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Abstract: The pervading physical habitat differences between lakes, rivers, and estuaries should result in 
structural and thus stability differences in food webs in these three different aquatic habitats. We compared 
24 metrics of food web structure and the robustness to loss of both well-connected and random species of 18 
well-resolved food webs from six lakes, six rivers, and six estuaries. Robustness measures the proportion of 
species that need to be removed for 50% of all species to be lost/disconnected. Riverine food webs had lower 
neighborhood clustering and greater variability in prey vulnerability than estuaries and lakes. Typically, 
rivers experience physical disturbance relatively more frequently and with greater severity than estuaries 
and lakes. Disturbance may drive rivers to have lower clustering and have greater proportions of early 
successional taxa that are mobile and have little armor, and hence greater variability in their vulnerability to 
predation. Despite the observed differences in food web structure, these did not drive differences in modelled 
food web robustness between the three habitats. Similarities in robustness may be a result of freshwater 
organisms having similar body-size ratios between predator and prey/resource taxa thereby driving similar 
link distributions.
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INTRODUCTION

Global freshwater biodiversity is under considerable 
threat. In North America alone freshwater 
ecosystems are experiencing extinction rates five 
times higher than terrestrial ecosystems (Ricciardi 
& Rasmussen 1999, Dudgeon et al. 2006, Dudgeon 
2010, Vorosmarty et al. 2010). These declines in 
biodiversity have resulted from multiple interacting 
stressors (Matthaei et al. 2010, Wagenhoff et al. 
2011, Piggott et al. 2012, Leps et al. 2015) including 
water abstraction for consumptive and agricultural 
needs (Dewson et al. 2007, Poff & Zimmerman 2010, 
McDowell et al. 2011), invasive species (Olden et 
al. 2010, Collier & Grainger 2015), channelization, 

sedimentation, eutrophication (Carpenter et al. 
1998, Allan 2004), and changing climate regimes 
(Palmer et al. 2008, Death et al. 2015).

Lakes, rivers, and estuaries are all impacted by 
these stressors, though habitat differences may 
yield differences in community structure that 
affect the ability of the community to respond to 
or resist such disturbances. Lakes are relatively 
large, deep, standing bodies of water with soft 
sediment bottoms; communities are typically 
pelagic and heavily influenced by internal thermal 
stratification and seasonal mixing (Wetzel 2001). 
Rivers are flowing bodies of water, with constant 
mixing, variable flows and typically gravel 
bottoms; communities are heavily influenced by 
allochthonous inputs, gravel movement, and flow 
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(Wetzel 2001). Estuaries represent the inland mixing 
zone between a river outflow and coastal waters, 
are usually soft-bottomed and not only experience 
variable river flows but also semi-diurnal water 
fluctuations from tidal movement (Wetzel 2001). 
Estuarine communities are typically a hybrid of the 
riverine and coastal communities and impacted by 
continual sediment deposition and disruption.

If the differences between freshwater habitats 
result in differences in the skewness of the 
distribution of links and/or change food chain 
lengths, then differences in topological robustness 
may arise. Robustness is a measure of food web 
stability that assesses the capacity of a web to 
maintain topological structure following species 
extinction (Dunne et al. 2002a, Dunne et al. 2005, 
Donohue et al. 2016). Food webs with more dietary 
links per capita (greater connectance) and a greater 
abundance of generalist species (networks with 
uniform degree distributions) are hypothesized to 
have greater topological robustness to cascading 
extinctions (Sole & Montoya 2001, Dunne et al. 2002a, 
Ulanowicz et al. 2009, Canning & Death 2018). Broad 
diets allow alternative energy pathways to continue 
supporting predators should other pathways be 
perturbed; whereas the rigid and narrow diet of 
specialists may prevent the compensatory effects 
of alternative links (Sole & Montoya 2001, Dunne et 
al. 2002a, Ulanowicz et al. 2009). Long food chains 
may also reduce robustness because the loss of 
basal species will cascade further up the food chain, 
thereby impacting more species (Freedman & So 
1985, Rooney et al. 2006, Rooney & McCann 2012, 
Saint-Béat et al. 2015, Canning & Death 2017).

