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Abstract:   
Laser-induced breakdown spectroscopy (LIBS) is a modern analytical technique that is capable of fast, multi-
elemental, low-cost and environmental friendly analysis, which does not require complex sample preparation. Albeit 
its potential, LIBS analysis still presents many limitations in terms of sensitivity and reproducibility, especially when 
analyzing complex matrices such as of sediments and soil samples. In order to reduce these matrix related effects, 
it is highly recommended that the system temporal parameters, which are responsible for controlling plasma evolution 
and signal collection, are optimized beforehand. In this work, we proposed the design of experiments (DOE) tool – 
specifically, the response surface methodology (RSM) – as an approach to optimize LIBS’s most important 
parameters (delay-time, interpulse delay, gate width and accumulated pulse). Signal-to-noise ratio (SNR) of the 
emission lines for Zn, Cd, Mg, Al, Ni, Cu, Ca, Cr, Sr, Fe were the response variable assessed during the procedure. 
The results showed that the RSM was an effective optimization tool for LIBS parameters and the final condition 
improved SNR ratios by up to a 48 ratio, when comparing to the not-optimal conditions. 
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1. INTRODUCTION 

  Laser-Induced Breakdown Spectroscopy (LIBS) is a type of optical emission technique that uses a high-
energy laser beam focused by a set of optical apparatus on the surface of a sample, to ablate some of its mass and 
generate a small size, luminous, plasma in the process [1-2]. The atoms and molecules present in the sample absorb 
the energy from this laser source and, as part of the sample vaporizes and the plasma forms and expands, all of 
these species are excited onto higher energy levels [2-3]. When these high energy levels atoms and ions return to 
their respective lower energy levels, and the plasma begins cooling, a photon is emitted, which is then collected by 
an optical fiber cable and processed by a spectrometer, thus resulting in continuous emission spectra [4]. Since each 
atom has unique energy levels distribution, sample’s elemental composition can be easily assessed by separating 
and identifying each of their respective wavelengths in the spectra, and the intensity of these emission lines can be 
directly correlated to the quantity of the element in the sample [1-2].  

  LIBS is a very recent technique that has been drawing more attention in the past two to three decades 
because of its distinct advantages over the other more commonly-used, or classical, techniques, such as inductively 
coupled plasma atomic emission spectroscopy (ICP-AES), atomic absorption spectroscopy (AAS) or even X-ray 
fluorescence (XRF) [1, 4]. The main advantages that can be noted are: (i) the analysis is faster and relatively simpler 
to perform; (ii) there are no, or very few, requirements for sample preparation before analysis; (iii) it’s a multi-element, 
simultaneous, analysis; and there are plenty of emission wavelengths and information available in online databases; 
(iv) little damage is done to the sample; (v) only a few milligrams of sample are necessary for each analysis; (vi) LIBS 
has the possibility for in-situ, real-time, analysis [5-6]. 

  Although this list of advantages come forward as very attractive, LIBS still presents many challenges and 
limitations for their users, and some of its more blatant flaws come off, in better display, during quantitative analysis. 
Matrix effects are a very common by-product of the unavoidable chaotic nature of LIBS analysis, and occur by 
fluctuations in both the intensity of the emitted laser itself and the non-linear interaction between the laser and the 
sample, which can undermine its sensitivity and precision [7-8]. In the past years, a number of studies [7-10] have 
been carried out trying to find alternatives to overcome this problem, and much information and advancements have 
already been attained. One of the few ways that matrix effects can be reduced, before any analysis is performed, is 
by having a firm grasp over the time-control parameters that the instrument provides. By understanding and changing 
these parameters accordingly, some of the matrix-effects can be diminished substantially, because they can dictate 
the manner that the plasma is generated and collected [9 -11].  When trying to optimize which conditions are the most 
effective for the analysis, many approaches are possible, but overall, the design of experiments (DOE) is usually a 
very effective way to try to optimize experiments [11], such as the Response Surface Methodology (RSM), which we 
hoped to prove in this study.  

