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Abstract: Methane (CH4) oxidation is a critical process to reduce CH4 emissions from aquatic environments 
to the atmosphere. Considering the continuous increase in nitrogen in rivers, lakes, and lagoons from human 
sources, we re-evaluated the still controversial potential effect of inorganic nitrogen on CH4 oxidation. 
Here, we approached three shallow coastal lagoons that represent great environmental heterogeneity and 
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used slurry sediments as a model system. The addition of ammonium chloride (NH4Cl) and potassium 
nitrate (KNO3) significantly stimulated CH4 oxidation in the sediments of all studied lagoons, indicating 
the potential limitation of nitrogen for the growth of CH4 oxidizing bacteria. Our findings contrast to 
some previous reports, where ammonium and nitrate inhibited CH4 oxidation in sediments. Indeed, our 
experiment was performed in a more realistic range in relation to natural concentrations of inorganic 
nitrogen in aquatic systems (0.5 to 1 mM) and was opposed to extreme concentrations previously used (2 
to 50 mM). Our results point to the need to further assess the connection between nitrogen inputs and CH4 
budgets in aquatic sediments, considering the potential fuel for CH4 oxidation that may affect the global 
greenhouse gas balance.

Keywords: CH4; greenhouse gas; NH4
+; NO3

-; methanotrophy.

INTRODUCTION

Next to carbon dioxide, methane (CH4) is the 
most important greenhouse gas, contributing 
significantly to radiative forcing (Myhre et al. 2013). 
Aquatic ecosystems, including those natural and 
human-altered, are considered to contribute more 
than 50% to the global CH4 emission (Saunois et 
al. 2016, Carlson et al. 2017). The role of lakes in the 
global CH4 budget has recently been reevaluated 
by estimating their CH4 emissions as 16% of all 
non-anthropogenic sources (Bastviken et al. 
2004). This percentage may be even higher, as the 
area of small lakes and lagoons used in previous 
global budgets has been seriously underestimated 
(Downing et al. 2006, Parker et al. 2018, Saunois et 
al. 2020). Atmospheric CH4 would be much higher if 
part of the produced CH4 had not been oxidized by 
CH4 oxidizing bacteria (MOB) before escaping to 
the atmosphere (Conrad & Rothfuss 1991, Banger 
et al. 2012, Sawakuchi et al. 2016). The emission 
of CH4 from aquatic systems to the atmosphere 
results from a balance between the amount of 
methane produced in the anoxic sediments 
(methanogenesis) and CH4 consumption by 
oxidation at oxic-anoxic interfaces (Frenzel et al. 
1990, Conrad 2007). In addition, there is increasing 
evidence that CH4 production in the water column 
contributes significantly to lakes CH4 emissions 
(Tang et al. 2014, DelSontro et al. 2018, Bižić 
et al. 2019). Despite the large methanogenesis 
in naturally flooded areas, high rates of CH4 
oxidation might keep concentration and fluxes 
low (Sawakuchi et al. 2021).

Despite the importance of MOB in controlling 
the CH4 emission in aquatic environments, 
studies on the factors that regulate its activity in 
sediments are scarce. All MOB known so far share 

the unique feature of using CH4 not only as an 
energy source, but also for carbon assimilation. A 
few species may assimilate additional substrates 
with C-C bounds (Dedysh et al. 2005, Theisen et 
al. 2005). Many CH4 oxidizing bacteria can fix N2 
(Haroon et al. 2013, Arshad et al. 2015), but they 
can also assimilate mineral nitrogen, e.g., NH4

+ 
and NO3

-. For upland soils, it has been established 
for many years that the consumption of CH4 
by MOB can be inhibited by mineral nitrogen 
(Sabrekov et al. 2016), while other studies have 
shown the opposite (e.g., Bodelier & Laanbroek 
2004). In freshwater sediments, some reports 
have confirmed the inhibitory effect of NH4

+ on 
CH4 oxidation (Bosse et al. 1993, Nold et al. 1999, 
Hu et al. 2018). However, NH4

+ may stimulate CH4 
oxidation in cultivated paddy fields (Bodelier et 
al. 2000, Krüger et al. 2002, Kruger & Frenzel 2003, 
Noll et al. 2008) and in other ecosystems (Bodelier 
& Laanbroek 2004, Bodelier & Steenbergh 2014, 
Liu & Greaver 2009). In extensive coastal aquatic 
ecosystems with variable inputs from terrestrial 
and marine sources, the effects of N enrichment 
on CH4 oxidation are still poorly understood. 

