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Abstract: Agriculture is essential for the development of human civilization. Methods that can precisely estimate the yield of a 

crop or to perform the harvest automatically using robots can decrease the costs involved and increase production efficiency. 
With the advancement of agriculture 4.0, current technologies like the internet of things, big data, and artificial intelligence 
have become more and more common. Systems that use image processing with Deep Learning methods are becoming viable 
in solving agricultural problems. Deep Learning is part of a large family of methods based on artificial neural networks that can 
mimic the human brain's work in data processing and pattern recognition for decision-making. Indeed, applications of Deep 
Learning techniques in agriculture are relatively recent. However, with the rapid advance in Deep Learning and its successful 
application in agriculture, many articles have been published in recent years. Thus, the main objective of this work was to 
carry out a brief bibliographic review of pre-harvest fruit image processing techniques, emphasizing the most recent 
applications using Deep Learning. As seen in the literature, Deep Learning is a promising tool for various agricultural activities, 
including fruit counting and automatic fruit harvesting using robots.  
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Adherence to the BJEDIS’ scope: This work is closely related to the scope of BJEDIS as it presents a brief review of 

pre-harvest fruit image processing utilizing Deep Learning methods. Deep learning methods allow the analysis of 

extremely non-linear relationships in large databases with no known distribution. 
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1. INTRODUCTION 

Agriculture has become increasingly crucial for humanity. Fruits, rich in nutrients, are usually present in the diet of 
most people. Thus, continuous production is necessary to meet global demand [1]. Producers have always sought 
ways to increase production quality and decrease costs. One way to achieve this goal is through technological 
innovations such as computer vision that has shown significant advances in recent years.   Computer 
vision is the science and technology that extracts meaning from images or data and, together with other information 
processing methods, produces data and insights that help in decision-making [2]. Neural networks with multiple 
layers, also called Deep Learning, when applied to computer vision, is one of the technological tools that have been 
increasingly used in the agro-industry, both in automatic fruit harvesting and in fruit selection machines [3]. 
One of the main objectives of deep learning is to solve tasks that people intuitively solve, but that is not easy to 
implement computationally [4]. Thus, systems using Deep Learning must have the ability to acquire their 
knowledge, extracting patterns from raw data, which is known as machine learning [5]. 
An essential feature of Deep Learning is that this approach achieves high levels of abstraction and pattern 
recognition present in images. The Convolutional Neural Network (CNN) is the prominent architecture of Deep 
Learning used in image processing [4]. 
One of the main characteristics of Deep Learning methods is that they allow the analysis of extremely non-linear 
relationships in large databases with no known distribution. It is possible to notice a similarity between inferential 
statistics and Deep Learning; both learn from data representing a part of the whole population and make predictions 
about the rest of it [6]. However, inferential statistics make an inference about the population based on a sample. In 
contrast, Deep Learning methods are used to make repeated predictions when finding patterns in the database. 
However, Deep Learning techniques applied to agriculture are very recent, as shown in the 2018 review article [7], 
which reported 40 studies that used Deep Learning somehow in their research. Among these, only 4 used Deep 
Learning techniques to detect and count fruit in the field. 
Another vital article to cite is the 2019 review article [8], which presented a review of the Deep Learning field's rapid 
development in agriculture - emphasizing the practical aspect of applying models that use Deep Learning in the task 
of detecting and locating fruits. 
Although both of these review articles are recent, the application of Deep Learning in fruit image processing has 
become so popular that many studies have been published in the past two years. Thus, the main objective of this 
work was to conduct a brief bibliographic review of the main articles published in 2019 and 2020 that used Deep 
Learning techniques in the processing of pre-harvest fruit images. 
The main characteristics that were considered for the selection of the articles that integrate this bibliographic review 
were: quality of the obtained results, if the articles obtained relevant results when compared with other works; 
whether the articles developed a database that could be useful for new works; whether the articles used any 
innovative approach when compared to other works; and whether the articles used any new deep learning 
architecture when compared to other works. 