1.1 LIBS Theory Summary 

 The evolution/duration of the plasma in a standard LIBS analysis is very short (about 10-9 seconds), but it is 
a very complex phenomenon and it can be divided, temporally, into separate stages [2].  Initially, the energy of the 
laser is absorbed by the sample’s surface particles, which then promotes its ablation, vaporizing and heating (up to 
20.000 K), at the focal point of the incidence of the beam [12]. This initial stage is very rapid (just 10-13 seconds) and 
both the heat and the electric field gradient generated helps the breaking of molecular bonds, ionization of elements 
and the formation of a vapor cloud consisted of free electrons and charged species [13]. This high-pressure vapor 
cloud expands quickly, creating a shockwave during the process and promoting the appearance of small size 
condensed particles (which increase scattering and absorption of laser radiation and, therefore, the temperature of 
the plasma) [2, 14]. The next stages of the plasma evolution will vary a lot depending on the matrix of the sample, the 
potency and wavelength of the laser and the interaction between the laser and the sample. Nevertheless, two main 
radiation-absorbing effects can occur at this stage: the inverse Bremsstrahlung or multiphoton ionization [13-14]. The 
first is the continuous absorption of laser photons by free electrons in the plasma, increasing their kinetic energy and, 
by collision, inducing other atoms present into ionization [15]. This condition is more favored for plasmas with higher 
pressures and electronic densities [16]. On the other hand, multiphoton ionization occurs with lower pressures and 
electronic densities, and it takes place when atoms absorbs an amount of energy greater than that required for their 
ionization and, thus, causing the loss of one or more electrons [16]. By the end of the laser’s pulse, the plasma is still 
expanding and cooling, and starts loosing energy due to the emission of radiation when the excited species return to 
their lower energy states [2, 13-14].  

 In the beginning, the initial emissions are comprised largely of continuous radiation, or background radiation, 
that happens due to the inverse Brehmsstrahlung and multiphoton ionization effects [14]. These emissions are the 
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result of free transitions of charged particles and accelerated electrons in the plasma, and can last for a few hundreds 
of nanoseconds. The atomic and ionic transitions normally only start after about one microsecond after the laser 
pulse, when the continuous radiation begins to drop significantly [2, 17]. Consequently, by understanding the behavior 
of the plasma evolution until extinction, we can manually adjust LIBS temporal parameters to better control the 
radiation collection and, thus, improve the overall quality of the final spectra.  

 The standard LIBS system parameters are: i) delay-time; ii) gate width; iii) interpulse-delay (for double-pulse 
LIBS, or DP-LIBS, systems); iv) accumulated pulses; v) energy and wavelength of the lasers; vi) order of the laser 
pulses and geometry configuration (DP-LIBS only) [18]. The delay-time corresponds to the time interval given between 
the start of the laser pulse and the signal acquisition by the spectrometer, and by altering the delay-time it is possible 
to minimize the collection of continuous radiation emissions [19]. The gate width is the time duration which the 
spectrometers remains “opened” for signal integration; the accumulated pulses is the number of laser 
pulses/discharges released into the sample; and, finally, the interpulse delay corresponds to the time interval between 
the first laser pulse and the second laser pulse. The optimization of theses parameters is imperative to reduce 
background noise and improve signal intensities in the LIBS spectra [19]. 

1.2 Response Surface Methodology 

  DOE can be a powerful tool when assessing the effects of a group of factors over a response variable in 
experimental processes, because they are capable of providing the most information of a process from a reduced 
number of experiments [20]. In the scope of the DOE, the RSM is a statistical and mathematical procedure that aims 
to optimize and improve experimental processes through the application of two basic principles: the generation of 
models and displacement towards the optimal region. The methodology has come a long way since it was initially 
proposed by Box and Wilson, in 1951, and it has been used in a wide variety of setups since then, especially in the 
chemometrics’ field [21]. Simply put, the idea of the RSM is to have linear or quadratic functions being fit into the 
experimental observations, from factorial designs, and assessing the goodness of this fit to that particular dataset 
[20-22]. Then, the displacement is followed accordingly to the results and towards the path of steepest ascent; or, in 
other words, towards the most desired response for the response variable [22]. These two steps can be repeated a 
number of times until the optimal region is reached and/or the model is considered satisfactory. The standard RSM 
procedure is: screening design, path of steepest ascent and three/multi-levels design [23], which are described in 
better detail ahead. 

