids enhance the clarity of the case study results, providing 
a comprehensive understanding of the system’s performance 
and the impacts of thunderstorms.

3.1 Case Study: Distributed Rainfall in Inhabited 
Complex Terrain

A case study was selected focusing on cumulative 
rainfall in the river headwaters of the densely populated 
alluvial plains within the metropolitan area of Rio de 
Janeiro:

• Date: Thunderstorms on January 11th and 14th, 2024
• High-risk occurrence date: Early hours of January 

14th, 2024
• Location: Rio de Janeiro City and Baixada 

Fluminense Municipalities
• Alert status: Very high-risk situation in effect
• Casualties: Numerous fatalities, injuries, illnesses, 

evacuees, and displaced individuals

Between January 11th and 15th, 2024, 
Hydroestimator data indicated precipitation accumulations 
of approximately 40 to 60 mm, followed by a significant 
increase to 100 mm in the early hours of January 14th, 2024, 
as illustrated in Figure 1. The accumulations derived from 
Hydroestimator, based on area averages of 4 km by 4 km, 
were lower than those recorded by rain gauges during the 
event. For instance, the São João do Meriti pluviometric 
station, maintained by CEMADEN/MCTI, recorded 325 
mm over the same 4-day period (Brazil, 2024).

On January 11th, a severe storm brought heavy 
precipitation to the Baixada Fluminense (Figure 1A), which 
later extended to the northern quadrant. This high-intensity 
rainfall caused soil saturation in the exposed urban areas, 
setting the stage for the flooding disaster that occurred on 
January 13th and 14th. On January 12th, 2024, rainfall 
was concentrated in the river headwaters of the Baixada 
Fluminense, located in the mountainous regions to the north 
and northwest of the alluvial sedimentary plain where the 
densely urbanized area of Baixada Fluminense is situated 
(i.e., north of the city of Rio de Janeiro) (see Figure 1B). 

In the afternoon of January 13, 2024, the Baixada 
Fluminense (BF) area experienced another round of 
precipitation, though with reduced intensity until 5:00 
PM local time. Concurrently, rainfall was recorded in 
the river headwaters to the northwest, with water being 
transported down slopes and flowing through the entire 
urban floodplain of the BF. These rivers, which have 
been extensively modified through channelization and 
rectification, ultimately discharge into Guanabara Bay, 
across from Ilha do Governador. Additionally, intense 
storms affected other regions of Rio de Janeiro (RJ), 
including the Lakes Region and Arraial do Cabo to the 
east of the Rio de Janeiro Metropolitan Region (RMRJ) 
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Figure 1 Spatial distribution of previous 24-hour Cumulated Rainfall (in mm) from Hydroestimator/NOAA, depicted in the mesoscale 
domain of the RJ State and neighboring states, during the four-day disaster event: A. January 11th at 20:40 (LT); B. January 12th at 
20:53 (LT); C. January 13th at 20:56 (LT); D. January 14th at 20:55 (LT), 2024.
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(Figure 1C). By late afternoon and early evening on January 
13, 2024, the storms had spread from the southwest to the 
northeast across the state of RJ.

In the early hours of January 14th, 2024, at 01:00 
AM local time, a storm developed over the Baixada 
Fluminense (BF) area, impacting São João do Meriti, 
Belford Roxo, Duque de Caxias, and other neighboring 
densely populated neighborhoods (Figure 1D). The storm 
intensified significantly, elevating the hydrometeorological 
risk of landslides, floods, and inundations to over 90% in 
the contingent model. This high risk persisted throughout 
the night and morning and continued to spread during the 
day along the entire coastline of the State of Rio de Janeiro, 
propagating along a convergence line of the flow at the 
edge of the state (not shown here).

3.2 River Height Monitoring

The hydrology of the Baixada Fluminense, located 
in the state of Rio de Janeiro, Brazil, is characterized by a 
complex network of rivers, streams, and canals of significant 
hydrological importance. Key waterways include:

• Sarapuí River: This is one of the primary rivers 
in the region, noted for its considerable length and 
crucial role in local hydrological dynamics. Together 
with the Iguaçu River, it forms the Iguaçu/Sarapuí 
Hydrographic Basin. Flooding often occurs due to 
soil impermeability and reduced space for water flow, 
which increases river volume and leads to overflow. 
The Sarapuí River is currently polluted, with a high 
contamination index.