 

1.1. Convolutional neural network 

A convolutional neural network is a neural network that has at least one convolution layer instead of fully connected 
layers [4]. A convolutional neural network tends to demand a minimum level of pre-processing when compared to 
other classification algorithms. In general, a convolutional neural network adapts a set of filters during the training 
process, which in other traditional classification algorithms would have to be implemented manually [9]. 
Each layer of a CNN applies a different set of filters, typically hundreds or thousands of filters, and combines the 
result by applying them to the next layer's input [9]. 
In the context of image classification, a CNN learns to detect edges and vertices in the first layers; use these edges 
and vertices to detect simple shapes in the subsequent layers; use these shapes to detect complex structures like a 
person's face or parts of a car in the last layers. In the last layer of a CNN, these complex structures are used to 
make predictions about the image's content [9]. 
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As shown in Figure 1, convolutional neural networks have three different layers: convolutional layers, pooling layers 
and fully connected layers. 

 

Figure 1: CNN architecture 
Source: [10] modified by the author 

 

Unlike a standard neural network, CNN has its layers arranged in volumes with three dimensions: width, length, and 
depth, where depth refers to the third dimension of the volume, such as the number of channels in an image or the 
number of filters in a layer [11]. 

 

1.2. Convolutional layer 

Kernel, or filter, is an array of weights. The kernel traverses the input matrix through a process that implements a 
sum of the Hadamard product (element-wise product) between the array of weights and the input matrix's values; 
this operation is called convolution. The kernel always has the same depth dimension as the input matrix, and the 
size of its spatial dimensions can be controlled by filling in zeros (zero-padding) and the step parameter (strides) [4]. 
In Figure 2, we illustrate the convolution of a kernel with an input matrix of a dimension of depth one. 

 

Figure 2: Illustration of the convolution between a 3x3 filter with an input image of depth 1 

 

The convolutional layer consists of filters, or kernels, that are applied along the spatial dimensions and added 
together over the input volume's depth dimension [11]. The matrix resulting from a convolution operation between a 
kernel and an input matrix is called an activation map. In Figure 3, it is possible to observe the operation of 
convolution of an input volume of depth 3 with a filter of spatial dimension 3x3. 

 

Figure 3: Convolution between a 3x3 filter with a three-channel RGB image 
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The output matrix that is obtained from this operation is then passed through an activation function. The function 
commonly used is ReLu and can be calculated by. 

f(x) = max(0, x)                                                        (1) 

The ReLu function makes the learning convergence of CNN networks faster and at a lower computational cost 
when compared to functions used initially, such as sigmoids [12]. 

 

1.3. Pooling layer 

A pooling layer is usually added after the convolutional layer. The pooling layer is responsible for reducing the input 
volume's spatial dimension, thereby reducing the number of parameters to be trained [11]. 
The most commonly applied pooling technique is to replace a region's values with the maximum value contained in 
that region, as shown in Figure 4. 

 

Figure 4: Application of max-pooling in a 4x4 image using a 2x2 filter 

 

1.4. Fully connected layer 

After the convolutional layer and the pooling layer, the last activation map used for the classification task is 
processed using the fully connected layer. The fully connected layer can receive only one-dimensional data. In this 
way, the data organized in a volume with three dimensions of the last layer needs to be converted to unitary 
dimension [11]. 
All neurons in the fully connected layers are connected with all neurons in the previous layer, as shown in Figure 5. 
Furthermore, they work the same way as in a conventional neural network. 

 
Figure 5: Fully connected layer 

 
 
1.5. Classification, Detection, and Segmentation of images 

There are three most popular applications from the perspective of computer vision involving convolutional neural 
networks: classification, detection, and segmentation of images. 
Image classification is the task of labeling an entire image as an object or concept [12]. Figure 6 shows an example. 
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Figure 6: Image classified as Orange 
Source: [10] modified by the author 

Image detection is the task of detecting and demarcating bounding boxes on objects in an image [11]. Figure 7 
shows the detection of three oranges. 

 

Figure 7: Image detection in a photo with three oranges 
Source: [13] modified by the author 

 
Image segmentation is the pixel-based sorting task. There are two primary image segmentation forms: semantic 
segmentation [14] and instance segmentation [15]. In semantic segmentation, each pixel of the image will be 
classified as belonging to a class; regardless of whether there is more than one object with the same class, the 
semantic segmentation will not distinguish between the objects as distinct entities. In instance segmentation, 
additionally to the classification of each pixel as belonging to a class, an instance will also be assigned to each 
object; thus, the instance segmentation separates the objects as distinct entities, even if they have the same class. 
Figure 8 shows an example of semantic segmentation and instance segmentation. 