1.2.1 Screening Design 

 The factorial designs are a matrix of bk experiments combinations, where b and k correspond to the levels 
and the number of factors respectively [24]. For example, in the simplest model possible, there could be a study about 
the influence of two factors in two different levels, or 22, that would result in 4 distinct experiments. Knowing which 
independent variables are the most relevant/significant for the experiment and establishing the range (levels) which 
these variables are going to be studied, are two very important steps prior to applying the RSM. They can be 
determined by a screening design, literature research or simply by experience of the researcher with the process [21]. 
 The levels are codified in a dimensionless scale that represent their location in the experimental domain, with 
(+1) being the upper limit levels and (-1) the lower limit levels. These levels can be transformed back into the traditional 
scale by using the formula: 

𝑥𝑖 =
𝑧𝑖 − 𝑧�̅�

𝛥𝑧𝑖

 
 

(1) 

Where xi is the codified value of factor i; zi is the original value of factor i; 𝑧�̅� is the real value in the central 
point; and Δzi is the distance between the real value in the central point and the real value of one of the limits level. 

The simplest model possible that can be used in the RSM (for a 2k factorial design) is a linear model, by 
applying a linear regression on the experimental data. The model, in this case, is mathematically described as in: 

�̂� =  𝛽0 + ∑ 𝛽𝑖

𝑘

𝑖=1

𝑥𝑖 +  𝜀 
 

(2) 

Where k is the number of factors; β0 is the constant term of the model; βi are the coefficients of the linear 
model; xi are the factors; and ε is the residual term, or the error associated to that model.  

A linear model can be sufficient for a screening design, even though it will not be able to provide enough 
information about curvature or second-order effects [21-22]. Nevertheless, the main objectives for a screening design 
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should be the evaluation/selection of variables, and establishing the direction in which better responses are attained 
in the experimental domain [23]. In this step, the Pareto’s chart can be a very helpful tool for the researcher in both 
scenarios. The Pareto’s chart displays graphically, in order of importance – or significance – the problems of the 
experimental system. In other words, it arranges the factors by their “urgency”, or relevancy, to the experimental 
process, in the range that they were studied [22]. It also discriminates which variables were indeed significant for the 
experiment (for p ≤ 0,05), and displays, quantitatively, values for each of these effects. For positive values, the chart 
suggests that an increase in the modular value of the factor could potentially increase, as well, the modular value of 
the response variable, and the opposite for the negative value effects [22].                

1.2.2 Path of the Steepest Ascent (PSA) 

After establishing the significant factors through the screening design, the resulting model will indicate a 
direction as to progress, in order to reach the optimal region. The next step in the RSM is called the path of steepest 
ascent (PSA), which can be roughly described as “walking” tangentially on the surface, or curvature, of the optimal 
region, following the direction of increasing responses, until you begin “descending” on the other side [21-23]. With 
this procedure, it is possible to establish, with a certain degree of confidence, the approximate location of the optimal 
region [23]. To determine the design for this stage of the RSM, we take the factor from the previous design with the 
highest modular coefficient (most significant) as reference for coordination, and calculate, proportionally, the values 
for the remaining factors (Eq. 3). Where bi and bj are the coefficients of the adjusted model for the reference factor 
and the calculated factor, respectively; Δxi is the codified step of the reference value; and Δxj is the value, proportional 
to the step, of the factor being calculated. 

