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Abstract: Biostimulation (microbial stimulation) is the most effective bioremediation strategy, thus it’s widely used in Brazil, and is 

highlighted for its simplicity and low cost. In biostimulation, polymeric systems are used in controlled release of nutrients (SRN) in 
order to maintain their adequate concentration to stimulate xenobiotic molecule-degrading microorganisms. The use of biopolymers 
systems ensures biodegradability, low cost and low toxicity over synthetic ones. Despite advances in studies with naturally occurring 
polymers, few are used as SRN for bioremediation applications. Thus, there are still remaining gaps to be filled concerning release 
efficiency, and effects on microbial growth and degradation of xenobiotics. Therefore, this work aims to explore the results and 
advances of these biopolymeric systems used in SRN and their future perspectives in bioremediation.  
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1. INTRODUCTION 

Anthropogenic action in nature, mainly from industrial activities, is today the primary cause of increased global 

contamination. The contamination mechanism can occur by diffusion in low quantities over long periods of time or 

by occasional accidents, in high amounts. Although the latter is more noticeable, the minimum daily discharges are 

more difficult to contain and, therefore, the most worrying [1]. Researches of contamination in Europe showed that, 

by 2014, more than half of the pollution was from organic pollutants, especially aromatic and chlorinated 

compounds.  [2–4].   Both of these compounds are classified as Persistent Organic Pollutants (POPs), which are 

stable compounds capable of remaining in the environment for long period and are characterized by high toxicity, 

teratogenic, mutagenic and / or carcinogenic potential [5; 6].  

Much research has been done in the investigation of its capacity to degrade organic compounds through techniques 

such as photocatalysis, sonocatalysis, ozonation process, microbial activity, etc [7–9]. Recent studies in microbial 

degradation technique, also referred as bioremediation, have shown the enormous potential of the technique in the 

remediation of contaminants such as organic compounds, for instance, HPA´s and organochlorines, and heavy 

metals [10–14]. More than a half percent of HPA´s mass can be degraded by microbial community [15]. It was even 

used in one of the world’s biggest oil spill accidents that took place in Alaska (Exxon Valdez, 1989) [16].  

The bioremediation can be used in situ, in both marine and soil environments which provides a lower cost and lower 

secondary contamination [17]. However, nutritional deficiency in the medium can impair the stimulation and growth 

of these microorganisms. Thus, polymeric materials are studied for slow release of these nutrients in order to keep 

the microbiota active in the medium. Despite presenting more predictable physicochemical characteristics, the high 

cost and environmental problems related to petrochemical polymers guide the way to more sustainable studies 

using biopolymers as an alternative coating [18–21]. 

Therefore, this work aims to explore the results and advances of these biopolymeric systems used in SRN and the 

future perspectives of these materials in bioremediation. 

1.1.  Bioremediation Technique: Evolution and trends 

Although one of the earliest studies of microbial degradation found in the literature dates back to the 1920s, where 

author reports the ability of microorganisms to utilize certain organic compounds as a source of carbon and energy 

for cell construction, the term bioremediation was introduced only around the decade of 1940 to refer to the 

application of different strategies to make the microbial degradation process more effective [22; 23]. Therefore, it is 

still a technique with relatively few studies that are in vertiginous growth. 



Bioremediation: Perspectives of the use biopolymers systems for slow release nutrients BJEDIS    3 

 

A survey carried out in platform magazines such as Periodic Capes, Wiley, and Springer Link, in March 2020, with 

the keyword “bioremediation,” evaluated the significant advance in the number of research related to the topic. The 

search engine encompassed all types of publications. It was only from the 1980s that research on the topic began 

to emerge. The most significant jump occurred between the 90s (160 publications) and the 21st century (6849 

publications), with a growth in publications greater than 4000% (ex. Periodic Capes). However, the number of 

searches continues to grow exponentially every decade. This recent advance reflects the search for less harmful 

remediation mechanisms to the environment taking advantage of techniques capable of stimulating the degradation 

of pollutants by biological agents at a reduced cost. 

Each of the tested bibliographic bases presented different numerical results. These different numbers result from 

the size of the collection made available and the own metrics used by each of the databases. Despite different 

numerical values, they all followed a growth profile. The data collected in the research were adjusted with the aid of 

two different models. The first model was the linear model and the second model was the quadratic model. The 

modeling was carried out between 1990 and 2020, a period in which all counts were greater than 1. Figure 1 shows 

the evolution of the number of publications in the studied period and the models tested. The model parameters are 

shown in Table 1. 

The calculated R2 data shows that the quadratic models produced a much better fit than the linear models. Also, 

the RMSE values of the quadratic models are substantially lower than those obtained for the linear models, proving 

that the quadratic ones are more suitable for the interpretation of the numerical data extracted from the researched 

databases. 

The best fits obtained from the quadratic models indicate a strong tendency to accelerate the number of studies 

involving bioremediation over time. These data were extrapolated to the year 2030. The numerical results obtained 

via extrapolation are equal to 105318, 35190, and 20228 for the Capes, Springer, and Wiley bases, respectively. 

When the figures extrapolated for the year 2030 are compared to the figures collected in 2020, the results point to 

extrapolated growths equal to 89%, 89%, and 86%, respectively. These values prove that the collections reflect the 

number of studies developed by the scientific community regardless of its preferred base. Thus, the strong growth 

in research related to the subject of bioremediation is a trend. 
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Figure 1. Publications on "bioremediation" (March 2020). Linear models (---) and quadratic models (─). 

 

Table 1. Linear (Lin) and quadratic (Qd) regression models for the number of publications. 

Source Y-intercept (a0) Slope (a1) Quadratic coefficient (a2) R2 Adjusted R2 RMSE 

CAPES-Lin -(2.619±0.009)x106⁶ (1.317±0.005)x10³ - 0.9961 0.9883 80.5673 

Springer-Lin -(8.709±0.054)x105 (4.377±0.027)x102 - 0.9974 0.9921 46.8824 

Wiley-Lin -(5.717±0.044)x105 (2.873±0.022)x102 - 0.9852 0.9857 32.3753 

CAPES-Qd (2.623±0.023)x108 -(2.636±0.023)x105 (6.623±0.058)x10 0.9999 - 7.7080 

Springer-Qd (8.831±0.136)x107 -(8.874±0.137)x104 (2.229±0.034)x10 0.9999 - 11.4179 

Wiley-Qd (4.458±0.104)x107 -(4.486±0.104)x104 (1.128±0.026)x10 0.9995 - 15.3850 

 

Biostimulation of microorganisms is the most effective bioremediation strategy, it’s the most used technique in 

Brazil, and is highlighted for its simplicity and low cost [24–26]. The biostimulation's primary objective is to stimulate 

the development of the native soil microbial population by adjusting the environmental parameters [17; 27–34], such 



Bioremediation: Perspectives of the use biopolymers systems for slow release nutrients BJEDIS    5 

 

as aeration, soil humidity, pH, etc., although the nutritional correction is one of the main limiting parameters of the 

process [35; 36]. In nature, nutrients, mainly nitrogen, can be found in low concentrations or even be unavailable in 

the contaminated environment and tend to reduce further during the process of contaminant degradation affecting 

microbial growth and, consequently, the conversion of the contaminant [24]. The solubility of these nutrients, mainly 

in the form of inorganic salts, and the associated leaching and maintenance of the availability of said nutrients leads 

to a substantial economic disadvantage, along with the possibility of increased toxicity and eutrophication of the soil 

[37; 38]. Specifically to urea, the environment does not assimilate 70% of the nutrient. Besides that, losses also 

occur through ammonia volatilization [39]. In order to minimize the dissolution of the urea and maintain a more 

regular release profile, polymer-based coatings have been studied. The incorporation of the nutrient may vary 

according to the polymers used [18; 40]. Nutrients can be dispersed in the matrix or encapsulated within the 

polymer in core-shell morphology [41]. Thus, the release mechanism is influenced by the diffusion and degradation 

process of the polymer [19; 42]. 

1.2. Common biopolymers used in SRN 

A wide variety of polymers made from natural origins have been studied  aiming to act as barrier materials 

decreasing the nutrient delivery speed [91, 92[45–94]]. However, the gradual delivery of the asset to the medium 

depends on some factors such as the type of polymeric coating, the chemical structure and the thickness of the 

biopolymer, for example. The hydrophilicity of most of the studied biopolymers is one of the factors that most hinder 

the use of these materials in SRN systems. Studies focus on modifications of these materials to acquire a 

hydrophilic/hydrophobic balance in the structure through reactions such as graftization, crosslinking, etc [21, 95]. 