           

Figure 8: Semantic segmentation and instance segmentation in grape clusters 
Source: [16] modified by the author 

 
 
2. PRE-HARVEST FRUIT IMAGE PROCESSING 
This section presents two tables containing the most recent and relevant articles that used Deep Learning 
techniques for image processing of pre-harvest fruits. Table 1 shows the studies that used techniques to perform 
fruit segmentation; Table 2 shows the studies that used techniques to detect and demarcate the fruits with bounding 
boxes. A brief explanation of the objectives, methods, and results obtained are given for each article presented in 
the tables. 
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Table 1. Works that used segmentation techniques in the processing of pre-harvest fruit images. 

 

Let the analyses of the selected contributions in the related literature be presented in the same order as organized 
in Table 1. 
The work conducted by Kester and Meduri [17] proposed a detector and mango counter for operating in open fields, 
using a deep network developed for this project, called MangoNet, that uses semantic segmentation. The 
architecture of the MangoNet network was inspired by the VGG network [31]. The final layer of the MangoNet 
network produces a segmented image in pixels that are regions expected to belong to the mango class; these 
regions are used for the detection and counting of fruits. The proposed detection method proved very robust to 
variations in scale, lighting, and occlusion compared to similar architectures. 
Using deep learning methods combined with the semi-supervised method based on GMM (Gaussian Mixture 
Models) [32], Nicolai and Pravakar [18] achieved an estimate of fruit production with precision ranging from 95.56% 

Fruit Main method Data type Main objectives Performance 
Results 

Speed   
/ s 

Ref 

Mangos VGG nets  
modified 

RGB Images 
200 x 200 

Detection and counting of 
mangos 

Accuracy 73.6% 
F1-score 84.4% 

- [17] 

Apples U-net  
modified 

RGB Images 
224 x 224 

Detection and counting of 
apples 

Counting accuracy 
95.56% - 97.83% 

- [18] 

Strawberries Mask-RCNN RGB Images  
640 x 480 

Detection for use in 
harvesting robots 

Accuracy 95.78% - [19] 

Cucumbers 
 

Mask-RCNN  
modified 

RGB Images 
600 x 400 

Detection of cucumbers Accuracy 90.68% 
F1-score 89.47% 

0.3461 [20] 

Strawberries 
 

Mask-RCNN RGB-D 
Images   
640 x 480 

Detection and 
segmentation of 
strawberries for harvest 
using a robot 

Yield accuracy of the 
crop 
74.1% 

0.62 [21] 

Strawberries 
and twigs 
 

DaSNet  
modified 

RGB-D 
Images   
320 x 320 

Detection and 
segmentation of apples 
and branches 

F1-score 83.2% 
 

0.032 [22] 

Lychees and 
twigs 
 

YOLOv3 and  
U-net 

RGB Images  
150 x 150 

Detection and 
segmentation of lychees 
and branches in night 
environments 

Detection accuracy 
of Lychees 96.43% 
Segmentation accuracy 
of Branch 95.54% 

0.097 [23] 

Apples  FCF neural 
network based 
on ResNet-50 

RGB Images  
404 x 303 

Apple growth monitoring 
system 

- - [24] 

Apples  Mask R-CNN RGB Images  
1024 x 1024 

Fruit detection and 3D 
location using SfM 

F1-score 88.1% - [25] 

Apples  DaSNet RGB-D 
Images   
 

Detecting fruits and 
determining the best 
position for the robotic arm 
to harvest 

F1-score 87.3% 
Harvest rate 84.7% 

- [26] 

Bunches of 
grapes 
 

Mask R-CNN RGB Images  
1024 x 1024 

Detect, segment and track 
bunches of grapes 

F1-score 91.0% - [27] 

Apples and 
twigs 

DaSNet  
modified. 
DaSNet-v2 

Images  
RGB-D 
640 x 480 

Detect and segment 
apples and branches 

Segmentation accuracy 
of fruits 
86.6% 
Segmentation accuracy 
of Branch 75.7% 

0.055 [28] 