Disturbance can influence both the distribution 
of links across species (degree distribution) and food 
chain length. Highly disturbed communities are 
often observed to be composed largely of generalists 
with broad diets, while communities in more stable 
environments tend to have a greater proportion of 
specialist species (Kitahara et al. 2000, Marvier et 
al. 2004, Devictor et al. 2008, Canning et al. 2018). 
Therefore, it is plausible that disturbance can affect 
the composition of generalist/specialist taxa, which 
can in turn affect the overall food web link (degree) 
distribution and consequential robustness to 
species loss (Vázquez & Simberloff 2002, May 2006, 
Ulanowicz et al. 2009). Highly disturbed ecosystems 
also tend to have shorter food chains and may, 
therefore, have greater robustness to cascading 

species extinction (Jenkins et al. 1992, Post 2002, 
McHugh et al. 2010, Sabo et al. 2010a, Canning et al. 
2018). 

Lakes tend to have more constant environmental 
conditions than estuaries and rivers as they do 
not experience large changes in flow regime 
and sediment/gravel movement from floods or 
tides (Wetzel 2001). Lake communities tend to 
be regulated by internal feedbacks and biotic 
interactions (Scheffer & van Nes 2007), whereas 
the diversity of river communities is often driven, 
at least in part, by flood regimes (Resh et al. 1988, 
Death & Winterbourn 1995, Lake 2000, Death 2008). 
The environmental constancy of lakes may result in 
low robustness to cascading species extinction by 
allowing skewed degree distributions and long food 
chains to occur creating vulnerable hubs. Therefore, 
lakes may be more susceptible to collapse than 
riverine and estuarine communities (Briand 1985, 
Zanden & Fetzer 2007).

Lake food webs also have greater nutrient uptake 
and retention than estuaries and rivers, and thus 
provide greater opportunity for communities to 
take up and utilize nutrients (Saunders & Kalff, 
2001). Greater assimilation of a limiting nutrient 
can permit higher primary productivity, which in 
turn allows for more energy to flow through the food 
webs to higher trophic levels, leading to longer food 
chains (Vander Zanden et al. 1999, Marks et al. 2000). 
Furthermore, nutrients are not always assimilated 
evenly across taxa, which can drive more species 
consuming the highly-productive taxa, skewing the 
link distribution and making the web vulnerable to 
the loss of the well-connected taxa (Ulanowicz 1997, 
Dunne et al. 2002a). Therefore, the larger uptake and 
retention of nutrients in lakes may result in webs 
with longer chains, more skewed link distributions 
and consequently lower robustness than rivers and 
estuaries ( Briand 1985, Zanden & Fetzer 2007).

If we are able to identify and protect the most 
sensitive freshwater habitats then we may be able 
reduce or halt the continued decline of freshwater 
species (Ricciardi & Rasmussen 1999, Dudgeon et 
al. 2006, Dudgeon 2010, Vorosmarty et al. 2010).  The 
recent availability of more complete and relatively 
well-resolved food webs across a range of freshwater 
ecosystems (Thompson & Townsend 2004, Hechinger 
et al. 2011, Sánchez-Hernández et al. 2015) allows for 
comparisons in food web structure and robustness 
between freshwater and brackish water habitats. In 
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this study, we test the hypothesis that lake, estuarine 
and riverine ecosystems differ in food web topology 
and, as a result, differ in robustness. We predict that 
river food webs, being the most disturbed, will have 
the shortest food chains, the most uniform degree 
distributions and the greatest robustness, whereas 
lakes will have the longest food chains, most skewed 
degree distributions and be the least robust; whilst 
estuaries will have moderate disturbance with 
robustness intermediate to rivers and lakes.