Some of the main biopolymers studied are starch (see Fig 2(a)), chitosan, cellulose (see Fig 2(b)), and lignin. 

Despite the diversity, starch stands out as one of the most used biopolymers due to its low cost, high availability, 

and good biodegradability. However, it is worth highlighting the importance of modifications in its structure to 

improve the hydrophilic and mechanical properties [96].  

In [97], the concentration of N, N - methylene-bisacrylamide was evaluated as a crosslinking agent in the structure 

and release profile of the starch-based system. The higher content of the crosslinker allowed an increase in porosity 

and a reduction in pore size, therefore, controlling the permeation of water and nutrients out of the system. In [98], 

was studied the coating thickness of modified starch with polyvinyl alcohol (PVA) and citric acid, as a crosslinking 

agent, in urea release and its diffusion rate. The release of 100% of urea with different coating thicknesses was 

measured by UV-Vis absorbance, during a defined period. The authors observed that although the nutrients release 

time increases with increasing thickness, large pores and defects in coverage, such as the absence of uniformity of 

thickness, limited the release system. 
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Figure 2. Chemical structure of starch (a) and cellulose (b) 

 

Despite the benefits, introducing a material into the environment requires care: the toxicity of the material must be 

extinguished  and its biodegradability understods. The best of these materials cannot cause environmental damage 

and must be utterly biodegraded after the full release of the active agent [99]. The degradative capacity of natural 

polymers is much higher than other synthetic polymers. However, it is possible to improve this biodegradability by 

modifying the system [100; 101]. For instance, the influence of palm fibers increased the biodegradability of the poly 

(lactic acid) sample (PLA) by 29% [102]. The high hydrophilicity and low adhesion of the fiber to the polymer matrix 

promoted a rupture along with the composite structures that facilitated the process of degradation of the material 

[103]. In PLA, the degradation is speeded up due to the hydrolysis. The same occurs with other polyesters. The 

hydrolytic degradation mechanism occurs with the diffusion of water into the polymer, promoting the breakage of the 

ester bonds, as shown in Figure 3 [104]. 
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Figure 3. Scheme of percolation of the water until the loss of adhesion between the fiber and the polymer matrix 

(left). Mechanism of hydrolysis of PLA in the presence of water (right). 
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Plant fibers present several macromolecular components. Among them, the most interesting for the slow release 

applications are cellulose and lignin [105–111].  

Lignin is a highly branched macromolecule responsible for fiber protection, including against humidity [112]. This 

macromolecule is composed of three types of phenylpropane units, joined by carbon-carbon bonds and ester 

bonds, arranged in a complex, highly branched three-dimensional structure, as shown in Figure 4 [113]. The use of 

lignin in systems for the slow release of nutrients is quite attractive. However, there may be variations in the 

hydrophobicity of this material, depending on the method used for its extraction. Regardless of the method, the 

acetylation of lignin promotes a better release of the active substance [98; 114]. 

Cellulose is the major component of fibers of plant origin. Its chemical structure is composed of carbon, hydrogen, 

and oxygen atoms that form polysaccharides (C6H10O5)n of 1,4-β bonds [110]. It is a highly crystalline polymer due 

to the straightness of its chairs and their intermolecular hydrogen bonds. Its crystallinity provides a high mechanical 

resistance in the fibers and best supports the effects of degradation, whether thermal, mechanical, or chemical 

[107]. As a coating material, it allows greater hydrophobic control of the system and, consequently, delays the 

release of nutrients into the environment. Good results are also achieved by modifying cellulose. Authors who have 

worked with modified cellulose have observed 35% higher nutrient retention than the uncoated system [19; 110]. 

 

Figure 4. Partial chemical structure of the macromolecule lignin [113]. 

In addition to crosslinking and chemical modification, the use of double-coating systems may be a strategy to 

improve the nutrient release profile [115]. In a double coat system with crosslinked starch, as an outer layer and 

ethylcellulose (EC), as the inner layer, the modified cellulose provided to the system a better balance on the 
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hydrophilic and biodegradable properties of the starch [19]. Another case of double coating is diatomite (outer 

layer), fossil material formed by the deposition of algae, and xanthan gum reticulated with epichlorohydrin (inner 

layer), in which the higher crosslinking density of the material allowed the better release of urea after 28 days (79%) 

[116]. 

Superabsorbent polymers (SAP's) are hydrogels able to absorbing and retaining large amounts of water. 

Superabsorbent polymers based on starch or chitosan have been widely studied as nutrient encapsulants for slow 

release [97; 117–119]. For this application, the type of crosslinker and its content play a crucial role in the rate and 

profile of the fertilizer release from the SAP structure. Surprisingly, the higher content of the crosslinker in the starch 

structure produces elevated porosity, followed by the reduction of the size of the pores, modifying the permeation of 

water and nutrients to the environment [120]. 

Despite evident lack of articles that study nutrient release systems based on biopolymers with a focus on 

bioremediation, good outcomes can and should stimulate new research. 

Alginates have excellent coating properties. The reaction with polyvalent cations creates cross-linked structures. 

These structures produce resistant polymer gels or insoluble polymers [121; 122]. The high coating of this material, 

when associated with commercial starch, was responsible for higher cell growth than in the uncapped urea case. 

This growth of microbial mass was responsible for the degradation of 43.6% of the hydrocarbons present after 10 

hours of the experiment [122]. Other works with sodium alginate have been proposed with the addition of bentonite 

for release purposes. The improvement in porosity and viscosity are some of the advantages of clay in improving 

the release of compounds [121]. 

The structure of the polymer and its sorption capacity may also contribute to the degradation of the xenobiotic since 

it can increase the bioavailability of the contaminant to the microbial biomass. The term bioavailability is associated 

with the presence of a vast area of contact between the contaminant and the microbial agents [123; 124]. In the 

case of chitosan as a coating material, this biopolymer favored the bioavailability of polycyclic aromatic 

hydrocarbons (HPA's) with four or more aromatic rings. Besides, the degradation of chitosan, rich in nitrogen, 

represented a secondary source in the nutrient supply [124]. Reticulated chitosan was filled with modified cellulose, 

producing good release results. These materials reached 75% of release after the 30th day [125]. However, in the 

acidic soil, the release of the nutrient may be accelerated due to the dissolution of the amine groups of chitosan 

[126]. 

The wide variety of biopolymers and the combination of these materials to create new environmentally correct 

systems with better properties make these slow-release systems promising for commercial applications, not only in 

agriculture but also in bioremediation. With that in mind, over the past few years, more and more patents have been 

applied for reaching greater nutrient-retaining capabilities [127–130]. The variety of biopolymeric matrices studied, 

and their modifications, as well as the different structures of the system, have achieved satisfactory responses and 

can be used according to the particularities of each application site. 

2. CONCLUSION AND FUTURE PERSPECTIVES 
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Although still recent and in development, some of these biopolymer systems are already showing promising results. 

It occurs due to the combination of the properties of the coating with the environmental advantages of the 

biopolymers. However, in order to guarantee the controlled release of the active substance, are required further 

studies on the characteristics of biopolymers, such as biodegradation, hydrophobic/hydrophilic balance and 

possibilities of modifications (crosslinking, graphitizing, composite or two-layer coating) thickness and uniformity of 

the coating and the form of incorporation of the active substance. 

Despite advances in biopolymeric coating release studies, few of them are directed at the bioremediation technique. 

The majority of applications are focused on the nutritional improvement of the soil for the agricultural industry. Thus, 

there is a need for further studies evaluating new biopolymers, their rate of nutrient release, as well as the effects 

on microbial growth and the rate of degradation of xenobiotics. 

3. ACKNOWLEDGEMENTS 

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-304500/2019-

4), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Finance Code 001), and Fundação 

Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). 

 

CONFLICT OF INTEREST  

None. 

Sample CRediT author statement 

Fernanda V. de Carvalho: Conceptualization, Methodology, and Writing-Original draft preparation. Luisa V. da 

Silva: Methodology and Writing. Thuanny de A. Moraes: Methodology and Writing. Fernando G. de Souza 

Junior: Conceptualization and Supervision. Selma G. F. Leite: Conceptualization. Ivonete O. Barcellos: 

Reviewing and Editing. Eldho Elias: Statistical studies. Sabu Thomas: Editing. Kaushik Pal1: Reviewing. 

Thinakaran Narayanan: Data analysis. 

 

REFERENCES 

1.  KÄSTNER, Matthias and MILTNER, Anja. Application of compost for effective bioremediation of organic 
contaminants and pollutants in soil. Applied Microbiology and Biotechnology. v. 100, n. 8, p. 3433–3449. 2016. 
DOI 10.1007/s00253-016-7378-y.  