Green 
Apples 

Mask-RCNN  
modified 

RGB Images  
512 x 512 

Detect and segment 
overlapping fruits 

Accuracy 97.31% 
Recall Rate 95.70% 

- [29] 

Lychee 
branches 

DeepLabV3+ 
model 

RGB Images Segmentation of lychee 
branches 

MIoU 0.765 - [30] 
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to 97.83%. The authors presented a semantic segmentation network based on the U-Net architecture [33]. The 
neural network presented a better performance in all the fruit counting tests performed when compared to the model 
based on GMM. Interestingly, when both methods were combined, the obtained precision was superior to each one 
of the isolated methods. 
In order to improve the performance of computer vision machines in detecting strawberries for harvesting robots, Yu 
and Zhang [19] developed a network architecture capable of detecting ripe and unripe strawberries, based on the 
Mask Region Neural Network (Mask R-CNN) [34] using the convolutional neural network Resnet-50 as a backbone 
[9], combined with the Feature Pyramid Network (FPN) architecture [35] to extract features. The proposed method 
was compared with four other traditional methods and showed better results, being effective in situations of overlap, 
occlusion, and variation of light. The method obtained an average detection accuracy of 95.78%, but with a slow 
execution speed for real-time applications caused by the large number of calculations performed in the deep neural 
network. 
The work conducted by Liu and Zhao [20] was also based on the Mask R-CNN architecture [34], but the authors 
have chosen to use Resnet-101 [9] as a backbone and Feature Pyramid Network (FPN) [35] for extracting features. 
The work's objective was to detect cucumbers in the growing environment, a task considered difficult due to the 
similarity of fruit's color with the foliage. The proposed model obtained better performance in the F1-score metric 
89.47% compared with the other four detection methods based on deep learning. However, the model obtained an 
average execution time of 0.3461s, which may be not enough for real-time applications depending on the employed 
hardware. The high time is due to the Mask R-CNN structure [34] that is composed of two stages. 
A computer vision system for detecting and locating strawberries was presented by Ge and Xiong [21] for use in a 
harvesting robot to collect table strawberries. The Mask R-CNN [34] architecture was used to detect strawberries 
through images from an RGB-D camera, a camera capable of providing information about the depth of objects in 
the image. The 3D location of the objects is done through an algorithm that performs a transformation of 
coordinates from 2D images. The tests showed a harvest accuracy of 74.1% in the proposed situations. The work 
investigated the challenges of the fruits' location based on deep neural networks of segmentation. It raised some 
problems of the perception of the harvest environment, presenting methods for detecting the objects for better 
decision-making in the safe manipulation of the harvest robot. 
Kang and Chen [22] proposed a multifunctional neural network to perform the real-time semantic detection and 
segmentation of strawberries and twigs in natural environments using a Kinect-V2 camera, a RGB-D visual sensor. 
The developed multifunctional neural network was named Detection and Segmentation Network (DaSNet), which 
was devised to exploit as feature extractors the Gated Feature Pyramid Network (GFPN) and the Atrous Spatial 
Pyramid Pooling (ASPP). The DasNet network with ReSNet-101 [9] as a backbone obtained the best performance 
compared to other object detectors with an F1-score of 83.2% in detecting apples and 87.6% and 77.2% in the 
accuracy of segmentation of apples and branches, respectively. The system performed detection and segmentation 
in real-time when a lighter neural network was used as a backbone, reaching an execution time of 0.032s. However, 
the F1-score obtained was 82.1% in the detection of apples and 86.8% and 75.7% in the segmentation precision of 
apples and branches, respectively. 
In another work [23] a method was proposed to detect lychees and their branches in night environments. The object 
detector was based on YOLOv3 [36]. The regions of interest for the lychee branches were determined based on 
bounding boxes of fruits provided by YOLOv3. Finally, the lychee branches were segmented using an architecture 
based on the U-Net neural network [33]. The experiments carried out in the work showed that the average accuracy 
in the detection was 96.78%, 99.57%, and 89.30% under conditions of high illumination, normal illumination, and 
low illumination, respectively. In comparison, the Mean Intersection over Union (MIoU) of the lychee branches' 
segmentation was 79.00%, 84.33%, and 78.60% under the same conditions, respectively. The system execution 