MATERIAL AND METHODS

We compiled 18 well-resolved (71 – 96% resolved 
to genus or species level) aquatic food webs (Table 
1; Figure 1). To assess resolution, we measured the 
proportion of taxa identified to species or genus 
level. Six webs were from estuaries, six from lakes 
and six from rivers; while there were many river food 
webs available, most were from similar and nearby 
rivers to those included in the study, and there were 
very few lake and estuarine food webs of similar 
resolution publicly available.

For each food web, Network 3D (Yoon et al. 2004, 
Williams 2010a) was used to calculate 24 metrics 
of food-web topology including connectance, 
mean linkage density, trophic level proportions 
(by species), mean cluster coefficient, as well as 
measures of food chain length, degree distributions 
(including generality and vulnerability), nestedness, 
energy pathway channelization, and redundancy 
(Table 2). 

Food web robustness is defined as the 
percentage of taxa that need to be removed for 
50% of all nodes to become extinct (Dunne et al. 
2002a). Food web robustness was calculated for 
each web by sequentially removing taxa using 
either of two removal sequences: 1) removal of the 
most connected taxa, or 2) random removal of taxa 
(averaged from 1000 iterations with replacement 
each time). Species deletion analysis was also carried 
out in Network 3D  (Yoon et al. 2004, Williams 2010a). 
Secondary extinctions occurred when a species 
had no available dietary links remaining or when 
completely disconnected if it was a basal species.

Using Primer 6 (Clarke & Gorley 2006) with 
PERMANOVA+ (Anderson et al. 2008), Non-
parametric Multidimensional Scaling (NMDS) 

Food web Habitat Location Number of 
taxa Connectance Resolution Citation

Lake Nyasa Lake Tanzania 37 0.055 83.8% (Fryer 1959)
Bridge Brook Lake New York, USA 75 0.098 95.0% (Havens 1992)
Little Rock Lake Wisconsin, USA 181 0.072 93.0% (Brezonik et al. 1986)
Skipworth Lake England 35 0.310 91.0% (Warren 1989)
Cimera Lake Spain 79 0.103 85.7% (Sánchez-Hernández 

et al. 2015)
Grande de Gredos Lake Spain 85 0.074 91.8% (Sánchez-Hernández 

et al. 2015)
Deep Creek River Idaho, USA 32 0.137 90.6% (Koslucher & Minshall 

1973)
Bere Stream River England 142 0.069 91.5% (Woodward et al. 

2008)
River Aire River England 60 0.051 83.3% (Percival & Whitehead 

1929)
River Dee River Wales 34 0.092 76.5% (Badcock 1949)
Akatore River New Zealand 84 0.032 96.4% (Thompson & 

Townsend 2004)
Martins River Maine, USA 105 0.031 96.2% (Thompson & 

Townsend 2003)

Table 1. The habitat, location, taxonomic richness, connectance, and reference source for 18 freshwater food 
webs. Resolution is the percentage of taxa nodes identified to species or genus level.

Table 1. Continued on next page…
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Upper Tagus 
Estuary

Estuary Portugal 29 0.086 79.3% (Moreira et al. 1992)

Carpinteria Salt 
Marsh

Estuary California, USA 272 0.054 71.3% (Hechinger et al. 2011)

Estero de Punta 
Banda

Estuary Mexico 355 0.048 63.1% (Hechinger et al. 2011)

Bahía Falsa Estuary Mexico 289 0.048 63.3% (Hechinger et al. 2011)
Ythan Estuary Estuary Scotland 93 0.049 86.0% (Milne & Dunnet 

1972)
St Marks Estuary Florida, USA 51 0.104 71.0% (Baird et al. 1998)

Figure 1. The global locations of the 18 aquatic communities studied. Lakes are represented 
by circles, rivers by squares, and stuaries by triangles. See table 1 for more detail on location 
and primary references. 

was used to examine the multivariate similarities 
in food web topology between the three habitat 
types (Clarke 1993). For this Euclidian dissimilarity 
distances were used, calculated from all 24 metrics 
of topology (normalized). One-way Permutational 
Multivariate Analysis of Variance (PERMANOVA) 
with 9999 permutations was used to test the 
difference in overall web topology between the three 
habitats (Anderson et al. 2008).