2.  EIBES, G., ARCA-RAMOS, A., FEIJOO, G., LEMA, J. M. and MOREIRA, M. T. Enzymatic technologies for 
remediation of hydrophobic organic pollutants in soil. Applied Microbiology and Biotechnology. v. 99, n. 21, 
p. 8815–8829. 2015. DOI 10.1007/s00253-015-6872-y.  

3.  GAVRILESCU, Maria, DEMNEROVÁ, Kateřina, AAMAND, Jens, AGATHOS, Spiros and FAVA, Fabio. 
Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and 
bioremediation. New Biotechnology. v. 32, n. 1, p. 147–156. 2015. DOI 10.1016/j.nbt.2014.01.001.  

4.  DÍAZ, Eduardo. Bacterial degradation of aromatic pollutants: A paradigm of metabolic versatility. 
International microbiology : the official journal of the Spanish Society for Microbiology. v. 7, p. 173–80. 
2004.  



Bioremediation: Perspectives of the use biopolymers systems for slow release nutrients BJEDIS    11 

 

5.  ARSLAN, Muhammad, IMRAN, Asma, KHAN, Qaiser Mahmood and AFZAL, Muhammad. Plant–bacteria 
partnerships for the remediation of persistent organic pollutants. Environmental Science and Pollution Research. 
v. 24, n. 5, p. 4322–4336. 2017. DOI 10.1007/s11356-015-4935-3.  

6.  KHOZANAH, Khozanah and FALAHUDIN, Dede. CONCENTRATION AND DISTRIBUTION OF 
POLYCYCLIC AROMATIC HIDROCARBONS (PAHs) DURING BIOREMEDIATION PROCESSES OF OIL-
CONTAMINATED BEACH SEDIMENTS IN KARANG SONG BEACH, INDRAMAYU. BULLETIN OF THE MARINE 
GEOLOGY [online]. v. 31, n. 1. 2017. DOI 10.32693/bomg.31.1.2016.340. Available from: 
http://ejournal.mgi.esdm.go.id/ejournal/index.php/bomg/article/view/340. Accessed 16 March 2021.  

7.  HUNGE, Yuvaraj M. Basics and advanced developments in photocatalysis – a review (Mini review). 
International Journal of Hydrology [online]. v. 2, n. 4. 2018. DOI 10.15406/ijh.2018.02.00122. Available from: 
https://medcraveonline.com/IJH/basics-and-advanced-developments-in-photocatalysis-ndash-a-review.html. 
Accessed 16 March 2021.  

8.  CHAVE, Tony, NAVARRO, Nathalie. M., POCHON, Patrick, PERKAS, Nina, GEDANKEN, Aharon and 
NIKITENKO, Sergey I. Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO2. Catalysis 
Today. v. 241, p. 55–62. 2015. DOI 10.1016/j.cattod.2014.07.040.  

9.  ZHU, Huicen, GUO, Weimin, SHEN, Zhemin, TANG, Qingli, JI, Wenchao and JIA, Lijuan. QSAR models for 
degradation of organic pollutants in ozonation process under acidic condition. Chemosphere. v. 119, p. 65–71. 
2015. DOI 10.1016/j.chemosphere.2014.05.068.  

10.  ZHOU, Qin, CHEN, Yongzhe, YANG, Ming, LI, Wenkai and DENG, Le. Enhanced bioremediation of heavy 
metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support. Bioresource 
Technology. v. 136, p. 413–417. 2013. DOI 10.1016/j.biortech.2013.03.047.  

11.  JUN, Dong, XIAOLAN, Ma and JINGJIE, Li. Removal of aromatic hydrocarbons from aquifers by oxidation 
coupled with dissimilatory bacterial reduction of iron. Chemistry and Technology of Fuels and Oils. v. 49, n. 1, 
p. 70–80. 2013. DOI 10.1007/s10553-013-0413-0.  

12.  ZERAATKAR, Amin Keyvan, AHMADZADEH, Hossein, TALEBI, Ahmad Farhad, MOHEIMANI, Navid R. 
and MCHENRY, Mark P. Potential use of algae for heavy metal bioremediation, a critical review. Journal of 
Environmental Management. v. 181, p. 817–831. 2016. DOI 10.1016/j.jenvman.2016.06.059.  

13.  LJESEVIC, Marija, MILIC, Jelena, GOJGIC-CVIJOVIC, Gordana, SOLEVIC-KNUDSEN, Tatjana, ILIC, Mila, 
AVDALOVIC, Jelena and VRVIC, Miroslav. Evaluation of assays for screening polycyclic aromatic hydrocarbon-
degrading potential of bacteria. Chemical Industry and Chemical Engineering Quarterly. v. 26, n. 1, p. 41–48. 
2020. DOI 10.2298/CICEQ190220023L.  

14.  EGOROVA, D. O., FARAFONOVA, V. V., SHESTAKOVA, E. A., ANDREYEV, D. N., MAKSIMOV, A. S., 
VASYANIN, A. N., BUZMAKOV, S. A. and PLOTNIKOVA, E. G. Bioremediation of soil contaminated by 
dichlorodiphenyltrichloroethane with the use of aerobic strain Rhodococcus wratislaviensis Ch628. Eurasian Soil 
Science. v. 50, n. 10, p. 1217–1224. 2017. DOI 10.1134/S1064229317100015.  

15.  BIACHE, Coralie, OUALI, Salma, CÉBRON, Aurélie, LORGEOUX, Catherine, COLOMBANO, Stéfan and 
FAURE, Pierre. Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-
polycyclic aromatic compounds and microbial community abundance. Journal of Hazardous Materials. v. 329, 
p. 1–10. 2017. DOI 10.1016/j.jhazmat.2017.01.026.  

16.  VENOSA, Albert and ZHU, Eric. Biodegradation of Crude Oil Contaminating Marine Shorelines and 
Freshwater Wetlands. Spill Science & Technology Bulletin. v. 8, p. 163–178. 2003. DOI 10.1016/S1353-
2561(03)00019-7.  

17.  BEDOR, Priscilla Braga Antunes, RONDELLI, Pedro, FILHO, Sergio Thode, SOUZA JR., F.G. and LEITE, 
Selma Gomes Ferreira. Production and toxicological evaluation of PBS-urea microspheres targeting bioremediation. 
Journal of Chemical Technology & Biotechnology [online]. v. n/a, n. n/a. DOI https://doi.org/10.1002/jctb.6701. 
Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.6701. Accessed 6 March 2021.  



12    BJEDIS Veloso  et al. 

 

18.  HANAFI, M.M, ELTAIB, S.M and AHMAD, Mansor. Physical and chemical characteristics of controlled 
release compound fertiliser. European Polymer Journal. v. 36, p. 2081–2088. 2000. DOI 10.1016/S0014-
3057(00)00004-5.  

19.  CHAUVET, Margot, SAUCEAU, Martial and FAGES, Jacques. Extrusion assisted by supercritical CO2: A 
review on its application to biopolymers. The Journal of Supercritical Fluids. v. 120, p. 408–420. 2017. 
DOI 10.1016/j.supflu.2016.05.043.  

20.  MOHD IBRAHIM, Khairul Ridzwan, EGHBALI BABADI, Farahnaz and YUNUS, Robiah. Comparative 
performance of different urea coating materials for slow release. Particuology. v. 17, p. 165–172. 2014. 
DOI 10.1016/j.partic.2014.03.009.  

21.  JACOB, Joby, HAPONIUK, Józef T., THOMAS, Sabu and GOPI, Sreeraj. Biopolymer based nanomaterials 
in drug delivery systems: A review. Materials Today Chemistry. v. 9, p. 43–55. 2018. 
DOI 10.1016/j.mtchem.2018.05.002.  

22.  DORYLAND, C. J. T. Preliminary Report on Synthetic Media. Journal of Bacteriology. v. 1, n. 2, p. 135–
152. 1916.  

23.  HOFF, Rebecca Z. Bioremediation: an overview of its development and use for oil spill cleanup. Marine 
Pollution Bulletin. v. 26, n. 9, p. 476–481. 1993. DOI 10.1016/0025-326X(93)90463-T.  

24.  CW, Lin, LH, Chen, YP, I. and CY, Lai. Microbial communities and biodegradation in lab-scale BTEX-
contaminated groundwater remediation using an oxygen-releasing reactive barrier. Bioprocess and Biosystems 
Engineering. v. 33, n. 3, p. 383–391. 2009. DOI 10.1007/s00449-009-0336-7.  