time to perform object detection and segmentation was 0.097s. 
With the general objective of developing an apple growth monitoring system in an orchard based on a deep neural 
network of edge detection for remote estimation of apple size during the entire growing period, Wang and Li [24] 
built the system using a spherical camera and two personal computers. The edges detection neural network 
developed for fruit segmentation was the Fused Convolutional Features (FCF) based on the ResNet-50 neural 
network [9]. The system was able to monitor the growth of 21 apples in 3 different trees. 
Another work that performed detection and localization of fruits in 3D environments was proposed by Gené-Mola 
and Sanz-Cortiella [25]. The neural network used to segment the apples in the orchards was the Mask R-CNN [34], 
and the technique used to project the objects in a 3D space was the structure-from-motion (SfM) [37]. The results 
showed that the combination of segmentation with SfM increased the performance of F1-score fruit detection from 
81.6% to 88.1% concerning the total number of detected fruits. The main advantage of the method was the 
reduction in the number of false positives. However, the most significant disadvantage was the processing time 
required by the SfM, which makes it impossible to execute the system in real-time. 
Kang and Chen [26] proposed a system that includes a multifunctional neural network to detect apples and a 
Pointnet neural network [38] to determine the best position for the robotic arm to harvest the fruit. The detection and 
segmentation of the fruits are performed through images acquired by an RGB-D camera. The chosen architecture 
was the neural network of a DaSNet stage with the neural network resnet-50 [9] as a backbone. The whole system 
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was tested together with a robotic arm in a controlled environment and obtained a harvest success rate of 84.7% 
and an F1-score of 87.3% in detecting apples. 
The bunches of grapes vary widely in shape, color, and size, making detecting them a difficult task. However, 
Santos and Souza [27] demonstrated that bunches of grapes could be successfully detected, segmented, and 
tracked using the latest generation convolutional neural networks. Three neural networks were trained and 
evaluated in this work: Mask R-CNN [34], YOLOv2 [39], and YOLOv3 [36]. The authors demonstrated that the 
bunches of grapes could be identified and tracked over a sequence of video frames recorded online in the vineyard. 
It has also been shown that 3D models produced by structure-from-motion (SfM) [37] can be used to avoid double 
curl counting, thus reducing detection errors. F1-scores greater than 90% were obtained in the tests performed. 
Kang and Chen [28] presented a deep neural network, which can perform detection and segmentation of apples, 
and semantic segmentation of branches, showing promising results in detecting overlapping fruits. For DaSNeT-v2 
using Resnet-101 [9] as a backbone, an average accuracy of 88% in fruit detection and a segmentation precision of 
87.3% were obtained with an execution time of 0.070s. In comparison, DaSNeT- v2 using Resnet-18 [9] as a 
backbone obtained an average accuracy of 87% in detecting fruits and a segmentation precision of 86.6% with an 
execution time per image of 0.054s. 
The detection of greenish-colored fruits is generally more complex than that of other fruits because their colors are 
similar to those of the foliage. Jia and Tian [29] presented a detection model based on the Mask Region 
Convolutional Neural network (Mask R-CNN) architecture [34]. The model was developed to be effective in the 
detection and segmentation of overlapping fruits. The neural networks Residual Network (ResNet) [9] and Densely 
Connected Convolutional Networks (Dense Net) [40] were combined and used as a backbone for the extraction of 
characteristics. The method was tested on a set of 120 images, obtaining an average detection accuracy rate of 
97.31% and a Recall Rate of 95.70%. It also showed promising results in detecting fruits partially hidden by the 
foliage. 
In order to build a convolutional neural network capable of semantic segmenting lychee branches, Peng and Xue 
[30] used the DeepLabV3 + [41] model combined with the Xception neural network [42] as a feature extractor. A 
coding and decoding structure was used to reduce parameters in the neural network. The coding framework 
removes the pooling layers from the feature extraction network to keep the high-level abstract information large 
enough to facilitate pixel location prediction. Meanwhile, the decoding framework uses 1x1 dimension filters to 
reduce the number of layers in the activation map. The model, which locates branches through semantic 
segmentation, obtained a value of 0.765 in the Mean intersection over union (MIoU) parameter. 
 