The differences in each of the food web metrics 
and robustness score between the three ecosystems 
was examined using One-way Analysis of Variance 
(ANOVA) in R 3.0.3 (R Development Core Team 
2012). Tukey’s Honest Significant Difference post-
hoc test was used to examine metrics where ANOVA 
differences were significant. The Holm’s sequential 
Bonferonni procedure was applied during all 
multiple comparison significance testing.

Table 1. ...Continued

Food web Habitat Location Number of 
taxa Connectance Resolution Citation
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RESULTS

Species richness ranged from 29 to 355, connectance 
from 0.03 to 0.31, and mean shortest chain length 
from 1.47 to 2.58 across the 18 webs, though there 

Figure 2. Non-parametric Multidimensional 
Scaling (NMDS) plot of food web metrics for 18 
aquatic communities (stress = 0.11). Lakes are 
represented by triangles, rivers by squares, and 
estuaries by inverted triangles. See Table 1 for more 
detail on locations and primary references.

Figure 3. Boxplot of mean cluster coefficient (a) and 
standard deviation of the normalized vulnerability 
distribution (b) for 18 aquatic food webs of three 
different habitats (lakes, estuaries, and rivers).

was no significant difference in species richness, 
connectance and food chain length between the 
three habitats (Table 2).

In an NMDS, river food webs were plotted to the 
left of axis one and estuaries to the right, with most 
lakes in the centre (Figure 2). The food webs from 
the three habitat types differed in their structure 
although there was some overlap (F = 2.92, p = 
0.009).

Of all the metrics assessed, the three habitats 
only differed significantly in their mean cluster 
coefficients (F1,16 = 10.07, p = 0.006; Figure 3a), and 
their standard deviation in vulnerability (number of 
predator) distribution (F1,16 = 10.02, p = 0.006; Figure 
3b). Rivers had lower mean cluster coefficients 
than lakes (p = 0.008), and there was no difference 
between lakes and estuaries (p = 0.09). Rivers had 
a much larger variation (standard deviation) in 
vulnerability (number of predator) distribution 

Figure 4. Boxplot of network robustness of 18 
aquatic food webs to the loss of random taxa (a) and 
loss of the most connected taxa (b) depending on 
their habitat (lakes, estuaries, or rivers). Robustness 
is the proportion of direct removals required for > 
50% of species to be lost.
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than lakes (p = 0.006); there was no difference 
between lakes and estuaries (p = 0.56). The fraction 
of top taxa was also marginally significantly greater 
for rivers than estuaries and lakes (F1,16 = 6.71, p = 
0.02) (Table 2).

Food web robustness did not differ significantly 
between the three habitats when taxa were removed 
randomly (F1,16 = 0.72, p = 0.50; Figure 4a) or when 
most connected taxa were preferentially removed 
(F1,16 = 0.15, p = 0.86; Figure 4b).

DISCUSSION

Food web structure differed between the three 
habitat types. Whilst only three of the 24 food web 
metrics assessed differed significantly, overall 
there were also significant differences in food 
web structure between the three habitats when 
all 24 metrics were combined in multivariate 
space. River food webs showed significantly lower 
node clustering (neighborhood connectivity) 
than estuaries and lakes. We deem the observed 
difference in neighborhood connectivity as reliable 
given that neighborhood connectivity indices 
showed high robustness to errors in network 
construction in Fedor & Vasas (2009). 