25.  RAMOS, Débora Toledo, DA SILVA, Márcio Luís Busi, NOSSA, Carlos Wolfgang, ALVAREZ, Pedro J. J. 
and CORSEUIL, Henry Xavier. Assessment of microbial communities associated with fermentative–methanogenic 
biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). 
Biodegradation. v. 25, n. 5, p. 681–691. 2014. DOI 10.1007/s10532-014-9691-4.  

26.  CORSEUIL, Henry Xavier, GOMEZ, Diego E., SCHAMBECK, Cássio Moraes, RAMOS, Débora Toledo and 
ALVAREZ, Pedro J.J. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol 
removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation. Journal of 
Contaminant Hydrology. v. 174, p. 1–9. 2015. DOI 10.1016/j.jconhyd.2014.12.004.  

27.  REIS, E. A., ROCHA-LEÃO, M. H. M. and LEITE, S. G. F. Slow-release nutrient capsules for 
microorganism stimulation in oil remediation. Applied Biochemistry and Biotechnology. v. 169, n. 4, p. 1241–
1249. 2013. DOI 10.1007/s12010-012-0022-0. 00001 

28.  BEDOR, Priscilla BA, RONDELLI, Pedro, FILHO, Sergio Thode, JR, Fernando G. de Souza and LEITE, 
Selma GF. Production and toxicological evaluation of poly(butylene succinate)–urea microspheres targeting 
bioremediation. Journal of Chemical Technology & Biotechnology [online]. v. n/a, n. n/a. 
DOI https://doi.org/10.1002/jctb.6701. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.6701. 
Accessed 15 March 2021.  

29.  CHANG, Wonjae, KLEMM, Sara, BEAULIEU, Chantale, HAWARI, Jalal, WHYTE, Lyle and GHOSHAL, 
Subhasis. Petroleum Hydrocarbon Biodegradation under Seasonal Freeze−Thaw Soil Temperature Regimes in 
Contaminated Soils from a Sub-Arctic Site. Environmental Science & Technology. v. 45, n. 3, p. 1061–1066. 
2011. DOI 10.1021/es1022653. 00000 

30.  FLETCHER, Kelly E., COSTANZA, Jed, PENNELL, Kurt D. and LÖFFLER, Frank E. Electron donor 
availability for microbial reductive processes following thermal treatment. Water Research. v. 45, n. 20, p. 6625–
6636. 2011. DOI https://doi.org/10.1016/j.watres.2011.09.033.  

31.  SARKAR, Dibyendu, FERGUSON, Michael, DATTA, Rupali and BIRNBAUM, Stuart. Bioremediation of 
petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and 



Bioremediation: Perspectives of the use biopolymers systems for slow release nutrients BJEDIS    13 

 

monitored natural attenuation. Environmental Pollution. v. 136, n. 1, p. 187–195. 2005. 
DOI 10.1016/j.envpol.2004.09.025. 00152 

32.  CHAGAS-SPINELLI, Alessandra C. O., KATO, Mario T., DE LIMA, Edmilson S. and GAVAZZA, Savia. 
Bioremediation of a tropical clay soil contaminated with diesel oil. Journal of Environmental Management. v. 113, 
p. 510–516. 2012. DOI 10.1016/j.jenvman.2012.05.027. 00005 

33.  ANGELIM, Alysson Lira, COSTA, Samantha Pinheiro, FARIAS, Bárbara Cibelle Soares, AQUINO, 
Lyanderson Freitas and MELO, Vânia Maria Maciel. An innovative bioremediation strategy using a bacterial 
consortium entrapped in chitosan beads. Journal of Environmental Management. v. 127, p. 10–17. 2013. 
DOI 10.1016/j.jenvman.2013.04.014. 00002 

34.  NIKOLOPOULOU, M. and KALOGERAKIS, N. 6.23 - Petroleum Spill Control with Biological Means. In : 
Comprehensive Biotechnology (Second Edition) [online]. Academic Press : Burlington, 2011. p. 263–274. 
Accessed 26 June 2012. ISBN 978-0-08-088504-9. Available from: 
http://www.sciencedirect.com/science/article/pii/B9780080885049003925.  

35.  SCOW, Kate M. and HICKS, Kristin A. Natural attenuation and enhanced bioremediation of organic 
contaminants in groundwater. Current Opinion in Biotechnology. v. 16, n. 3, p. 246–253. 2005. 
DOI 10.1016/j.copbio.2005.03.009.  

36.  DM, Al-Mailem, M, Al-Deieg, M, Eliyas and SS, Radwan. Biostimulation of indigenous microorganisms for 
bioremediation of oily hypersaline microcosms from the Arabian Gulf Kuwaiti coasts. Journal of Environmental 
Management. v. 193, p. 576–583. 2017. DOI 10.1016/j.jenvman.2017.02.054.  

37.  SHAVIV, Avi. Advances in controlled-release fertilizers. In : Advances in Agronomy [online]. Academic 
Press, 2001. p. 1–49. Accessed 17 March 2021. Available from: 
https://www.sciencedirect.com/science/article/pii/S0065211301710115.  

38.  IBRAHIM, Khairul Ridzwan Mohd. Comparative performance of different urea coating materials for slow 
release. . P. 8. 2014.  

39.  DING, H, ZHANG, Y S, LI, W H, ZHENG, X Z, WANG, M K, TANG, L N and CHEN, D L. Nutrients Release 
from a Novel Gel-Based Slow/Controlled Release Fertilizer. Applied and Environmental Soil Science. P. 14.  

40.  LUBKOWSKI, Krzysztof. Environmental impact of fertilizer use and slow release of mineral nutrients as a 
response to this challenge. Polish Journal of Chemical Technology. v. 18, p. 72–79. 2016. DOI 10.1515/pjct-
2016-0012.  

41.  NAZ, Muhammad and SULAIMAN, Shaharin. Slow release coating remedy for nitrogen loss from 
conventional urea: A review. Journal of Controlled Release. v. 225. 2016. DOI 10.1016/j.jconrel.2016.01.037.  

42.  QIAO, Dongling, LIU, Hongsheng, YU, Long, BAO, Xianyang, SIMON, George P., PETINAKIS, Eustathios 
and CHEN, Ling. Preparation and characterization of slow-release fertilizer encapsulated by starch-based 
superabsorbent polymer. Carbohydrate Polymers. v. 147, p. 146–154. 2016. DOI 10.1016/j.carbpol.2016.04.010.  

43.  YONG, Soon Kong, SHRIVASTAVA, Manoj, SRIVASTAVA, Prashant, KUNHIKRISHNAN, Anitha and 
BOLAN, Nanthi. Environmental applications of chitosan and its derivatives. Reviews of Environmental 
Contamination and Toxicology. v. 233, p. 1–43. 2015. DOI 10.1007/978-3-319-10479-9_1.  

44.  MAJEED, Zahid, RAMLI, Nur Kamila, MANSOR, Nurlidia and MAN, Zakaria. A comprehensive review on 
biodegradable polymers and their blends used in controlled-release fertilizer processes. Reviews in Chemical 
Engineering. v. 31, n. 1, p. 69–95. 2015. DOI 10.1515/revce-2014-0021.  

45.  LOPES, Eluise S., DOMINGOS, Eloílson, NEVES, Rodrigo S., ROMÃO, Wanderson, SOUZA, Kátia R. de, 
VALASKI, R., ARCHANJO, Braulio S., SOUZA, Fernando G., SILVA, Alexander M., KUZNETSOV, Alexei and 
ARAUJO, Joyce R. The role of intermolecular interactions in polyaniline/polyamide-6,6 pressure-sensitive blends 



14    BJEDIS Veloso  et al. 

 

studied by DFT and 1H NMR. European Polymer Journal. v. 85, p. 588–604. 2016. 
DOI https://doi.org/10.1016/j.eurpolymj.2016.11.011.  

46.  ROCHA FERREIRA, Saulo, RODRIGUES SENA NETO, Alfredo, DE ANDRADE SILVA, Flávio, GOMES 
DE SOUZA, Fernando and DIAS TOLEDO FILHO, Romildo. The influence of carboxylated styrene butadiene 
rubber coating on the mechanical performance of vegetable fibers and on their interface with a cement matrix. 
Construction and Building Materials. v. 262, p. 120770. 2020. DOI 10.1016/j.conbuildmat.2020.120770.  

47.  NETO, Weslany, PEÑA, Luis, FERREIRA, Gabriella, SOUZA JR, F.G. and MACHADO, Fabricio. Target 
Delivery from Modified Polymers to Cancer Treatment. Current Organic Chemistry. v. 20, p. 1–17. 2016. 
DOI 10.2174/1385272820666160510151442.  