• Iguaçu River: Distinguished by its extensive reach 
and abundant flow, the Iguaçu River is among the most 
significant rivers in the Baixada Fluminense, serving 
essential functions in water supply and drainage. 
Initially vital for the development of the Baixada 
Fluminense region and the city of Nova Iguaçu, 
its importance has waned due to deforestation and 
urbanization, leading to river silting and decreased 
flow.

• Botas River: This river meanders through various 
municipalities, making substantial contributions 
to the region’s hydrographic network. However, it 
suffers from severe pollution caused by waste such 
as rubble, branches, and household garbage, which 
needs constant removal to prevent contamination of 
Guanabara Bay.

• Meriti River: Serving as a vital waterway for the 
Baixada Fluminense, the Meriti River provides 
essential resources and plays a key role in flood 
control and drainage. It has two tributaries: the Acari 

River and the Pavuna River. The confluence of these 
rivers marks the border of Duque de Caxias and 
São João de Meriti. The Meriti and Pavuna Rivers 
also define the natural border between the Baixada 
Fluminense and the North Zone of Rio de Janeiro.

• Pavuna River: While primarily associated with 
Rio de Janeiro, the Pavuna River also intersects the 
Baixada Fluminense, enhancing its hydrological 
network. Flowing through the neighborhoods of 
Pavuna, Nilópolis, and Duque de Caxias, it reaches 
Guanabara Bay. Originating in the Swamp of Sítio 
do Retiro in the Bangu Mountain Range, it is 14 
kilometers long.

• Saracuruna River: This river flows through Duque 
de Caxias to its mouth in Guanabara Bay, also passing 
through Nilópolis, Mesquita, Belford Roxo, Nova 
Iguaçu, and Duque de Caxias.

In addition to these major rivers, the Baixada 
Fluminense features an intricate network of smaller streams 
and channels that further complicate its hydrology. The 
hydrographic basin encompasses several municipalities, 
including Duque de Caxias, Nova Iguaçu, São João de 
Meriti, Belford Roxo, Mesquita, Nilópolis, Queimados, 
Japeri, Seropédica, and Magé. These areas are deeply 
influenced by the local hydrology, which plays a critical 
role in water management, flood mitigation, and overall 
environmental sustainability.

Efficient management and preservation of this 
hydrographic basin are essential for ensuring sustainable 
water use, mitigating flood risks, and maintaining ecological 
integrity. Britto, Quintslr and Pereira (2019) provide a 
detailed historical analysis of the Baixada Fluminense’s 
hydrology, tracing the region’s development from the 19th 
century to the 1930s. Their study highlights the pivotal role 
of the rivers in early prosperity, the subsequent economic 
stagnation due to negative portrayals of the area, and the 
transformative engineering interventions of the 1930s 
that spurred economic development. Currently, the rivers 
face severe contamination, requiring complex processes 
to achieve potability (Bockstaller & Girardin 2003; De 
Freitas et al. 2023).

3.3 Modeled Landslide Susceptibility Mapping

During the initial 10 hours of integration, from 8:32 
PM local time on January 13th, 2024, to 6:32 AM local time 
on January 14th, 2024 (covering the night of January 13th 
to January 14th), the hydrometeorological risk of landslides 
consistently exceeded 50%, peaking at 8:32 PM on January 
13th (see Figure 2). By 4:00 PM on January 14th, the 
risk decreased to 50%, but then rose to 70% by 7:00 PM 
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on the same day. In the hours leading up to these peaks, 
the dynamic risk model facilitated the assessment of risk 
escalation trends. For effective preparedness, rescue, and 
relief operations, it is crucial for environmental emergency 
managers to have sufficient lead time for issuing alerts. 
Even the evaluation of decreasing risk trends is vital for 
coordinating population rescue and relief efforts. The 
implementation of a dynamic risk model represents a 
significant advancement in developing a comprehensive 
regional and local hydrometeorological system.