∆𝑥𝑗 =
𝑏𝑗

𝑏𝑖

∆𝑥𝑖 (3) 

1.2.3 Central Composite Design (CCD) 

When the optimal region is determined by one of the experiments in the PSA, a new factorial design is 
performed around this local maximum, with a higher number of levels (>2). This way, there can be a higher number 
of degrees of freedom and more information about the curvature and second-order effects can be determined from 
the model [25], which is described mathematically in Eq. 4: 

�̂� =  𝛽0 + ∑ 𝛽𝑖

𝑘

𝑖=1

𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

1≤𝑖≤𝑗

+ 𝜀 
 

(4) 

There are a number of popular three or more levels factorial designs that fulfil this premise e.g. Box-Behnken 
design, Doehlert design and central composite designs [26]. For this study, the central composite design (CCD) will 
be the one assessed for the RSM. The CCD can be divided in three different portions, which are comprised of their 
own set of experiments: i) a full factorial or fractional factorial design; ii) a new axial, or star, design, where the 
experimental points are rotated into an α distance from its center; iii) central points repetitions.  

As stated before, with this higher-level design, it is possible to estimate the curvature of the response surface, 
as well as the lack of fit for the model and the residual error through the central point repetitions [26].  

The maximum/minimum point, or the critical point, of the model will correspond to the optimal condition of the 
study, and can be obtained by the first derivate of the quadratic function describing the model [21-22]. For example, 
for a CCD evaluating two factors, from the final model equation (Eq. 5), the critical point coordinate can be calculated 
by solving the first grade system formed by Eq. 6 and 7, and finding the values for x1 and x2. 

�̂� =  𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2  (5) 

𝜕𝑦

𝜕𝑥1

=  𝛽1 + 2𝛽11𝑥1 + 2𝛽12𝑥2 = 0 
 

(6) 

𝜕𝑦

𝜕𝑥2

=  𝛽2 + 2𝛽22𝑥2 + 2𝛽12𝑥1 = 0 
 

(7) 

 
 
1.2.4 Analysis of Variance (ANOVA) 
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 The ANOVA is a statistical tool that is often used to evaluate how well the final model is adjusted to the 
experimental data and if it is satisfactory describing the experimental domain [27]. Fundamentally, it is an algebraic 
breakdown (Eq. 8) of the sum of the variances of the model responses and the observed global media (yi - �̅�)² into 
two portions: 

∑(𝑦𝑖 −  �̅�)2 =  ∑(�̂� − �̅�)2 + ∑(𝑦𝑖 −  �̂�)2  (8) 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝑟  (9) 

 The first portion is the variance contained in the regression model itself, which corresponds to the sum of the 
differences between the predicted responses from the model and the observed global media responses (�̂�𝑖 − 𝑦). The 
second portion is the residual variance, which corresponds to the sum of the differences between the observed 
responses and the predicted responses from the model (𝑦𝑖 − �̂�𝑖). Eq. 8 can also be expressed in terms of SST, SSR, 
SSr (Eq. 9), or the “sums of the square” for each term. In a well-fitted model, SSR should amount to a much larger 
value in comparison to that of SSr. The SSr can be further split into two other individual terms, corresponding to the 
pure error SSpe (associated with the repetitions) and the lack of fit of the model SSlof (Eq. 10). 

𝑆𝑆𝑟 = 𝑆𝑆𝑝𝑒 + 𝑆𝑆𝑙𝑜𝑓  (10) 

 Each of these SS components can be also expressed in terms of “media of the square” (MS), when divided 
by their respective degrees of freedom. 
 With the information provided by the ANOVA table, it is possible to verify the significance of the regression 
by applying an F test (Fisher distribution) (Eq. 11). In this test, the calculated value of F must be higher than the critical 
value of F, taking into consideration the respective degrees of freedom from the regression and the residual 
respectively, for the model to be significant [28]. 

𝐹𝑝−1,𝑛−𝑝 ≈  
𝑀𝑆𝑅

𝑀𝑆𝑟

 
 

(11) 

 The F* test for the lack of fit can also be applied (Eq. 12). It implies that, if the model is well fitted to the 
experimental data, MSlof should be equivalent to the random errors only Since MSpe is also a parameter that is 
associated to the random errors, the F* test evaluates if there exists a significant difference between the two medias. 
Just as for the F test, the lack of fit test also compares the calculated value of F* to its critical counterpart. [29].  
  