The ever-growing demand for food will expose 
all aquatic ecosystems to an increasing nitrogen 
load (Galloway et al. 2008, Rockström et al. 2009). 
Cultivation of nitrogen-fixing crop species (e.g., 
soybean) in Latin America is promoting a large 
increase of N inputs in agricultural systems 
through anthropogenic and natural biological 
fixation. Nitrogen inputs have significantly 
increased in Brazilian ecosystems due to human 
activities (Martinelli et al. 2006). For instance, 
the urbanization on the south coast of Brazil was 
already associated with untreated wastewater 
discharges (Fistarol et al. 2015), affecting 
numerous coastal lagoons (Esteves et al. 2008). 



328 | Nitrogen stimulates methane oxidation

Oecol. Aust. 26(2):326–338, 2022

Considering these changes, it is essential to know 
how CH4 oxidation will be aff ected by nitrogen 
input in aquatic systems due to its contribution 
to the greenhouse eff ect. Hence, in this study, we 
aimed to evaluate the eff ect of mineral nitrogen 
on CH4 oxidation in coastal aquatic sediments. 
This knowledge is essential for predicting the 
future role of aquatic environments in the global 
CH4 cycle.

MATERIAL AND METHODS

Study area
The study was conducted with sediments 
collected from three shallow tropical coastal 
lagoons, Iodada (22o 30’ S; 41o 54’W), Comprida 
(22o 16’ S; 41o 39’W), and Carapebus (22o 15’ S; 
41o 35’W), located along the North coast of Rio 
de Janeiro State, Brazil (Figure 1). These paralic 
depositional environments are subjected to the 

mixing of fresh and salt waters at the landward 
side of coastal barriers (Woszczyk et al. 2014), 
receiving large inputs of humic substances from 
the coastal sandy plain. Iodada and Comprida 
lagoons are permanently humic, while the 
Carapebus lagoon shows periods of humic and 
clear waters over the year (Marotta et al. 2010). 
Both permanently humic lagoons are also smaller 
than the Carapebus lagoon, reaching ~0.12, 
~0.11, and ~6.50 km2, respectively, and only the 
Iodada lagoon is situated in a denser urban area, 
compared with both Comprida and Carapebus 
lagoons at a conservation unit (Jurubatiba 
National Park). Despite such diff erences, all 
studied sites showed similar oligotrophic 
brackish waters at the sampling moment (Table 
1). The ecosystems have been chosen for being 
small and shallow, representing the majority 
of continental aquatic ecosystems in South 
America (Downing et al. 2006), and by presenting 

Figure 1. Geographical location of the studied coastal lagoons: (A) Iodada, (B) Carapebus, and (C) 
Comprida.
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similar chlorophyll-a (Lorenzen et al. 1967), total 
nitrogen and total phosphorus (Golterman et al. 
1978) concentrations, but different measured 
concentrations of dissolved organic carbon (TOC 
5000, Shimadzu Scientific instruments), salinity 
(Jenway 4200) and pH (Digimed 3000) values 
(Table 1). The regional climate is characterized 
as tropical sub-humid/humid (Henriques et al. 
1988), the annual mean temperature is 26.6°C, 
and the mean annual precipitation is 1000 mm 
(INMET 2005).

Water and sediments were sampled in the 
Iodada lagoon in January 2003, Carapebus lagoon 
in February 2004, and Comprida lagoon in July 
2005. In each lagoon, we collected sediment 
samples from the central area using tubes 
(Perspex, diameter 8 cm). We subsampled the top 
centimeter from 10 different cores and transferred 
it into 10 sterile 500 mL polycarbonate bottles. 
The sediment was transported to the laboratory 
in Germany within 7 to 10 days after sampling. 
On arrival, the sediment was shaken at 10-12 
rpm for 3 days to maintain oxic conditions. 
Afterward, we transferred 1 mL of sediment to 25 
mL pre-autoclaved glass tubes and added 4 mL of 
autoclaved lagoon water forming 5 mL slurry.