48.  FERREIRA, Gabriella, SEGURA, Tayana, SOUZA JR., Fernando G., UMPIERRE, Alexandre P. and 
MACHADO, Fabricio. Synthesis of poly(vinyl acetate)-based magnetic polymer microparticles. European Polymer 
Journal. v. 48, n. 12, p. 2050–2069. 2012. DOI 10.1016/j.eurpolymj.2012.09.003. 0001 

49.  FERREIRA, Letícia P., MOREIRA, Andrei N., PINTO, José Carlos and SOUZA JR., F. G. Synthesis of 
poly(butylene succinate) using metal catalysts. Polymer Engineering & Science. v. 55, n. 8, p. 1889–1896. 2015. 
DOI 10.1002/pen.24029.  

50.  MORAES, R.S., RICARDO, N.S., SAEZ, V. and SOUZA JR., F.G. Synthesis of magnetic composite of poly 
(butylene succinate) and magnetite for the controlled release of meloxicam. MOJ Polymer Science. v. 2, n. 1, 
p. 39–42. 2018. DOI 10.15406/mojps.2018.02.00044.  

51.  FERREIRA, Letícia Pedretti, DA CUNHA, Bruno Pereira, KUSTER, Ricardo Machado, PINTO, José Carlos, 
SOUZA, Marcio Nele and SOUZA JR., F.G. Synthesis and chemical modification of poly(butylene succinate) with 
rutin useful to the release of silybin. Industrial Crops and Products. v. 97, p. 599–611. 2017. 
DOI 10.1016/j.indcrop.2016.12.064.  

52.  SÁ, Lucas, VIÇOSA, Alessandra, ROCHA, Sandro and SOUZA JR., F.G. Synthesis and characterization of 
poly (butylene succinate) -g- poly (vinyl acetate) as ibuprofen drug delivery system. Current Applied Polymer 
Science [online]. v. 01. 2017. DOI 10.2174/2452271601666170620125607. Available from: 
http://www.eurekaselect.com/153456/article. Accessed 20 September 2017. 00000 

53.  RAMON, Jose, SAEZ, Vivian, SOUZA JR., F.G., PINTO, Jose and NELE, Marcio. Synthesis and 
Characterization of PEG-PBS Copolymers to Obtain Microspheres With Different Naproxen Release Profiles. 
Macromolecular Symposia. v. 380, n. 1, p. 1800065. 2018. DOI 10.1002/masy.201800065.  

54.  PÉRES, Eduardo Ulisses Xavier, SOUSA, Marcelo Henrique, SOUZA JR., F.G., MACHADO, Fabricio and 
SUAREZ, Paulo Anselmo Ziani. Synthesis and characterization of a new biobased poly(urethane-ester) from 
ricinoleic acid and its use as biopolymeric matrix for magnetic nanocomposites: Biopolymer as matrix for magnetic 
nanocomposites. European Journal of Lipid Science and Technology. P. 1600451. 2017. 
DOI 10.1002/ejlt.201600451.  

55.  ICART, Luis Peña, JR, Fernando Gomes de Souza and LIMA, Luís Maurício T. R. Sustained release and 
pharmacologic evaluation of human glucagon-like peptide-1 and liraglutide from polymeric microparticles. Journal 
of Microencapsulation. v. 36, n. 8, p. 747–758. 2019. DOI 10.1080/02652048.2019.1677795.  

56.  NETO, Weslany Silvério, DUTRA, Gabriel Victor Simões, JENSEN, Alan Thyago, ARAÚJO, Olacir Alves, 
GARG, Vijayendra, DE OLIVEIRA, Aderbal Carlos, VALADARES, Leonardo Fonseca, DE SOUZA, Fernando 
Gomes and MACHADO, Fabricio. Superparamagnetic nanoparticles stabilized with free-radical polymerizable oleic 
acid-based coating. Journal of Alloys and Compounds. v. 739, p. 1025–1036. 2018. 
DOI 10.1016/j.jallcom.2017.12.338.  

57.  GRANCE, Ellen O, DOS SANTOS, ERF, ANDRADE, Camila, OLIVEIRA, GE, PINTO, Jose Carlos, NELE, 
Marcio and SOUZA, Fernando G. Smart composite useful to acid release. Journal of Applied Polymer Science. 
v. 133, n. 10. 2016. 00000 



Bioremediation: Perspectives of the use biopolymers systems for slow release nutrients BJEDIS    15 

 

58.  MARQUES, Fernanda Davi, NELE DE SOUZA, Marcio and SOUZA JR., F.G. Sealing system activated by 
magnetic induction polymerization. Journal of Applied Polymer Science. v. 134, p. 45549. 2017. 
DOI 10.1002/app.45549.  

59.  SOUZA JR., F.G., PINTO, José C. and SOARES, Bluma G. SBS/Pani · DBSA mixture plasticized with DOP 
and NCLS – Effect of the plasticizers on the probability density of volume resistivity measurements. European 
Polymer Journal. v. 43, n. 5, p. 2007–2016. 2007. DOI 10.1016/j.eurpolymj.2007.02.037. 0000 

60.  NOGUEIRA, Márcio da Costa, SANTOS, Edson Rodrigo Fernandes dos, PAL, Kaushik and SOUZA 
JÚNIOR, Fernando Gomes de. Removal of chromium VI and others metals from wastewater treatment by 
modification of macrophytes and magnetite: A review. Revista Brasileira de Gestao Ambiental e 
Sustentabilidade. v. 7, n. 17, p. 1439–1453. 2020. DOI rbgas(2020)071725.  

61.  BESTETI, Marina D., SOUZA JR., F.G., FREIRE, Denise M.G. and PINTO, José Carlos. Production of 
core-shell polymer particles-containing cardanol by semibatch combined suspension/emulsion polymerization. 
Polymer Engineering & Science. v. 54, n. 5, p. 1222–1229. 2014. DOI 10.1002/pen.23660.  

62.  FRANÇA, Débora, REBESSI, Ana Cláudia, CAMILO, Fernanda Ferraz, SOUZA JR, F.G. and FAEZ, 
Roselena. Pressure Sensibility of Conductive Rubber Based on NBR- and Polypyrrole-Designed Materials. 
Frontiers in Materials. v. 6, p. 189. 2019. DOI 10.3389/fmats.2019.00189.  

63.  FERREIRA, Letícia P., MOREIRA, Andrei N., SOUZA JR., F. G. and PINTO, José Carlos Costa da Silva. 
Preparation of nanocomposites based on poly(Butylene Succinate) and montmorillonite organoclay via in situ 
polymerization. Polímeros. v. 24, n. 5, p. 604–611. 2014. DOI 10.1590/0104-1428.1662.  

64.  SOUZA JR., F.G., ALMEIDA, Maurício, SOARES, Bluma G. and CARLOS PINTO, José. Preparation of a 
semi-conductive thermoplastic elastomer vulcanizate based on EVA and NBR blends with polyaniline. Polymer 
Testing. v. 26, n. 5, p. 692–697. 2007. DOI 10.1016/j.polymertesting.2007.04.008. 0000 

65.  SOUZA JR., F.G., SOARES, Dandara, FREITAS, Raissa, SOARES, Vanessa, FERREIRA, Letícia, 
RAMON, Jose and OLIVEIRA, Geiza E. Praziquantel Release Systems Based on Poly(Butylene Succinate) / 
Polyethylene Glycol Nanocomposites. Current Applied Polymer Science. v. 1, p. 1–7. 2017. 
DOI 10.2174/2452271601666160922163508.  

66.  ASTHANA, Nidhi, PAL, Kaushik, ALJABALI, Alaa A. A., TAMBUWALA, Murtaza M., SOUZA JR., F. G. and 
PANDEY, Kamlesh. Polyvinyl alcohol (PVA) mixed green–clay and aloe vera based polymeric membrane 
optimization: Peel-off mask formulation for skin care cosmeceuticals in green nanotechnology. Journal of 
Molecular Structure. v. 1229, p. 129592. 2020. DOI 10.1016/j.molstruc.2020.129592.  

67.  ICART, Luis Peña, JR, Fernando Gomes Souza and LIMA, Luís Maurício T. R. Polymeric microparticle 
systems for modified release of glucagon-like-peptide-1 receptor agonists. Journal of Microencapsulation. v. 0, 
n. ja, p. 1–31. 2021. DOI 10.1080/02652048.2021.1889059. Publisher: Taylor & Francis 

68.  PÉREZ, Diana Daniel, SILVA, Jacqueline, FERNADES, Edson, OLIVEIRA, Geiza, JESUS, Edgar 
Francisco Oliveira de and SOUZA JR., F.G. Souza. Poly (Butylene Succinate) Scaffolds Prepared by Leaching. 
MOJ Polymer Science [online]. v. 1, n. 6. 2017. DOI 10.15406/mojps.2017.01.00035. Available from: 
http://medcraveonline.com/MOJPS/MOJPS-01-00035.php. Accessed 19 February 2018.  