Previous studies have suggested that mean 
cluster coefficient can be driven by species 
diversity and connectance (Camacho et al. 2002, 
Dunne et al. 2002b, Belgrano et al. 2004). However, 
neither the number of nodes or connectance 
differed significantly between the three habitats. 
Species deletion experiments of empirical food 
webs have consistently shown that clustering 
decreases with increasing perturbation (Estrada 
2007, Navia et al. 2012). Furthermore, empirical 
observations suggest that perturbations impact 
further than three links away from the initial 
perturbation (Schoener 1989; Montoya & Sole 
2002, Williams et al. 2002); therefore, low clustering 
may be advantageous in webs where species with 
high neighborhood connectivity are perturbed. 
Rivers typically face regular and harsh flood 
disturbances that scour away almost completely 
all basal taxa and remove substantial portions of 
invertebrates and fish (Biggs & Close 1989, Death 
2008). The flood disturbances that rivers face are 
likely more deleterious than the cyclic mixing and 

sedimentation experienced by estuaries and the 
internal seiches and stratification-mixing regimes 
in lakes (Wetzel 2001). It is, therefore, plausible that 
the relatively more severe perturbations of floods 
in rivers reduce the amount of clustering compared 
to estuaries and lakes. In general, food webs tend 
not to have clustering coefficients typical of small-
world networks (Watts & Strogatz 1998, Camacho et 
al. 2002, Dunne et al. 2002b); our analysis suggests 
that food webs from lakes may be more similar to 
small-world networks than food webs from rivers.

Rivers also tend to have greater variability in the 
vulnerability (number of species consuming prey, 
or the output links of a node) distribution than 
estuaries and lakes. The average standard deviation 
of the vulnerability distribution was approximately 
four times greater than for lakes and estuaries. 
Power et al. (1996) found that after scouring floods 
the early successional community consists largely 
of taxa highly vulnerable to predation, which tended 
to be mobile and unarmored, or lightly armored, 
invertebrates, such as mayfly nymphs. Throughout 
the flood-free period, predator-vulnerable taxa 
were replaced with less vulnerable taxa that were 
armored, had silk retreats, or were sessile, thus 
driving greater variation in prey vulnerability. In 
lakes and estuaries, however, many of the taxa are 
sessile and retreat into the benthic sediment (Fuller 
& Rand 1990, Saha et al. 2009). In consequence, 
high prey vulnerability may drive strong top down 
control, whereas low prey vulnerability may drive 
strong bottom up control (Power et al. 1992, Atlas 
& Palen 2014).

We initially hypothesized that the differences 
in disturbance regimes meant that rivers would 
have short food chains, whilst lakes would have 
long food chains and estuaries moderate food 
chains. However, we did not find support for this 
hypothesis as we failed to reject the hypothesis 
that rivers, lakes and estuaries differ in their 
average food chain length. Food chain length can 
be determined from a variety of factors other than 
disturbance, such as thermodynamic constraints, 
habitat size (both in two and three dimensions) 
(Post et al. 2000, McHugh et al. 2010, Sabo et al. 
2010a, Sabo et al. 2010b), resource-consumer body-
size ratios (Brose 2010), productivity (Zanden et al. 
1999, Marks et al. 2000), and nutrient enrichment 
(Townsend et al. 1998, Post 2002, Zanden & Fetzer 
2007, Warfe et al. 2013). It is likely that some of these 



 120 | Food web robustness does not differ between freshwater habitats

Oecol. Aust. 23(1): 112-126, 2019

factors, other than disturbance, are also influencing 
food chain length in the ecosystems we examined 
and may explain why we failed to detect significant 
differences between the habitat types.

The average proportion of species that are top 
predators differed marginally (after applying the 
Holms-Bonferroni correction to an alpha of 0.05) 
between the three habitats. All trophic proportions 
sum to one; therefore, an increase in one proportion 
should correspond to a decrease in another. Given 
that none of the other trophic proportions differed 
significantly, we consider this likely a false-positive.

Early studies suggested that food webs had an 
invariant structure regardless of web size or habitat 
type (Briand & Cohen 1984, Sugihara et al. 1989). 
These findings have been severely criticised for 
the use of poorly resolved webs, with the current 
thinking that there is large variation between webs 
across habitat types (Havens 1992, Bengtsson 1994, 
Martinez 1994, Petchey et al. 2004). Our assessment 
of these well-resolved webs supports the view that 
neighbourhood connectivity and vulnerability 
differ significantly between habitat types (Petchey 
et al. 2004, Zanden & Fetzer 2007).