In Figure 3, variations in risk are observed over 
the 24-hour duration of the event, particularly on January 
14th, 2024. For disasters of this nature, there is a notable 
recurrence of risk at intervals of 6 to 8 hours between 
primary and secondary peaks. This pattern is similar to 
dynamic risk observed in earthquakes, where aftershocks 
follow the arrival of different seismic waves.

Figure 4 presents the graph of precipitation and its 
accumulated value as measured at the São João do Meriti 
pluviometric station in the Baixada Fluminense, maintained 
by CEMADEN/MCTI, for the period from January 11 to 
14, 2024, covering the 4-day period (mm). Critical values 
of accumulated precipitation are observed, approximately 
double the expected value for January. The covariance 
between the observed values of precipitation rate and the 
accumulated value over 24 hours, considering they are 
spatial averages of 4 by 4 km, indicates an extremely high 
level of peril.

The theory of linear reservoirs provides the physical 
base for many bulk rainfall-runoff models (e.g., Beven 
2012). Understanding the dynamics of water height excess 
in river systems with multiple linear reservoirs is essential 
for effective hydrometeorological risk management. During 
the studied flood event, data on river water height and flow 
rates were problematic. Consequently, estimates of river 

Figure 2 The three-dimensional spatial distribution of conditional landslide probability (ranging from 0 to 100%) is featured. The fields 
were computed by the modeling system through the assimilation of heterogeneous forcing by the variational contingent hydrological 
distributor. The analysis encompasses the mesoscale domain of the RJ State and neighboring states, capturing the dynamics during 
the four-day disaster event. Specifically, the conditions are depicted at key time points: A. January 11th, 2024 at 00h00; B. January 
13th, 2024 at 00h00; C. January 14th, 2024 at 00h00; D. January 15th, 2024 at 00h00. All at local time (LT).
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height associated with water concentration in an idealized 
watershed are presented. This idealized watershed reflects 
the heterogeneous conditions expected in the Baixada 
Fluminense area. These conditions were approximately 
modeled using different time scales as parameters in a 
linear reservoir model.

This study investigates how varying the number of 
linear reservoirs in series and their associated time scales 
impacts water height excess. These insights are valuable 
for optimizing flood control strategies and enhancing water 

resource management. However, it is important to note that 
the study area did not provide precise technical information 
on the maximum water heights observed during the flood 
event, which constrained the validation of our model.

3.4 Linear Reservoir Model for Risk Assessment
We implemented a computational model in 

Fortran-90 to simulate the flow and storage dynamics of 
linear reservoirs in series. The model uses variable time 

Figure 3 The Conditional Probability of Landslides (ranging from 0 to 100%) is depicted over the integration time, commencing on 
January 13th, 2024, at 8:32 PM local time, displaying minimum, average, and maximum values within the mesoscale domain of the 
State of Rio de Janeiro and neighboring states. The 50% probability threshold is denoted by the horizontal line.

Figure 4 Precipitation measured at the São João do Meriti pluviometric station in the Baixada Fluminense maintained by CEMADEN/
MCTI for the period from January 11 to 14, 2024: A. Rainfall (mm/h); B. Accumulated precipitation over the 4-day period (mm).
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steps, reflecting the time intervals between successive 
rainfall data entries. The precipitation data are from 
automatic weather stations (CEMADEM 2024). 

The study examines four configurations of 
reservoirs: 1. Single reservoir with a 1-hour time scale; 2. 
Two reservoirs coupled in series with time scales of 1 and 3 
hours; 3. Three reservoirs coupled with time scales of 1, 3, 
and 6 hours; and 4. Four reservoirs coupled with time scales 
of 1, 3, 6, and 9 hours (Figure 5). For each configuration, 
we calculated the reservoir storage and resulting water 
height excess over time, considering a hypothetical basin 
area of 25 square kilometers. The inflow to each reservoir is 
updated based on the outflow from the preceding reservoir 
and the time difference between observations.