𝐹𝑚−𝑝,𝑛−𝑚
∗ ≈  

𝑀𝑆𝑙𝑜𝑓

𝑀𝑆𝑝𝑒

 
 (11) 

 
2. MATERIALS AND METHOD  

2.1 Sample  

  The soil sample chosen for this study was collected from Pantanal’s Region (Nhecolândia, Mato-Grosso do Sul) 
in Brazil, and went through standard sample preparation procedure, which included freeze-drying, crushing and 
grounding in a mortar, and filtering through a 100-mesh sieve for waste removal and particle homogenization. The 
homogenized soil sample was then used to produce pellets for LIBS analyses. Pellets were produced using about 500 
mg of soil, mixed with 35% (w/w) of KBr to help pellet cohesion and agglutination. The mixture was then pressed under 
5 tons for 30 seconds.  

2.2 DP-LIBS Setup  

 The DP-LIBS spectra were obtained using a system manually assembled on an optical board in the Optics and 
Photonics Laboratory in Embrapa Instrumentation (São Carlos, São Paulo). The system is comprised of two Nd:YAG 
lasers operating at distinct wavelengths: one at 1064 nm, reaching the sample at a 90º angle, and the other at 532 nm, 
reaching the sample at a 45º angle. The system can be operated both as SP mode, for each of them, or as DP mode, 
in a crossed-beam geometry. The first laser is a Q-switched Ultra (Quantel) with 50 mJ maximum energy, width of 8 ns 
and repetition rate of 20 Hz and the second laser is a Q-switched Brilliant (Quantel) with 180 mJ of maximum energy, 
width of 4 ns and repetition rate of 10 Hz, coupled with a second harmonic generation module. A pulse delay generator 
(Quantum Composers, model 9618) is used for temporal control of both lasers in DP mode and for the data acquisition 
system. The detection is performed by an echelle spectrometer (Aryelle Butterfly 400, Lasertechnik Berlin) equipped 
with an intensified charge-coupled device (ICCD) with 1024 x 1024 pixels, that operates in two different spectral bands 
(175-330 and 275-750 nm, with a resolution of 13-24 and 29-80 pm, respectively). The emitted radiation is collected by 
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a fiber optic cable paired with two fused silica converging lenses, both with a diameter of 25,4 mm and with focal 
distances of 50 and 70 mm, respectively.  

 Samples are positioned inside an ablation-chamber onto a small support that can be moved by the X-Y axis 
with a precision of 1 µm, the chamber has 3 optical-access windows made of fused silica. The 1064 nm laser beam is 
directed into the sample by two mirrors (1064 nm) with a diameter of 37,8 and 25,4 mm, respectively, and focused on 
the sample by a bk-7 converging lens, with 100 mm focal distance, 25,4 mm diameter and anti-reflective coating. The 
532 nm laser beam is directed into the sample by a rectangular prism and a mirror (532 nm) with a 25,4 mm diameter, 
and is focused in the chamber by another bk-7 converging lens, with the same 100 mm focal distance and 25,4 mm 
diameter, but without anti-reflective coating.  

2.3 Emission Lines And Spectra Analysis 

 In this study, several elements and their respective emission lines were evaluated (Table 1). 

Table 1. Spectroscopic atomic emission lines evaluated. 

Element Wavelenght (nm) 

Zn I 213.85 

Cd I 228.80 

Fe II 259.94 

Cu I 327.39 

Ni I 352.45 

Ca II 393.38 

Al I 396.15 

Sr II 421.55 

Mg I 518.36 

Cr I 520.60 

 Elements were chosen with the objective of finding an optimal system configuration that would benefit all the 
various emission lines at the same time. They were carefully picked as to present minimal adjacent spectra 
interferences, high accuracy (C+ or above) and high transition probability (Einstein’s coefficient of 107 or above) 
(Table 1). The relative intensity of each emission line was also taken into consideration because emission lines can 
be easily saturated by macroelements such as Fe, Ca and K. On the other hand, microelements such as Zn, Ni, Cr, 
Cu, depending on their concentration in the sample, can present the opposite behavior. Therefore, as a manner to 
avoid these potential problems, less intense emission lines were chosen for the more abundant elements, and more 
intense lines were chosen for the less abundant elements. All the information was assessed in the NIST atomic 
spectra database [30].  