Table 2: Works that used object detection techniques in the processing of pre-harvest fruit images. 

Fruit Main method Data type Main objectives Performance 
Results 

Speed  
/s 

Ref 

Mangos Mango YOLO 
based on 
YOLOv3 

RGB Images 
512 x 512 

Detection and counting of 
mangos 

F1-score 97.0% 0.015 [43] 

Apples YOLO  
modified 

RGB Images  
1216 x 1216 

Detection and counting of 
apples 

F1-score 79.0% 0.050 [44] 

Kiwis Faster R-CNN RGB-D and 
NIR Images  
 

Kiwi Detection Accuracy 90.7% 0.135 [45] 

Oranges Faster R-CNN 
modified 

RGB Images  
480 x 270 

Small fruits detection F1-score 86.78% 0.085 [46] 

Apples LedNet RGB-D Images  
640 x 480 

Develop a structure that 
includes a label generation 
module and a real-time one-
stage detector 

F1-score 84.9% 
Accuracy 86.4% 

0.046 [47] 

Apples 
Mangos 
Oranges 

Faster R-CNN 
modified 

RGB Images  
100 x 100 

Develop a multiclass fruit 
detector and create a 
database with images of the 
fruits 

Accuracy 90.72% 0.058 [48] 

Oranges Faster R-CNN RGB Images  
600 x 600 

Develop a methodology to 
detect, count and estimate the 
size of oranges using an 
unmanned aerial vehicle 

Crop production 
estimate error  
7.22% 

- [49] 
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Tomates Faster R-CNN RGB Images  
1296 x 864 

Detect green, intact tomatoes 
regardless of occlusions or of 
the fruit growth stage 

Accuracy 87.83% 0.37 [50] 

Green 
mangoes 

YOLOv2 RGB Images 
544 x 544 

Develop a method for 
detecting and counting green 
mangos using an unmanned 
aerial vehicle 

Accuracy 96.1% 0.08 [51] 

Avocados 
Apples 
Lemons 

Faster R-CNN 
and Single Shot 
Multibox 
Detector (SSD) 

RGB Images  
360 x 640 

Test two common Faster R-
CNN and SSD architectures 

Counting accuracy 7%, 
13% and 20% with 
Faster R-CNN   
Counting accuracy 
18%, 10% e 25% With 
SSD 

Faster  
R-CNN 
0.220 
 
SSD  
0.060 

[52] 

Apples 
 

Faster R-CNN RGB Images 
416 x 416 

Detect and estimate the 
number of fruit crop 
production using an 
unmanned aerial vehicle 

Counting accuracy 
88.96% 

- [53] 

Apples 
 

Faster R-CNN RGB-D 
Images  
224 x 224 

Develop an apple detection 
system using a Kinect V2 
sensor to improve detection 
accuracy 

Accuracy 89.3% 0.181 [54] 

Apple 
Blossoms 

YOLOv4 
modified 

RGB Images  
416 x 416 

Detect apple blossoms in real-
time 

Accuracy 97.31% 0.014 [55] 

 