The simulations reveal significant variations in water 
height excess among the different reservoir configurations. 
The single reservoir system showed the most rapid response 
to rainfall events, resulting in higher peak water heights 
over short durations. In contrast, the four-reservoir system 
demonstrated a more attenuated response, with lower peak 
heights spread over a longer period. The intermediate 
configurations exhibited behaviors between these extremes, 
with each additional reservoir contributing to a more gradual 
decrease in water height. 

The results highlight the importance of reservoir 
configuration in flood risk management. Systems with 
multiple reservoirs in series provide enhanced attenuation 
of peak flows, reducing the immediate impact of heavy 
rainfall events. This underscores the need for tailored 
reservoir management strategies that consider the specific 
hydrodynamic characteristics and time scales of each 
reservoir in the system. 

This analysis of water height excess over time 
for different arrangements of linear reservoirs in series 
demonstrates the critical role of reservoir configuration 
in modulating hydrodynamic responses to rainfall. These 
findings provide valuable insights for designing more 
effective flood control and water management strategies, 
ultimately contributing to improved resilience against 
hydrometeorological hazards. The absence of detailed 
technical data on the maximum water heights reached 
during the flooding event in the study area remains a notable 
limitation and highlights the need for better data collection 
and reporting in future studies.

The linear reservoir model is considered the simplest 
model to represent the hydrological response of rivers to 
precipitation, in unmonitored hydrological basins or even 
for imputation when there are flaws in the data, as occurred 

Figure 5 Water Height Excess over time for various configurations of Linear Reservoirs in series: comparative analysis of 1, 2, 3, and 
4 reservoirs with coupled time scales of 1, 3, 6, and 9 hours.
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in the case presented here. Time scales of 6 hours seem 
adequate for rivers in urbanized areas, semi-permeable, in a 
valley limited to the north and south by hill escarpments, as 
found in Baixada Fluminense. For operational purposes of 
evaluating the flood risk model, the linear model can serve 
as a proxy for predicting flood events and their impacts.

3.5 Combined Risks of Landslides and Flooding

The modeled risk, considered as a systemic 
association of landslides and flooding risks, was extremely 
high in the early hours of January 14, 2024, with the 
Probability of Detection (POD) of landslide exceeding 
98% (Figure 6).

After 6:00 AM local time on January 14, 2024, the 
Probability of Detection (POD) decreased but remained 
stable due to continued soil saturation and ongoing rainfall 
of varying intensity. The POD stabilized slightly above 
60% during the night of January 14, 2024. By January 15, 
2024, the risk had decreased well below 50%, marking the 
end of the disaster period. Although graphs for January 15, 
2024, are not presented, they indicated consistently low 
probability values throughout the day.

In summary, the POD demonstrated high values, 
indicating that the nowcasting system was highly effective 
in identifying the events of interest. The False Alarm Ratio 
(FAR) showed an acceptable level of false alarms, suggesting 
that the system effectively balanced detection with accuracy. 
Additionally, the Threat Score (TS) confirmed the overall 
skill of the system in predicting observed events, reflecting 
its ability to account for both correct detections and false 
alarms.

Failures in local measurement data and the lack of 
high-resolution satellite images before and after the flooding 
and landslides underscore the critical role of journalistic 
and official reports in revealing the disaster’s extent, 
severity, and immediate impacts. In these circumstances, 
journalistic information becomes essential for achieving 
a comprehensive understanding of the environmental 
event. By integrating detailed descriptions, eyewitness 
accounts, and real-time data from news outlets, we were 
able to contextualize the event, assess its effects on affected 
communities, and guide mitigation and response efforts 
effectively. Although journalistic information may have 
limitations compared to scientific data, it significantly 
enhanced the analysis, contributing to a more complete 
understanding of the phenomenon.