 The LIBS spectra was processed using LIBS Spectra Analyzer (LIBSSA) software, developed in the Python 
programming language. The software allows users to open and view LIBS spectra, exclude outliers (by the scalar 
product between the average and each measured spectrum), perform baseline correction and isolate peaks for area 
and height calculations [31].  

 According to previous studies (11), around 40–45 spectra per sample are required for a satisfactory 
reproducibility in LIBS analyses, without compromising too much the rapidness of the technique. Therefore, in this 
study, 40 spectra were collected per sample and all the measurements were made in triplicates in order to improve 
the precision of the results and reduce furthermore some of the matrix effects. 

2.4 Experimental Design 

 Four factors were chosen as independent variables to be optimized in this study: (i) delay-time, (ii) interpulse 
delay, (iii) gate width (integration time) and (iv) accumulated pulses. The energy of both lasers pulses were set at 60 
mJ since previous studies [11] showed that it had little influence on the overall response and sample variance.  As for 
the response, or dependent variable, signal-to-noise ratios (SNR) were evaluated. They were calculated for each 
element (Table 1) by dividing the maximum peak height (Imáx), or intensity, of each emission line by the standard 
deviation of the noise (σnoise) that is adjacent to that respective peak (Eq. 12).  

 Since one of the goals in this study was to propose an optimization procedure that would work for all the 
elements at once, and simultaneously in a single step, the proposed response variable was a multiplication of all the 
SNR of each emission line (Eq. 13), where n is the number of emission lines evaluated. By multiplying all the SNR, 
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we take into account the effects of each individual emission line and guarantee that the optimization is adequate for 
each of the elements, in a sort of “common-ground” scenario [22]. 

𝑆𝑁𝑅 =  
𝐼𝑚á𝑥

𝜎𝑛𝑜𝑖𝑠𝑒

 
 (12) 

𝑦 = ∏ 𝑆𝑁𝑅𝑖

𝑛

𝑖

 
 

(13) 

 The levels, or limits, of each factors were asserted accordingly to previous studies [11], and the initial 
screening factorial design was comprised of four factors variating on two specified upper and lower limits (Table 2). 
In other words, the first factorial design was a full 24 factorial design with triplicates, with 48 experiments in total. 

Table 2. Screening factorial design matrix. 

Factor 
Limits 

(-1) (+1) 

Delay-time (ns) 200 1500 

Interpulse delay (ns) 500 3000 

Integration time (µs) 5 20 

Accumulated pulses 3 7 

 The remaining factorial designs are explained furthermore along the article, as we progress through the 
necessary steps of the RSM. All the statistical DOE analyses, as well as the figures and graphs, were processed and 
generated by STATISTICA12® software.  

3. RESULTS AND DISCUSSION 

3.1 Screening Factorial Design 

  The results of the initial factorial design showed that only three factors (in order of magnitude: gate width, 
accumulated pulses and delay-time) were significant (p ≤ 0,05) in the range that they were studied, as can be 
observed in Pareto’s chart (Figure 1). Since interpulse delay was not a significant factor in the range of the first design 
study, it was removed from further experimental designs and its value was fixed at the lowest value of 500 ns. Because 
their effects were positive, an increase in the module of these variables would also ensue an overall increase in the 
results (SNR) attained. In addition, the initial linear response surface models (Figure 2) corroborates with this idea. 
Clearly, for all the models (which the other two factors are fixed in its center value), we can observe that the upper 
limit (+1) of the experimental design were the ones with the best overall response.  

Figure 1. Pareto’s chart for the screening design. 
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  The error of this first part of the experiment was roughly estimated by the relative standard deviation (RSD) 
from the response variable triplicates. The total error calculated for this screening design was of RSD = 14,01%, 
which is acceptable considering LIBS analyses are prone to plasma and signal fluctuations, matrix effects, 
heterogeneity of the pellets, etc. The function of the linear model for this part of the RSM is shown in Eq. 14: 

�̂� = 8,02𝐸9 + 6,48𝐸9𝑥1 + 1,19𝐸10𝑥2 + 3,36𝐸9𝑥3 + 7,13𝐸9𝑥4 (14) 

3.2 Path of Steepest Ascent (PSA) 

  Following the steps of the RSM theory, and accordingly to the method description in subsection 1.3, a new 
design matrix was created with increasingly proportional values for each independent variable, using the most 
significant factor (gate width) from the previous design as reference (Table 3).  