69.  BORGES, Grazielle Ribeiro, ABOELKHEIR, Mostafa Galal, DE SOUZA JUNIOR, Fernando Gomes, 
WALDHELM, Kassia Cristina and KUSTER, Ricardo Machado. Poly (butylene succinate) and derivative copolymer 
filled with Dendranthema grandiflora biolarvicide extract. Environmental Science and Pollution Research 
[online]. 2020. DOI 10.1007/s11356-020-08679-3. Available from: http://link.springer.com/10.1007/s11356-020-
08679-3. Accessed 18 April 2020.  

70.  ICART, Luis and SOUZA JR, F.G. PLA-b-PEG/magnetite hyperthermic agent prepared by ugi four 
component condensation. Express Polymer Letters. No. 10(3), p. 188–203. 2016. 
DOI 10.3144/expresspolymlett.2016.18.  



16    BJEDIS Veloso  et al. 

 

71.  ELIAS, Eldho, SARATHCHANDRAN, C., JOSEPH, Saju, ZACHARIAH, Ajesh K., THOMAS, Jince, 
DEVADASAN, Dineep, SOUZA JR., F.G. and THOMAS, Sabu. Photoassisted degradation of rhodamine B using 
poly(ε‐caprolactone) based nanocomposites: Mechanistic and kinetic features. Journal of Applied Polymer 
Science. v. n/a, n. n/a, p. 50612. 2021. DOI 10.1002/app.50612.  

72.  ELIAS, Eldho, C, Sarath Chandran, ZACHARIAH, Ajesh K., V, Vineesh Kumar, A, Sunil M., BOSE, 
Suryasarathi, SOUZA JR., F. G. and THOMAS, Sabu. Percolated network formation in biocidal 3D porous PCL/clay 
nanocomposite scaffolds: effect of organic modifier on interfacial and water sorption properties. RSC Advances. 
v. 6, n. 88, p. 85107–85116. 2016. DOI 10.1039/C6RA14774G.  

73.  ELIAS, Eldho, COSTA, Raphael, MARQUES, Fernanda, OLIVEIRA, Geiza, GUO, Qipeng, THOMAS, Sabu 
and SOUZA JR, F.G. Oil-spill cleanup: The influence of acetylated curaua fibers on the oil-removal capability of 
magnetic composites. Journal of Applied Polymer Science. v. 132, n. 13, p. 41732–41740. 2015. 
DOI 10.1002/app.41732.  

74.  MARQUES, Fernanda D., SOUZA JR., F.G. and OLIVEIRA, Geiza E. Oil sorbers based on renewable 
sources and coffee grounds. Journal of Applied Polymer Science. v. 133, n. 11, p. 43127–43134. 2016. 
DOI 10.1002/app.43127.  

75.  SOUZA JR., F.G., PINTO, José C, RODRIGUES, Marcus V, ANZAI, Thiago K, RICHA, Priscila, MELO, 
Príamo A, NELE, Márcio, OLIVEIRA, Geiza E and SOARES, Bluma Guenther. New polyaniline/polycardanol 
conductive blends characterized by FTIR, NIR, and XPS. Polymer Engineering & Science. v. 48, n. 10, p. 1947–
1952. 2008. DOI 10.1002/pen.21047. 0004 

76.  GRANCE, E. G. O., SOUZA JR., F. G., VARELA, A., PEREIRA, E. D., OLIVEIRA, G. E. and RODRIGUES, 
C. H. M. New petroleum absorbers based on lignin‐CNSL‐formol magnetic nanocomposites. Journal of Applied 
Polymer Science. v. 126, n. S1, p. E305–E312. 2012. DOI 10.1002/app.36998. 0000 

77.  VARELA, A., OLIVEIRA, G., SOUZA JR., F.G., RODRIGUES, C.H.M. and COSTA, M.A.S. New petroleum 
absorbers based on cardanol-furfuraldehyde magnetic nanocomposites. Polymer Engineering & Science. v. 53, 
n. 1, p. 44–51. 2013. DOI 10.1002/pen.23229.  

78.  LANGE, Jurgen, SOUZA JR., F.G., NELE, Marcio, TAVARES, Frederico Wanderley, SEGTOVICH, Iuri 
Soter Viana, DA SILVA, Guilherme Carnerio Queiroz and PINTO, José Carlos. Molecular Dynamic Simulation of 
Oxaliplatin Diffusion in Poly(lactic acid-co-glycolic acid). Part A: Parameterization and Validation of the Force-Field 
CVFF. Macromolecular Theory and Simulations. P. n/a-n/a. 2015. DOI 10.1002/mats.201500049.  

79.  SOUZA JR, F.G., CARLOS PINTO, José, ALVES GARCIA, Flávia, DE OLIVEIRA, Geiza Esperandio, 
BRUNO TAVARES, Maria Inês, DA SILVA, Andréa Maria and DAHER PEREIRA, Emiliane. Modification of coconut 
fibers with polyaniline for manufacture of pressure-sensitive devices. Polymer Engineering & Science. v. 54, 
n. 12, p. 2887–2895. 2014. DOI 10.1002/pen.23845. 00000 

80.  L.T. BRANDÃO, Amanda, F. OECHSLER, Bruno, W. GOMES, Frederico, SOUZA JR., F.G. and CARLOS 
PINTO, José. Modeling and parameter estimation of step-growth polymerization of poly(ethylene-2,5-
furandicarboxylate). Polymer Engineering & Science [online]. 2017. DOI 10.1002/pen.24605. Available from: 
http://doi.wiley.com/10.1002/pen.24605. Accessed 24 July 2017.  

81.  OLIVEIRA, G.E., SOUZA JR, F.G. and LOPES, M. C. Magnetic Biofoams Based on Polyurethane Applied 
in Oil Spill Cleanup Processes - Chapter 23. In : THOMAS, Sabu, NINAN, Neethu, MOHAN, Sneha and FRANCIS, 
Elisabeth, Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and IPNs - CRC 
Press Book [online]. 1. Apple Academic Press, Inc. : 1613 Beaver Dam Road, Suite 104 Point Pleasant, NJ 08742 
USA, 2012. p. 370. Accessed 20 April 2012. ISBN 978-1-926895-16-1. Available from: 
http://www.crcpress.com/product/isbn/9781926895161;jsessionid=AP-ezSg-8kTYQyY5qbIHXw__. 0000 

82.  PEREIRA, E.D., SOUZA, F.G., SANTANA, C.I., SOARES, D.Q., LEMOS, A.S. and MENEZES, L.R. 
Influence of magnetic field on the dissolution profile of cotrimoxazole inserted into poly(lactic acid-co-glycolic acid) 
and maghemite nanocomposites. Polymer Engineering & Science. v. 53, n. 11, p. 2308–2317. 2013. 
DOI 10.1002/pen.23606.  



Bioremediation: Perspectives of the use biopolymers systems for slow release nutrients BJEDIS    17 

 

83.  DE ARAÚJO SEGURA, Tayana Cristina, PEREIRA, Emiliane Daher, ICART, Luis Peña, FERNANDES, 
Edson, ESPERANDIO DE OLIVEIRA, Geiza and SOUZA JR., F.G. Hyperthermic Agent Prepared by One-Pot 
Modification of Maghemite Using an Aliphatic Polyester Model. Polymer Science, Series B. v. 60, n. 6, p. 806–
815. 2018. DOI 10.1134/S1560090418060106.  

84.  MORAES, Rafael S., SAEZ, Vivian, HERNANDEZ, José A. R. and SOUZA JR., F.G. Hyperthermia System 
Based on Extrinsically Magnetic Poly (Butylene Succinate). Macromolecular Symposia. v. 381, n. 1, p. 1800108. 
2018. DOI 10.1002/masy.201800108.  

85.  PEREZ, Diana   D. and DE SOUZA, Fernando   Gomes. Growing Use of Conventional Methods for 
Preparation of Scaffolds for Bone Tissue Engineering. Current Applied Polymer Science [online]. v. 1, n. 2. 
2018. DOI 10.2174/2452271601666170922161611. Available from: http://www.eurekaselect.com/155824/article. 
Accessed 11 December 2019.  