Experimental methods
Different experimental setups were used to 
evaluate (1) the effect of NH4Cl and KNO3 (0.5 
mM of each substrate) in sediments from Iodada 
lagoon, and (2) the effect of KNO3 (1.0 mM) in 
sediments from Comprida and Carapebus lagoons 
on CH4 oxidation rates. In the first setup made 
in Iodada sediments, NH4Cl was added without 

the precaution of avoiding possible NH3 toxicity. 
Because of that, in the second setup made in 
Comprida and Carapebus sediments, the addition 
of just KNO3 was decided to avoid the potential 
toxic effect of NH3. Each tube was sealed with a 
butyl stopper. The slurries were supplemented 
with CH4 (99.995%, Messer Griesheim, Germany) 
to a final mixing ratio of 1-3% in the headspace and 
incubated at 25oC on a gyratory shaker (100-120 
rpm) to maintain the aerobic conditions required 
to CH4 oxidation process, which was also provided 
by the movement during slurry preparation. 

Depending on the activity, CH4 concentrations 
were measured 1-3 times per day for 5 to 13 days. In 
some tubes with very high activity, the initial CH4 
concentration was re-established before it could 
be completely consumed. CH4 was analyzed with 
a Shimadzu GC-8A gas chromatograph equipped 
with a HayesepD column. Calibration was done 
using standard gas mixtures with 1,000 and 50,000 
ppmv CH4 in N2 (Messer Griesheim, Germany). CH4 
concentrations in the slurries were calculated from 
Henry’s law and the Bunsen solubility coefficient 
for CH4 in freshwater at a temperature of 25°C.

In Carapebus and Comprida sediments, 
which did not receive NH4Cl (explanation above), 
two setups of experiment were done. In one 
experimental setup, KNO3 was added again to 
the slurries from Carapebus and Comprida after 
142 and 165 hours of incubation, respectively, to 
check the response of the methane oxidizers in a 
continuous high KNO3 concentration, to compare 
with the other setup with no extra addition. In 
another setup, KNO3 was added at the beginning 
of the incubation. 

Table 1. Some features of the water column of the studied sites at the sampling time.

Variables
Coastal Lagoons

Iodada Comprida Carapebus
Depth (m) 2.9 2.0 1.7
Salinity (‰) 1.1 0.4 5.0
Conductivity (mS cm-1) 1.3 0.8 6.0
Secchi disc (m) 1.8 0.7 1.3
pH 7.3 5.5 7.7
Total N (µM) 56.0 65.0 67.0
Total P (µM) 0.36 0.53 0.62
Total Organic Carbon (mM) 25.0 35.0 10.0
Color (at 430 nm) 0.15 0.23 0.02
Chlorophyll-a (µg l-1) 5.0 2.2 3.70
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Table 2. Synopsis of the experiments performed during this study; nd = not determined.

Lagoon Sampling 
date

N addition 
(mM)

Incubation 
time (h)

Interval 
measurements of 

methane oxidation 
rates (h)

Moment of N 
addition (h)

Lag 
phase (h) Figure

Iodada Jan/2003 0.5 KNO3 
or NH4Cl 150 100 - 150 0 100 1

Carapebus
Feb/2004 0.5 KNO3 122 1 – 72 and 72 – 122 0 20 - 75 2B, 6

Dec/2005 0.5 KNO3 330 nd 142 20 - 75 4

Comprida
Feb/2004 0.5 KNO3 216 1 – 94 and 94 – 216 0 94 2A, 5

Dec/2005 0.5 KNO3 330 nd 165 70 3

Figure 2. Potential CH4 oxidation rates from 
Iodada Lagoon after addition of potassium NO3

-, 
NH4

+ chloride and a combination of both. Mean 
± SE (N = 3). Different letters indicate significant 
differences (Anova, p < 0.01). Rates calculated 
between 100 and 150 hours of incubation.

Figure 3. Potential CH4 oxidation rates from 
control and KNO3 treatments in sediments from 
Comprida (A) and Carapebus (B) lagoons at 
different incubation intervals. Mean ± SE (N = 4). 
Different letters indicate significant differences 
(Anova, p < 0.01). Note differences in scales.

Replicate sediment slurries from the three 
lagoons were incubated in 150 ml glass bottles 
in similar conditions, for daily determinations 
of NO3

-, NO2
-, NH4

+ concentrations and pH values 
(see Tables 1 and 2). We used 2 mL of the slurry 
for pH determination (Schott pH meter) and later 
centrifuged at 10.000 rpm (Eppendorf 5417-R). 
After centrifugation, the supernatant was carefully 
removed and NH4

+ concentration was determined 
with a colorimetric assay (Bower & Holm-Hansen 
1980) and NO3

- and NO2
-, concentrations with UV 

detection by ion chromatography. 