Table 3. PSA design matrix for the 3 significant factors. 

Step 
Δx1  

(gate width) 
Δx2  

(delay-time) 

Δx3  

(accumulated 
pulses) 

Gate width 
(µs) 

Delay-time 
(ns) 

Accumulated 
Pulses 

Center 0 0 0 12,5 850 5 

Center + Δ  1 0,54 0,59 20 1200 6 

Center + 2Δ 2 1,08 1,19 28 1550 7 

Center + 3Δ 3 1,62 1,78 35 1900 9 

Center + 4Δ 4 2,16 2,38 43 2250 10 

Center + 5Δ 5 2,70 2,97 50 2600 10 

  By plotting the results of this matrix, it becomes visually easier to grasp which step had the best results among 
the others (Figure 3). In this case, step 3 (Center + 2Δ) was the one with the steepest ascension and the subsequent 

Figure 3. Plotted results for the CMI design. 

Figure 2. Response surfaces of the screening design, for the significant factors. Two factors are plotted at a time, and the third 

factors is set in its central point. 
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steps/experiments resulted in an overall declining of the SNR. It is safe to pinpoint then, that step 3 is located very 
closely to the optimal region.  

  The decline of the SNR observed throughout the third step ahead is due to the correlation between the 
temporal characteristics of plasma formation, the emission lines of each element and the parameters controlling the 
LIBS system. As explained earlier, in section 1.2, some emission lines are influenced differently depending on the 
value of these factors. However, in general, high values of delay-time mean that the spectra are the product of 
emissions close to a cooler plasma, as it is cooling until extinction. Obviously, in these extreme conditions, the 
emission collected diminishes notably for most elements, as the plasma grows cooler through time. The accumulated 
pulses can also disrupt the quality of the signal, even though the higher number of pulses could assist, in theory, the 
ablation of a bigger portion of the sample, and thus improving the electronic density of the plasma, and providing 
more energy/heat. The counterpart, however, is that it can also increase matrix effects, dispersion and even cause 
unwanted auto-absorption effects, which affects the signal being obtained. Therefore, it is important to find a perfect 
balance for these parameters, as to maximize the overall SNR. 

3.3 Central Composite Design (CCD) 

  After determing that step 3 (28 µs gate width, 1550 ns delay-time, 7 accumulated pulses) was the condition 
with the best S/N ratio results, a new design – this time with 3 levels and a central point – was performed (Table 4). 
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Table 4. CCD matrix with lower, upper and central points. The (-1,682) and (+1,682) limits correspond to the axial 
design rotational angle α for 3 factors, calculated by (2k)0,25, with k being the number of factors. 

Factors 

Limits 

Lower Center Upper 

(-1,682) (-1) (0) (+1) (+1,682) 

Gate width (µs) 15 20 28 35 40 

Delay-time (ns) 450 900 1550 2200 2650 

Accumulated Pulses 4 5 7 9 10 

  In this stage, 20 different experiments were carried out: 8 being the factorial points (-1, +1), 6 being the axial 
points (-1,682, +1,682) and 6 central point (0) repetitions. Since all the upper and lower limits experiments were 
triplicates, a total of 48 experiments were performed.  

 

Figure 4. Response surfaces and contour surfaces of the CCD design. Factors are plotted two at a time while the third factor is 

set at its central point. 
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 The 3-D shaped response and the contour surfaces (Figure 4) for each pair of factors are the outcome of the CCD 
design results from the final model attained (Eq. 13), where x1, x2, x3 are the corresponding factors (gate width, delay-
time and accumulated pulses, respectively). 