86.  DE SOUZA, Fernando Gomes. Gelatin as a Chlorhexidine Digluconate Immobilizing Agent. MOJ Polymer 
Science [online]. v. 1, n. 5. 2017. DOI 10.15406/mojps.2017.01.00029. Available from: 
https://medcraveonline.com/MOJPS/gelatin-as-a-chlorhexidine-digluconate-immobilizing-agent.html. 
Accessed 20 July 2020.  

87.  NETO, Weslany Silvério, DUTRA, Gabriel Victor Simões, VALADARES, Leonardo Fonseca, SOUZA, 
Fernando Gomes, SOUSA, Marcelo Henrique and MACHADO, Fabricio. Experimental Evaluation of the 
Miniemulsion Polymerization of Vinyl Pivalate: The role of the Main Process Variables. Macromolecular Reaction 
Engineering. P. 2000049. 2020. DOI 10.1002/mren.202000049.  

88.  SOUZA JR., F.G., OLIVEIRA, G.E. and LOPES, M. C. Environmental Recovery by Magnetic 
Nanocomposites Based on Castor Oil - Chapter 22. In : THOMAS, Sabu, NINAN, Neethu, MOHAN, Sneha and 
FRANCIS, Elisabeth, Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and IPNs 
- CRC Press Book [online]. 1. Apple Academic Press, Inc. : 1613 Beaver Dam Road, Suite 104 Point Pleasant, NJ 
08742 USA, 2012. p. 370. Recent Advances in Materials Sciences. Accessed 20 April 2012. ISBN 978-1-926895-
16-1. Available from: http://www.crcpress.com/product/isbn/9781926895161;jsessionid=AP-ezSg-
8kTYQyY5qbIHXw__. 0000 

89.  SOUZA JR, F.G., ORLANDO, Marcos T. D, MICHEL, Ricardo C, PINTO, José Carlos, COSME, Tainá and 
OLIVEIRA, Geiza E. Effect of pressure on the structure and electrical conductivity of cardanol–furfural–polyaniline 
blends. Journal of Applied Polymer Science. v. 119, n. 5, p. 2666–2673. 2011. DOI 10.1002/app.32848. 0000 

90.  FERREIRA, Saulo Rocha, DA SILVA, Andréa Maria, SOUZA JR, F.G., FILHO, Romildo Dias Toledo and 
DE ANDRADE SILVA, Flávio. Effect of Polyaniline and H2O2 Surface Modification on the Tensile Behavior and 
Chemical Properties of Coir Fibers. Journal of Biobased Materials and Bioenergy. v. 8, n. 6, p. 578–586. 2014. 
DOI 10.1166/jbmb.2014.1478.  

91.  BALDANZA, V. A. R., SOUZA, F. G., FILHO, S. T., FRANCO, H. A., OLIVEIRA, G. E., CAETANO, R. M. J., 
HERNANDEZ, J. A. R., FERREIRA LEITE, S. G., FURTADO SOUSA, A. M. and NAZARETH SILVA, A. L. 
Controlled-release fertilizer based on poly(butylene succinate)/urea/clay and its effect on lettuce growth: Controlled-
release fertilizer based on poly(butylene succinate)/urea/clay and its effect on lettuce growth. Journal of Applied 
Polymer Science. P. e46858. 2018. DOI 10.1002/app.46858.  

92.  GOMES, Frederico W., LIMA, Rafael C., PIOMBINI, Carolinne R., SINFITELE, Jorge F., SOUZA JR., F. G., 
COUTINHO, Paulo L. A. and PINTO, José Carlos. Comparative Analyses of Poly(ethylene 2,5-furandicarboxylate) − 
PEF − and Poly(ethylene terephthalate) − PET − Resins and Production Processes. Macromolecular Symposia. 
v. 381, n. 1, p. 1800129. 2018. DOI 10.1002/masy.201800129.  

93.  PÉRES, Eduardo Ulisses Xavier, SOUZA JR., F.G., SILVA, Fabricio Machado, CHAKER, Juliano 
Alexandre and SUAREZ, Paulo Ansemo Ziani. Biopolyester from ricinoleic acid: Synthesis, characterization and its 
use as biopolymeric matrix for magnetic nanocomposites. Industrial Crops and Products. v. 59, p. 260–267. 
2014. DOI 10.1016/j.indcrop.2014.05.031.  



18    BJEDIS Veloso  et al. 

 

94.  ARAUJO, Robson T., FERREIRA, Gabriella R., SEGURA, Tayana, SOUZA JR., Fernando G. and 
MACHADO, Fabricio. An experimental study on the synthesis of poly(vinyl pivalate)-based magnetic 
nanocomposites through suspension polymerization process. European Polymer Journal. v. 68, p. 441–459. 
2015. DOI 10.1016/j.eurpolymj.2015.05.015.  

95.  JOHN, Maya Jacob and ANANDJIWALA, Rajesh D. Recent developments in chemical modification and 
characterization of natural fiber-reinforced composites. Polymer Composites. v. 29, n. 2, p. 187–207. 2008. 
DOI 10.1002/pc.20461.  

96.  NI, Boli, LUÌˆ, Shaoyu and LIU, Mingzhu. Novel Multinutrient Fertilizer and Its Effect on Slow Release, 
Water Holding, and Soil Amending. Industrial & Engineering Chemistry Research [online]. 2012. Available from: 
https://agris.fao.org/agris-search/search.do?recordID=US201800114128. Accessed 16 March 2021.  

97.  XIAO, Xiaoming, YU, Long, XIE, Fengwei, BAO, Xianyang, LIU, Hongsheng, JI, Zhili and CHEN, Ling. One-
step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chemical Engineering 
Journal. v. 309, p. 607–616. 2017. DOI 10.1016/j.cej.2016.10.101.  

98.  AZEEM, Babar, KUSHAARI, KuZilati and MAN, Zakaria. Effect of Coating Thickness on Release 
Characteristics of Controlled Release Urea Produced in Fluidized Bed Using Waterborne Starch Biopolymer as 
Coating Material. Procedia Engineering. v. 148, p. 282–289. 2016. DOI 10.1016/j.proeng.2016.06.615.  

99.  PILLAI, O. and PANCHAGNULA, R. Polymers in drug delivery. Current Opinion in Chemical Biology. 
v. 5, n. 4, p. 447–451. 2001. DOI 10.1016/s1367-5931(00)00227-1.  

100.  SAFFIAN, Harmaen Ahmad, ABDAN, Khalina, HASSAN, Mohd Ali and IBRAHIM, Azowa. Characterization, 
morphology, and biodegradation of bioplastic fertilizer (BpF) composites made of poly(Butylene succinate) blended 
with oil palm biomass and fertilizer. Polymer Composites. v. 38, n. 11, p. 2577–2583. 2017. 
DOI https://doi.org/10.1002/pc.23849.  

101.  SAFFIAN, Harmaen Ahmad, ABDAN, Khalina, HASSAN, Mohd Ali, IBRAHIM, Nor Azowa and JAWAID, 
Mohammad. Characterisation and Biodegradation of Poly(Lactic Acid) Blended with Oil Palm Biomass and Fertiliser 
for Bioplastic Fertiliser Composites. BioResources. v. 11, n. 1, p. 2055–2070. 2016. 
DOI 10.15376/biores.11.1.2055-2070.  

102.  THOMAS, Selvin. Effect of fiber surface modification on the mechanical and water absorption 
characteristics of sisal/polyester composites fabricated by resin transfer molding. Composites Part A-applied 
Science and Manufacturing [online]. Available from: 
https://www.academia.edu/2644809/Effect_of_fiber_surface_modification_on_the_mechanical_and_water_absorpti
on_characteristics_of_sisal_polyester_composites_fabricated_by_resin_transfer_molding. 
Accessed 16 March 2021.  

103.  KULKARNI, R. K., MOORE, E. G., HEGYELI, A. F. and LEONARD, F. Biodegradable poly(lactic acid) 
polymers. Journal of Biomedical Materials Research. v. 5, n. 3, p. 169–181. 1971. DOI 10.1002/jbm.820050305.  

104.  MOHAN, T. P. and KANNY, K. Chemical treatment of sisal fiber using alkali and clay method. Composites 
Part A: Applied Science and Manufacturing. v. 43, n. 11, p. 1989–1998. 2012. 
DOI 10.1016/j.compositesa.2012.07.012.  

105.  PANYASART, Kloykamol, CHAIYUT, Nattawut, AMORNSAKCHAI, Taweechai and SANTAWITEE, Onuma. 
Effect of Surface Treatment on the Properties of Pineapple Leaf Fibers Reinforced Polyamide 6 Composites. 
Energy Procedia. v. 56, p. 406–413. 2014. DOI 10.1016/j.egypro.2014.07.173.  