Koirala and Walsh [43] compared the performance of six existing deep learning architectures in the task of detecting 
mangoes directly from trees. The trees' images were obtained from five mango plantations using a 5 Megapixel 
RGB digital camera in a vehicle moving at 6 km/h. The used architectures were the two-stage detectors Faster R-
CNN (VGG) and Faster R-CNN (ZF) [56], and the one-stage detectors YOLOv3 [36], YOLOv2, YOLOv2 (tiny) [39], 
and SDD. A new architecture was also developed, called MangoYOLO, based on YOLOv3 and YOLOv2 (tiny) 
characteristics. MangoYOLO obtained the best performance compared to the other methods obtaining an F1-score 
of 96.7% and an average detection precision of 98.6%. The model's execution time was 0.015s, second only to 
YOLOv2 (tiny). MangoYOLO obtained a production estimate error between 4.6% and 15.2% in the plantations in 
which it was applied. 
Bresilla and Perulli [44] dealt with convolutional neural network architectures based on one-stage detectors of 
apples directly from orchards. Inspired by the YOLO architecture [57], the authors' model demonstrated an accuracy 
of detection of more than 90%. Based on the correlation between the actual number of fruits in a tree, the number of 
fruits detected in a frame, and the number of visible fruits, a model was created to accommodate this error rate. The 
processing speed obtained was just over 20 FPS. The changes made to the YOLO architecture turned it more 
accurate in detecting objects of the same class when they are very close to each other. 
The work conducted by Liu and Wu [45] presented a method for detecting kiwi fruits by applying RGB-D sensors 
and using RGB images and Near-Infrared (NIR) images as input to a modified layer of the Faster R-CNN 
architecture [56] with the neural network VGG16 [31] as backbone to receive an image with six channels. Two 
different methods of extracting features were used: Image-Fusion and Feature-Fusion. The tests demonstrated that 
the average precision and detection time by image using the original VGG16 with only the RGB and NIR images as 
input were only 88.4% and 0.134s; 89.2% and 0.134s, respectively. Using VGG16 with the Feature-Fusion method, 
an average accuracy of 90.5% was obtained and an image detection time of 0.188s, while using the Image-Fusion 
method, an average accuracy of 90.7% was achieved with a time of 0.135s image detection. 
Small objects and fruits are generally more difficult to detect in an image. To make the detection of small fruits more 
effective, Mai and Zhang [46] proposed the Faster R-CNN [56] architecture with a fusion classifier. The system was 
evaluated into two sets of small fruit images and obtained the best F1-score, 86.78%, compared to other object 
detectors. The image processing time was 0.085s. The work's main contribution was to present strategies on how to 
increase the performance of neural networks in the detection of small fruits. 
Methods based on deep learning generally require training data appropriately labeled. Labeling those data can be a 
time-consuming task. Kang and Chen [47] proposed a system for detecting apples in orchards that comprises an 
automatic labeling module and a LedNet stage detector. The automatic labeling module uses a multi-scale pyramid 
and a clustering-RCNN (C-RCNN) to assist in the rapid labeling of training data, while LedNet uses the Feature 
Pyramid Network (FPN) [35] and the Atrous Spatial Pyramid Pooling (ASPP) to improve detection performance. 
LedNet using resnet-101 [9] as a backbone reached an F1-score of 84.9% with an image processing time of 0.046s. 
Wan and Goudos [48] proposed a multi-class fruit detector based on the Faster R-CNN architecture [56] for 
detecting apples, mangoes, and oranges. They were also responsible for creating a dataset containing labeled 
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images of the mentioned fruits. The neural network was tested and compared with other models and obtained a 
performance of 90.72% in the average detection precision and an image processing time of 0.058s. The most 
significant contribution of this work was creating a fruit image dataset and optimizing the structure of the Faster R-
CNN. 
The main objective of the work conducted by Apolo-Apoloa and Martínez-Guanter [49] was to develop a 
methodology to detect, count, and estimate the size of the oranges on trees using deep learning techniques. A 
Faster R-CNN neural network [56] was trained using images of the oranges photographed by an unmanned aerial 
vehicle. An average error between the visual count and the count performed by the model of 6.59% was obtained. 
However, the most important result is the production estimate for the year: the average error found for this case 
using the proposed model was 7.22%, while the error found by technical experts was 13.74%. 
Mu and Chen [50] developed a model to detect green tomatoes regardless of the level of occlusion or the stage of 
growth. The three models developed for this work used the Faster R-CNN [56] architecture using as backbone 
Resnet-50, Resnet-101, and Inception-Resnet-v2 [9]. The model that obtained the highest performance was the one 
that used the Resnet-101 neural network, with an average detection accuracy of 87.83%. In counting tomatoes, the 
model received a high coefficient of determination (R2 = 0.87), with more than 10% of the tomatoes in the images 
considered small (with size less than 50 pixels). 