However, despite the differences in food web 
structure, robustness did not differ between 
habitats, irrespective of the sequence of species 
removal used. This is surprising given that lakes, 
rivers, and estuaries differ considerably in their 
disturbance regimes, physical habitat structure, 
and nutrient dynamics (Wetzel 2001); all of which 
can potentially alter food chain length and link 
distributions (both of which can drive food web 
robustness) (Saint-Béat et al. 2015, Mougi & Kondoh 
2016). In the webs we examined, neither food chain 
length nor degree nor generality distributions 
differed significantly between habitats. Despite 
the obvious differences in physical structure and 
disturbance between the three habitats, it may 
simply be that disturbance has little influence on 
link distribution and robustness or that the webs 
face similar levels of disturbance except in different 
forms. For example, rivers are often disturbed by 
floods, estuaries by sedimentation and lakes by 
internal seiches and stratification-mixing regimes 
(Wetzel, 2001).

Alternatively, recent analysis suggests that 
allometric scaling may enhance stability (including 
topological robustness) by altering dietary breadth 
which can alter connectance and population 

dynamics (Woodward et al. 2005, Brose et al. 2006, 
Brose 2010, Kartascheff et al. 2010, Digel et al. 
2011, Thierry et al. 2011, Heckmann et al. 2012). 
The analysis of a large, global database of the body 
masses of consumers and prey found animals 
from lakes and streams to have very similar body 
size ratios compared to marine and terrestrial 
ecosystems (Brose et al. 2006b). Therefore, the 
similarities in body sizes of predators relative to 
their prey may translate to the similarities in link 
distribution and robustness observed. Instead, the 
differences between lakes, rivers, and estuaries 
arose in terms of neighbourhood connectivity and 
vulnerability distributions, which both can affect 
topological robustness (Rooney & McCann 2012, 
Saint-Béat et al. 2015, Mougi & Kondoh 2016).

While we did not detect any differences in 
robustness, this does not mean that there are 
no differences in community stability between 
the three ecosystems. Robustness, resilience, 
resistance, invasibility, and persistence all 
contribute to overall community stability (Saint-
Béat et al. 2015). Therefore, even if robustness 
does not differ, other aspects of stability may still 
do. We also only measured web robustness to the 
loss of both randomly selected and well-connected 
species loss, hence robustness may still differ 
under different deletion sequences. An aspect not 
considered by our analysis is the ability of predators 
to alter their diet by switching prey (diet plasticity). 
This study assumes that all potential dietary links 
were accounted for during the assembly of each 
web, though there is a reasonable probability that 
not all links were. Taxa that can easily switch their 
diets would add to the overall robustness, whilst 
highly specialised taxa would be deleterious to 
overall robustness.   Furthermore, our assessment 
of topological robustness assumes webs are bottom 
up controlled and ignores energetic dynamics, 
which may mask the effects on trophic cascades 
of neighbourhood connectivity and vulnerability 
variation. As explained above, the differences in 
vulnerability may affect the direction of trophic 
control which can, in turn, drive differences in 
stability and other emergent properties such as 
mutualism and synergism (Ives & Cardinale 2004, 
O’Gorman et al. 2010). 

In summary, rivers have lower neighbourhood 
connectivity and greater variability in the 
vulnerability of predators than lakes and estuaries. 
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These differences, however, did not translate into 
differences in topological robustness to cascading 
species extinction when species were removed 
randomly or by their connectivity. Freshwater and 
brackish water ecosystems typically have similar 
predator-to-prey body-size ratios which may, in 
turn, have driven the observed similarities in link 
distribution and robustness between lakes, rivers, 
and estuaries (Brose et al. 2006b).
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