Statistical analyses
We used the analysis of variance (ANOVA One-
Way) followed by Tukey post hoc test to investigate 
whether there are differences among controls and 
treatments of inorganic nitrogen additions. In 

addition, we performed paired t-test to investigate 
significant differences in pH and NH4

+ between 
lagoons. We assessed all tests using the significant 
level of 95%.

Changes in pH values and NO3
-, NO2

- and 
NH4

+ concentrations were followed during 
the incubation of the slurries from Comprida 
and Carapebus (Figures 6 and 7). pH and NH4

+ 
concentrations were higher in Carapebus than 
Comprida sediments, respectively (Paired 
t-test, p < 0.05). However, NH4

+ concentrations 
in Carapebus sediments (up to 500 µM) are two 
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orders of magnitude higher than in Comprida. 
NH4

+ concentrations in Carapebus slurries 
remained higher than 200 µM during the first 94 
hours of incubation but declined from 94 to 122 
hours of incubation dropping to < 5 µM. NH4

+ 
concentrations in Comprida slurries were < 7 µM 
in all measurements. NO2

- and NO3
- concentrations 

were < 1 µM and < 10 µM, in slurries from Comprida 
and Carapebus lagoons. Water salinity, which 
could influence CH4 oxidation rates when is high 
(above 5; Osudar et al. 2017), were measured in 
all three lagoons (Table 1). Carapebus lagoon has 
showed the highest salinity (5; Table 1); however, 
the CH4 oxidation rates seems not to be influenced, 
showing high rates (Table 3).

DISCUSSION

The addition of both forms of inorganic nitrogen, 
NH4

+ and NO3
-, stimulated CH4 oxidation after a 

lag phase, suggesting that nitrogen was limiting 
the growth of MOB. Methanotrophs are slow-
growing bacteria (Mancinelli, 1995, Nold et al. 
1999); however, they have relatively high growth 
with genetic manipulation (Kim et al. 2018), as 
well as a requirement for nitrogen, principally 
ammonium (Tays et al. 2018), with an ideal C:N 
growth ratio of 4:1 (Anthony 1978). Bodelier & 
Laanbroek (2004) summarized some results 

on the effect of nitrogen in soils and aquatic 
sediments and established that nitrogen can 
be considered a limiting factor for the growth 
of MOB, suggesting that this could be also valid 
for natural aquatic sediments. For instance, a 
syntrophic consortium of archaea can perform 
anaerobic CH4 oxidation by using nitrate as 
electron acceptor, while bacteria might use nitrite 
in inland waters (Bodelier & Steenbergh 2014).

Our results contrast previous evidence on 
inorganic nitrogen inhibiting the CH4 oxidation 
in aquatic bottom sediments (Conrad & Rothfuss 
1991, Boon & Lee 1997, Nold et al. 1999, Hu et 
al. 2011), confirming that its response may be 
variable (Table 3). Besides the concentrations of 
inorganic nitrogen applied here were considered 
high (from 0.5 to 1 mM; Table 1), they remain one 
order of magnitude lower than previous studies 
that found inhibiting effect on CH4 oxidation 
(Table 3). Although nitrogen is an important 
nutrient for oxidation this chemosynthetic 
process as in many habitats (Liikanen et al. 2002, 
Shen et al. 2020, Rudd et al. 1976), extremely 
higher concentrations of NH4

+, NO3
−, and NO2

− 
may constrain its rates by mechanisms that 
are not yet clear (Bodelier 2011, Bodelier & 
Steenbergh 2014). For instance, concentrations of 
up to 50 mM NH4Cl have been related to reduced 
CH4 oxidation in aquatic sediments (Table 3), 

Figure 4. Changes in CH4 concentrations with 
and without KNO3 amendment in slurry from 
Comprida lagoon. KNO3 was added 165 hours after 
beginning of incubation. Arrows indicate extra 
CH4 addition.

Figure 5. Changes in CH4 concentrations with 
and without KNO3 amendment in slurry from 
Carapebus lagoon. KNO3 was added 142 hours 
after beginning of incubation. Arrows indicate 
extra CH4 addition.
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Figure 6. Changes in CH4, KNO3, NH4
+ 

concentrations and pH values with and without 
KNO3 amendment in slurries from Comprida 
lagoon. KNO3 was added at the beginning of the 
incubation.