The YOLOv2 architecture [39] was used to detect and count mangos in images photographed by an unmanned 
aerial vehicle in the work conducted by Xiong and Liu [51]. The images were manually labeled. Good results were 
obtained in images containing different numbers of fruits and under different lighting conditions, reaching an 
average detection accuracy of 96.1% with an image processing time of 0.08s. A model for estimating the number of 
mangos was obtained by linear adjustment between the actual number and the number of detected mangos. The 
model reached an estimate error of 1.1% in the number of mangos of 10 trees. The validation of the error was 
determined by manual counting. 
In another work [52], a comparison is made in the task of detecting and counting avocados, apples, and lemons 
between two popular architectures: Faster R-CNN [56] with Inception V2, and Single Shot Multibox Detector (SSD) 
[58] with MobileNet. The methodology for counting fruit consisted of recording video images of the orchards and 
later processing them for counting the fruits. A counting error of 7%, 13%, and 20% was obtained for avocados, 
apples, and lemons, respectively, using the Faster R-CNN architecture with an image processing time of 0.220s. In 
contrast, for the SSD architecture, the counting error obtained was 18%, 10%, and 25% for avocados, apples, and 
lemons, respectively, with an image processing time of 0.060s. 
The study developed by Apolo-Apolo and Pérez-Ruiz [53] presents a method for detecting and counting apples in 
orchards to estimate production using images obtained by an unmanned aerial vehicle. The Faster R-CNN 
architecture [56] with the Inception Resnet V2 Atrous Coco neural network was chosen to detect fruits. The Faster 
R-CNN neural network was trained using the Google Collaboratory platform, a cloud service based on Jupyter 
Notebooks, which allows integrating deep learning models in a simple Python script. The results obtained by the 
model were compared with the count performed by specialist technicians. As fruits were partially visible in the 
images obtained by the unmanned aerial vehicle, a linear regression was used to estimate the total number of 
apples in each tree, obtaining an R2 equal to 0.80. 
Fu and Majeed [54] developed a computer vision system using a low-cost Kinect V2 sensor for apple detection. 
Two architectures were developed using Faster R-CNN with ZFNet and Faster R-CNN with VGG16 [56], [31]. Both 
are used in the original RGB images and the RGB images with suppressed background. The authors' tests 
demonstrated that Faster R-CNN obtained the highest average precision of 89.3% with VGG16 with an image 
processing time of 0.181s. The results showed that using a depth filter to suppress the background of the original 
images improved the detection accuracy by 2.5%. 
Wu and Shuaichao [55] developed a method for real-time detection of apple blossoms using YOLO v4 [59] pruned 
by a channel pruning algorithm. After pruning, the number of parameters was reduced by 96.74%, causing a 
reduction of the model in 231.51MB. The processing time per image was reduced by 39.47%, remaining at 0.014s, 
while the average detection precision remained at 97.31%, which is only 0.24% less than in the model before 
pruning. The tests also showed that the different species of orchards and the difference in lighting did not 
significantly impact the detection of apple blossoms. 
It is possible to notice that the obtained results in the related literature are improving in comparison with older 
articles. It is probably due to both new and better network architectures and also more significant amount of data 
available for training those networks. It is a growing tendency for the authors to make available the dataset created 
and used for training their solutions, so it is reasonable that in the perspective of pre-harvest fruit image processing, 
the quantity and quality of properly labelled images available online shall increase over time. Thus, we believe that 
this movement around the datasets tends to make the comparison of the performance of different network 
architectures to be tight and easier. 
Some similarities are also observed in the strategies of some authors. When the objective is to carry out fruit 
counting, the authors tend to opt for detection using bounding boxes. However, when the objective involves 
knowing the fruit's position and shape with greater precision, the authors opt for segmentation techniques. 
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3. CONCLUSION 

In this review work, proposals and contributions from recent works published in the last two years representing state 
of the art in Deep Learning techniques applied in image processing of pre-harvest fruits were analyzed and 
compared. As seen in previous reviews, applications of Deep Learning in image processing in agriculture are very 
recent. Besides, it should be noted that most of these studies collect information before 2019. We note that the 
architectures of approaches based on Deep Learning vary according to different applications, works, and authors. 
Thus, we cannot establish one architecture as being superior to the others. The results showed that approaches 
based on Deep Learning achieved excellent results. We can also observe that Deep Learning applications' most 
significant growths are in the robotic harvesting sector and the production estimation sector. 
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