On January 14th, 2024, heavy rainfall in Rio de 
Janeiro led to 12 deaths, primarily among elderly individuals 
with mobility issues, and displaced around 600 people.  
The President provided emergency support and resources, 

while a federal task force and various ministries assessed the 
damage and implemented measures such as adjusting the 
Bolsa Família Program payment schedule and advancing 
benefits. The Governor of Rio de Janeiro highlighted the 
urgency of street cleaning and support for the homeless, 
emphasizing the need for enhanced disaster prevention 
and response. Additionally, the Ministry of Cities proposed 
a R$ 780 million drainage project under the Growth 
Acceleration Program (PAC), including the Iguaçu Basin 
project, to mitigate future risks. The federal government 
also committed to accelerating support for affected regions 
and strengthening urban resilience against natural disasters 
(Brazil 247 News 2024; Brazil 247 News 2024a; Brazil 
247 News 2024b).

The disaster on February 12th and 13th, 2024, 
was preceded by rainfall on January 11th, 2024, which 
prompted CEMADEN to issue high and very high-risk 
alerts for several municipalities, including Rio de Janeiro, 
São João do Meriti, Mesquita, and Nilópolis. This alert, 
based on forecast models predicting heavy rainfall for the 
Serrana Region, lasted over 24 hours. By February 12th, 
the alert level was increased for the coming days, resulting 
in significant casualties and displacement in the RMRJ and 
Baixada Fluminense (BF), including 12 deaths, 85 injuries 
(50% in Nilópolis), 926 displaced individuals (50% in 
Duque de Caxias), and 31 evacuated persons (20% in São 
João do Meriti).

The material damages in January 2024 were 
extensive. CEMADEN (2024) and Civil Defense reported 79 
million Brazilian Reais in damages to public infrastructure, 
mainly in São João do Meriti. Additionally, damages 

Figure 6 The temporal evolution (integration time) of the 
Probability of Detection (POD), False Alarm Ratio (FAR), and 
Threat Score (TS) from January 13, 20:30 to January 14, 20:30, 
2024, as diagnosed by the conditional landslide model.
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included 85.5 million Reais for public health facilities and 
353 million Reais for housing units, with Japeri facing 296 
million Reais in damages. Economic losses amounted to 
9 million Reais in private losses and 9.5 million Reais 
in public losses, primarily for urban cleaning and waste 
management, with 6 million Reais allocated to São João 
do Meriti and Duque de Caxias.

CEMADEN (2024) also reported that the rainfall 
on February 13th and 14th, 2024, was twice the expected 
monthly average. This exceptional rainfall was attributed 
to several factors, including the summer rainfall period, 
temperatures above 30°C, high humidity, slightly elevated 
sea surface temperatures, the urban heat island effect, a 
strong El Niño, and global warming (Brazil 2024).

On January 12th, 2024, a cold front passed through 
Rio de Janeiro, causing rainfall between 13:00 and 14:00 
hours (LT). Additional convective storms affected the city 
and Baixada Fluminense from 22:00 hours on January 
13th until 00:00 hours on January 14th, leading to intense 
rainfall in densely populated alluvial plains. This resulted 
in 13 deaths and severe flooding. Rainfall ranged from 40 
to 50 mm in some neighborhoods, exceeding 300 mm in 
areas like Pavuna and Anchieta. The highest accumulations 
were recorded in Pavuna, Anchieta, Mesquita, and Vigário 
Geral. Overflow from the modified rivers of the BF flooded 
low-lying areas, leading to a state of emergency in the eight 
most affected districts (Brazil 2024).

4 Discussions
The case study presented highlights the complex 

interactions between meteorological phenomena, 
hydrological dynamics, and human vulnerability during 
extreme weather events. This section provides a detailed 
discussion of the results and their implications.

The rainfall analysis reveals significant precipitation 
accumulations leading up to the disaster, with particularly 
notable totals of 100 mm recorded on January 14, 2024. 
This heavy precipitation, especially in densely populated 
areas such as Rio de Janeiro City and Baixada Fluminense, 
created conditions ripe for flooding and landslides. The 
discrepancy between the Hydroestimator-derived values 
and ground-based rain gauge measurements underscores 
the importance of accurate local data for effective risk 
assessment and disaster preparedness.