�̂� = 4,73𝐸10 − 1,00𝐸10𝑥1 − 2,11𝐸10𝑥1
2 + 6,21𝐸9𝑥2 − 3,36𝐸10𝑥2

2 + 2,68𝐸10𝑥3 − 1,48𝐸10𝑥3
2 + 7,16𝐸9𝑥1𝑥2 

−2,03𝐸9𝑥1𝑥3 + 1,05𝐸10𝑥2𝑥3 
(13) 

  The dark red region in the models (Figure 4), which is reminiscent of a “plateau”, is our optimal region, where 
experiments will yield better responses. Noticeably, our CCD matrix – and the limits we proposed for each factor –
were very near the optimal region, as we can observe the central point of the matrix being next to the maximum 
curvature of the model. To help mathematically evaluate the quality of the final model, an analysis of variance 
(ANOVA) was performed (Table 5). 

Table 5. ANOVA table of the model. SS = Sum of Squares, df = degrees of freedom, MS = Mean Square. 

Source SS df MS 

Regression (R) 8,82E+21 9 9,80E+20 

Residual (r)  9,74E+20 10 9,74E+19 

Lack of fit  6,67E+20 5 1,33E+20 

Pure error 3,07E+20 5 6,14E+19 

Total 9,79E+21 19  

R² 0,90   

R²max 0,97   

  Using the information provided by the ANOVA table, the calculated F for the model resulted in: MSR/MSr = 
10,06 which is higher than the critical F(9,10)  = 2,35. This result indicates that the proposed model is significant, and 
that there exists a correlation between the regression variables and our response variable. The F* test for the lack of 
fit can also be performed, in which F* = MSLoF/MSPE = 2,17. When compared to the critical F*(5,5) = 3,45 it is safe to 
assume that there is no lack of fit in the final model and the observed model is capable of explaining most of the 
observed results/variance. The coefficient of determination (R² = 0,90) can also be deemed satisfactory, even though 
its value seems underwhelming at first. However, as specified in section 1.2, LIBS analysis is very susceptible to 
fluctuations, matrix effects and other errors, which affects reproducibility. This fact becomes more apparent throughout 
the steps of the RSM in this study, since the RSD from the experiments were in the range of 10-15%. Considering 
the RSM was performed using a soil sample, which has a very complex matrix, and that many elemental lines were 
assessed at the same time, the relative low value of R² is still inside the range of the variance being observed.  

  Finally, after evaluating the final model, the critical values for each variable (the maximum point in the 
response surface) were estimated (Table 6) and an experiment was performed in the optimal conditions (Table 7). 
The result shows that, after optimizing LIBS parameters, the group of emission lines studied had 482 times better 
SNR (overall, not individually) than when comparing to the non-optimized system from the start of the study. 

 

Table 6. Best stipulated values for each variable, by the CCD experiment. 

Factors Critical values 

Gate width (µs) 26 

Delay-time (ns)  1600 

Accumulated pulses 9 

Interpulse delay (ns) 500 

 
Table 7. Comparison between the S/N ratios before and after system optimization with RSM. 

 ∏ 𝑆𝑁𝑅𝑖

𝑛

𝑖

 Ratio 

Optimized condition 1,24E+11 
48,2 

Not-optimized condition  2,57E+09 
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CONCLUSION 

  In this work, we were able to show that the use of design of experiments, and the response surface 
methodology, could be a powerful tool when trying to simultaneously optimize a group of close-related parameters, 
such as the ones presented in the LIBS system. Although the interpulse-delay was not significant in the data range 
evaluated, the remaining three parameters (delay-time, accumulated pulses, gate width) were constantly refined after 
every stage of the RSM. In the end, the best overall setting reached was of 500 ns interpulse-delay, 1600 ns delay-
time, 9 accumulated pulses and 26 µs gated width. The final model was significant, did not present any lack of fit (as 
evaluated by both F and F* tests) and the coefficient of determination obtained (R² = 0,90) was acceptable and inside 
of the expected LIBS error and imprecision. An experiment was performed at this optimal condition and the result 
showed an increase of 48,2 times in the S/N ratios for all the assessed emission lines (for the group of elements). 
This heavily suggests that the methodology applied was, indeed, successful in establishing the best overall condition 
for analyses, while performing the least number of experiments as possible.  
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