Figure 7. Changes in CH4, KNO3, NH4
+ 

concentrations and pH values with and without 
KNO3 amendment in slurries from Carapebus 
lagoon. KNO3 was added at the beginning of the 
incubation.

including deleterious osmotic effects on MOB 
(Shrestha et al. 2010).

Also, mechanisms of nitrogen inhibition in 
the methane oxidation may be controversial 
(Bodelier 2011). Some authors point out that the 
inhibition mechanism of NH4

+ on CH4 oxidation 
seems to be rather complex, including not 
only competitive inhibition of the methane 
monooxygenase by NH4

+, but also the toxic 
inhibition by hydroxylamine and NO2

- produced 
by the oxidation of NH4

+ (Dunfield & Knowles 1995, 
O’neill & Wilkinson 1977). In high concentrations, 
NH4

+ could inhibit CH4 oxidation in freshwater 
sediments (Nold et al. 1999) by the competition 
of the key-enzyme (methane monooxygenase) 
by NH4

+ (Bodelier & Steenbergh 2014). Likewise, 

NO3
- in concentrations higher than 10 mM would 

inhibit CH4 oxidation (O’neill a&nd Wilkinson 
1977, Dunfield & Knowles 1995). However, this 
inhibition depends on the CH4 concentration 
(Duan et al. 2013) that has been attributed to 
osmotic effects (Bodelier & Laanbroek 2004). 

A combination of both competitive and toxic 
mechanisms may also explain the increase 
in inhibition of CH4 oxidation observed with 
increasing amounts of NH4

+. NH4
+ must exceed 

CH4 concentrations 30 to 100-fold to become 
effective for inhibition (Van der Nat et al. 1997, 
Yang et al. 2020). Depending on pH, high NH4

+ 
concentrations can correspond to relatively 
high concentrations of ammonia (NH3) that 
can be toxic to methanotrophs (He et al. 2017, 
Mohammadi et al. 2017). High levels of NO2

-, 
a toxic compound for MOB, can also occur in 
environments with high oxidation rates of NH4

+ 
to NO2

- (Mohammadi et al. 2017). 
Indeed, there was a clear variation in CH4 

oxidation rates in the sediment of the three lagoons 
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studied. The CH4 oxidation rates were one order of 
magnitude higher in Carapebus than those of the 
Comprida and Iodada sediments at the beginning 
of the incubation, indicating that methanotrophs 
were more active in the Carapebus sediment. 
The methanotrophic physiological stages will 
depend on the availability of CH4 and oxygen 
in the sediment oxic zone. In such way, Bender 
& Conrad (1992) suggested that the sediment 
methanotrophs can present three different 
physiological stages: (1) fully active cells, that are 
oxidizing CH4 in the oxic part of the sediment; (2) 
cells with low physiological activity in the upper 
anoxic zone, capable of spontaneously induced 
to oxidize CH4 in the presence of oxygen, and (3) 
as resting stages as cysts or exospores and able to 
be activated only by prolonged incubation under 
high oxygen and CH4 ratios. According to this 
classification, the methanotrophs from Iodada 
and Comprida lagoons may be in stage 3, while 
from Carapebus lagoon in stage 2, suggesting 
that a longer experiment approach might result in 
change from stage 3 to 2, in Iodada and Comprida 
lagoons

The results of the influence of NH4
+ and NO3

- 
concentration in tropical coastal lagoons showed 
here should also be considered in the regulation 
of CH4 oxidation in lacustrine ecosystems 
worldwide. The ongoing increase of inorganic 
nitrogen inputs in the watershed must play a 
critical role in improving CH4 oxidation in aquatic 
sediments, in addition to previously reported 
increases in greenhouse gas production and 
loss of water quality. Our findings contrast with 
other studies where nitrogen has been observed 
to inhibit CH4 oxidation and we argue that our 
experiment was performed in a more realistic 
range of nitrogen concentrations regarding the 
natural concentration of aquatic sediments. 
However, it is important to highlight that CH4 
oxidation might be sensitive to environmental 
change, since it varies spatially and temporally 
in natural and human-altered ecosystems, 
which was not assessed here. Also, the influence 
of fertilizers on the CH4 budget in aquatic 
ecosystems needs to be evaluated considering 
the net effects of increased inorganic N on both 
methanogenesis and methanotrophy. This study 
brings forward the insufficient knowledge about 
the processes that control CH4 dynamics in 

coastal aquatic sediments, which is essential to 
determine the impact of nitrogen loads on CH4 
budgets on a regional and global scale.
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