Landslide susceptibility mapping during the event 
indicated a heightened risk, peaking at over 50% probability. 
This underscores the critical need for timely risk assessment 
and intervention. River height monitoring, especially 
in areas such as Baixada Fluminense and Petrópolis, 
demonstrated the swift response of rivers to intense rainfall, 

reaching critical levels and leading to significant flooding 
in urban areas. This rapid hydrological response highlights 
the necessity for vigilant monitoring and effective early 
warning systems to mitigate flood risks.

Comparing forecast models with actual event data 
reveals the challenges in predicting localized extreme 
weather events. The models demonstrated varying degrees 
of accuracy, indicating the complexity of forecasting and 
the need for continual improvement in predictive tools. The 
impact assessment highlights the severe consequences of the 
rainfall events, including casualties, injuries, displacement, 
and infrastructure damage. Integrating scientific data with 
journalistic reports enhances the overall understanding of 
the event’s impacts and supports more effective response 
efforts.

The discussion also addresses the importance of 
policy responses and mitigation measures designed to 
improve resilience and reduce vulnerability to future 
events. Initiatives such as drainage projects, urban planning 
improvements, and enhanced early warning systems are 
crucial for mitigating the impacts of extreme weather events. 
These measures aim to protect vulnerable communities and 
minimize the adverse effects of similar events in the future.

Comparing forecasting systems is crucial for 
advancing our understanding and improving the accuracy 
of severe weather predictions. The TITAN (Thunderstorm 
Identification, Tracking, Analysis, and Nowcasting) system, 
as detailed by Dixon and Wiener (1993), and employed 
in Brazil initially by Held et al. (2006), is specifically 
designed to track and predict thunderstorms’ trajectories 
and intensities over short time-frames, typically ranging 
from minutes to hours. TITAN utilizes radar data to identify 
storm features, track their movement, and provide short-
term forecasts of storm intensity. In São Paulo, TITAN has 
enhanced nowcasting capabilities for severe storms, though 
it lacks integration with vulnerability assessment models 
and does not include components for predicting landslides 
and flooding based on its forecast fields, at present. 

In contrast, a variational assimilation-based 
expert system takes a different approach by integrating 
observational data with numerical models for forecasts. 
This system uses variational data assimilation techniques to 
improve forecast accuracy by dynamically updating model 
states with real-time data. It can incorporate detailed risk 
assessments related to population vulnerability, through risk 
polygons, and includes models for predicting landslides 
and flooding, offering a more comprehensive risk analysis 
expressed by Conditional Probabilities. However, this 
approach is more computationally intensive and relies 
on robust data assimilation processes. Future studies 
should explore these methodologies in greater depth to 
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fully understand their respective strengths and limitations. 
Evaluating nowcasting capabilities alongside variational 
assimilation-based systems could reveal how best to 
combine short-term forecasting with comprehensive risk 
assessment models.

5 Conclusion
In conclusion, the benchmark case study provides 

a vital perspective on disaster risk management by 
highlighting its complex and multifaceted nature. Through 
real-world examples, it elucidates the intricate interplay 
between meteorological, hydrological, and socioeconomic 
factors that influence both the occurrence and impact of 
disasters. By examining how these elements interact and 
contribute to community vulnerabilities, we gain a deeper 
understanding of the issues at hand.

The case study underscores the necessity of a 
holistic approach to disaster preparedness and response. 
It demonstrates that effective risk management extends 
beyond mere disaster reaction; it requires proactive measures 
that integrate scientific data, advanced forecasting tools, 
targeted policy interventions, and meaningful community 
engagement. By combining these elements, stakeholders 
can better mitigate risks, enhance resilience, and safeguard 
lives and livelihoods against increasingly frequent and 
severe extreme weather events.

Ultimately, the comprehensive analysis offered 
by the benchmark case study not only enhances our 
understanding of disaster risk management but also 
emphasizes the importance of adopting a multifaceted 
approach. Recognizing the interconnectedness of various 
factors and the need for collaborative efforts is essential 
for building more resilient and sustainable communities, 
better prepared to face future challenges.
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