106.  AZWA, Z. N., YOUSIF, B. F., MANALO, A. C. and KARUNASENA, W. A review on the degradability of 
polymeric composites based on natural fibres. Materials &amp; Design. v. 47, p. 424–442.  

107.  MEIER, D., ZUNIGA-PARTIDA, V., RAMIREZ-CANO, F., HAHN, N. C. and FAIX, O. Conversion of 
technical lignins into slow-release nitrogenous fertilizers by ammoxidation in liquid phase. Bioresource technology 



Bioremediation: Perspectives of the use biopolymers systems for slow release nutrients BJEDIS    19 

 

[online]. 1994. Available from: https://agris.fao.org/agris-search/search.do?recordID=US201301514307. 
Accessed 16 March 2021.  

108.  JAROSIEWICZ, Anna and TOMASZEWSKA, Maria. Controlled-release NPK fertilizer encapsulated by 
polymeric membranes. Journal of Agricultural and Food Chemistry. v. 51, n. 2, p. 413–417. 2003. 
DOI 10.1021/jf020800o.  

109.  OLAD, Ali, ZEBHI, Hamid, SALARI, Dariush, MIRMOHSENI, Abdolreza and REYHANI TABAR, Adel. Slow-
release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water 
retention in soil. Materials Science & Engineering. C, Materials for Biological Applications. v. 90, p. 333–340. 
2018. DOI 10.1016/j.msec.2018.04.083.  

110.  SARWONO, Ariyanti, MAN, Zakaria and BUSTAM, Mohamad. Improvement of Hydrophobicity of Urea 
Modified Tapioca Starch Film with Lignin for Slow Release Fertilizer. Advanced Materials Research. v. 626, 
p. 350–354. 2012. DOI 10.4028/www.scientific.net/AMR.626.350.  

111.  THAKUR, Vijay Kumar and THAKUR, Manju Kumari. Processing and characterization of natural cellulose 
fibers/thermoset polymer composites. Carbohydrate Polymers. v. 109, p. 102–117. 2014. 
DOI 10.1016/j.carbpol.2014.03.039.  

112.  MUENSRI, Pakanita, KUNANOPPARAT, Thiranan, MENUT, Paul and SIRIWATTANAYOTIN, Suwit. Effect 
of lignin removal on the properties of coconut coir fiber/wheat gluten biocomposite. Composites Part A: Applied 
Science and Manufacturing. v. 42, n. 2, p. 173–179. 2011. DOI 10.1016/j.compositesa.2010.11.002.  

113.  BEHIN, Jamshid and SADEGHI, Nader. Utilization of waste lignin to prepare controlled-slow release urea. 
International journal of recycling organic waste in agriculture. v. 5, n. 4, p. 289–299. 2016. 
DOI 10.1007/s40093-016-0139-1.  

114.  LIU, Yong-Hui, WANG, Ting-Jie, QIN, Liang and JIN, Yong. Urea particle coating for controlled release by 
using DCPD modified sulfur. Powder Technology. v. 183, n. 1, p. 88–93. 2008. 
DOI 10.1016/j.powtec.2007.11.022.  

115.  MUKERABIGWI, Jean Felix, WANG, Qing, MA, Xiaoya, LIU, Min, LEI, Shaojun, WEI, Haitao, HUANG, 
Xueying and CAO, Yu. Urea fertilizer coated with biodegradable polymers and diatomite for slow release and water 
retention. Journal of Coatings Technology and Research. v. 12, p. 1–10. 2015. DOI 10.1007/s11998-015-9703-
2.  

116.  LI, Junhui, TOLEDO, Renata Alves de, CHUNG, Jinwook and SHIM, Hojae. Removal of mixture of cis-1,2-
dichloroethylene/trichloroethylene/benzene, toluene, ethylbenzene, and xylenes from contaminated soil by 
Pseudomonas plecoglossicida. Journal of Chemical Technology & Biotechnology. v. 89, n. 12, p. 1934–1940. 
2014. DOI https://doi.org/10.1002/jctb.4279.  

117.  MILANI, Priscila, FRANÇA, Débora, BALIEIRO, Aline Gambaro and FAEZ, Roselena. Polymers and its 
applications in agriculture. Polímeros. v. 27, n. 3, p. 256–266. 2017. DOI 10.1590/0104-1428.09316.  

118.  MUSCAT, Delina, TOBIN, Mark J., GUO, Qipeng and ADHIKARI, Benu. Understanding the distribution of 
natural wax in starch-wax films using synchrotron-based FTIR (S-FTIR). Carbohydrate Polymers. v. 102, p. 125–
135. 2014. DOI 10.1016/j.carbpol.2013.11.004.  

119.  KUMAR, Ravi and N.V, Majeti. A review of chitin and chitosan applications. Reactive and Functional 
Polymers [online]. 2000. DOI 10.1016/S1381-5148(00)00038-9. Available from: 
https://www.scienceopen.com/document?vid=7cc6735c-61da-488f-b6de-7240f55be2d1. Accessed 16 March 2021.  

120.  XU, R., OBBARD, Jeff and TAY, E.T.C. Optimization of slow-release fertilizer dosage for bioremediation of 
oil-contaminated beach sediment in a tropical environment. World Journal of Microbiology and Biotechnology. 
v. 19, p. 719–725. 2003. DOI 10.1023/A:1025116421986.  



20    BJEDIS Veloso  et al. 

 

121.  BENLI, Birgül. Effect of borax addition on the structural modification of bentonite in biodegradable alginate-
based biocomposites. Journal of Applied Polymer Science. v. 128, n. 6, p. 4172–4180. 2013. 
DOI https://doi.org/10.1002/app.38609.  

122.  REIS, E. A., ROCHA-LEÃO, M. H. M. and LEITE, S. G. F. Slow-release nutrient capsules for 
microorganism stimulation in oil remediation. Applied Biochemistry and Biotechnology. v. 169, n. 4, p. 1241–
1249. 2013. DOI 10.1007/s12010-012-0022-0.  

123.  BEZZA, Fisseha Andualem and CHIRWA, Evans M. Nkhalambayausi. Biosurfactant-enhanced 
bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere. 
v. 144, p. 635–644. 2016. DOI 10.1016/j.chemosphere.2015.08.027.  

124.  ESSAWY, Hisham A., GHAZY, Mohamed B.M., EL-HAI, Farag Abd and MOHAMED, Magdy F. 
Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential 
in controlled release of soil nutrients. International Journal of Biological Macromolecules. v. 89, p. 144–151. 
2016. DOI 10.1016/j.ijbiomac.2016.04.071.  

125.  HANDAYANI, Lili, DJAJAKIRANA, Gunawan, DARMAWAN, Darmawan and MUNOZ, Canecio Peralta. 
Slow- Release Fertilizer Formulation Using Acrylic and Chitosan Coating. Journal of Tropical Soils. v. 20, n. 1, 
p. 37–45. 2015.  

126.  ISLAN, German A. and CASTRO, Guillermo Raul. Tailoring of alginate-gelatin microspheres properties for 
oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa. Drug Delivery. v. 21, n. 8, p. 615–626. 
2014. DOI 10.3109/10717544.2013.870257.  

127.  胡树文, 刘军, 陶树明, 邱小云, 金可默, 张远 and 张福锁. 一种保水型缓控释肥料及其制备方法 [online]. 

CN101508616B. 2012. Accessed 17 March 2021. Available from: 
https://patents.google.com/patent/CN101508616B/en?q=Controlled-Release+fertiliser&language=ENGLISH. 
CN2009100812893A 

128.  胡建民, 刘小勇, 胡锦哲, 万培坤, 白云涛 and 胡书民. 一种多层包膜结构缓控释肥料及其制备方法 [online]. 

WO2019153776A1. 2019. Accessed 17 March 2021. Available from: 
https://patents.google.com/patent/WO2019153776A1/en?q=Controlled-
Release+fertiliser+and+method+for+manufacturing+same.&oq=Controlled-
Release+fertiliser+and+method+for+manufacturing+same. PCT/CN2018/109655 

129.  LI, Zhiyong and ZHANG, Yan. Method of preparing a slow release fertilizer [online]. US9446993B2. 2016. 
Accessed 17 March 2021. Available from: https://patents.google.com/patent/US9446993B2/en. US14/430,696 

130.  PURSELL, Taylor, JR, Arthur R. Shirley, COCHRAN, Keith D., MILLER, Joseph M., HOLT, Timothy G. and 
PEEDEN, Gregory S. Controlled release fertilizer with biopolymer coating and process for making same [online]. 
US9266787B2. 2016. Accessed 16 March 2021. Available from: 
https://patents.google.com/patent/US9266787B2/en. US13/947,393 

 


