DYNAMICS OF NITRIFICATION IN A OXBOY LAKE IN TROPICAL FLOODPLAIN RIVER

FERESIN, E.G. & SANTOS, J.E.

Resumo

Foram estimadas taxas de nitrificação no sedimento e coluna de água de duas estações de coleta da Lagoa do Infernão, para dois períodos hidrológicos distintos (período seco e chuvoso). Este corpo de água corresponde a uma lagoa marginal rasos da planicie de inundação do Rio Mogi Guaçu, localizada na Estação Ecológica de Jataí, Estado de São Paulo, Brasil. O método utilizado foi a incorporação de 14C-bicarbonato, com e sem nitrapirina (N-Serve). Durante Fevereiro a Abril (período chuvoso) as taxas de nitrificação variaram entre 0,14 a 4,84 e de 0,02 a 0,68 mgN/m²/h para amostras de sedimento e água, respectivamente. De Julho a Setembro (período seco) estas taxas variaram entre 1,93 a 8,04 e de 0,05 a 1,16 mgN/m²/h para sedimento e amostras de água, respectivamente. Não foram observadas diferenças estatisticamente significativas das taxas de nitrificação entre as estações de coleta e entre as profundidades observadas; Entretanto, diferenças significativas foram observadas entre os períodos hidrológicos, independente da estação de coleta e profundidade observada. O aporte de nitrogênio inorgânico no período chuvoso não reverteu em taxas de nitrificação significativas, em decorrência de condições ambientais inadequadas (principalmente baixa oxigenação da coluna de água) e da assimilação de nutrientes pelos compartimentos produtores. A menor disponibilidade de N-NH$_4^+$, proveniente da mineralização da matéria orgânica, e condição de oxigenação adequada possibilitaram maiores taxas de nitrificação no período seco. A grandeza desses valores demonstram que o significado ecológico da nitrificação na Lagoa do Infernão, é quantitativamente mínimo, quando comparado com os processos de mineralização e assimilação de N-NH$_4^+$, a qual pode ser considerada o caminho preferencial da dinâmica dos compostos nitrogenados no sistema em questão.

Abstract

Nitrification rates were estimated in the sediment and water column at two sampling stations in Infernão Lake, during two distinct hydrological periods (dry and wet seasons). This water body is a shallow oxbow lake of the Mogi Guaçu River floodplain, located at the Ecological Station of Jataí, in the State of São Paulo, Brazil. The method used was 14C-bicarbonate incorporation with and without nitrapyrin (N-Serve). From February to April (wet season), these rates were 0.14 to 4.84 and 0.02 to 0.68 mgN/m²/h, for sediments and water, respectively. From July to September (dry season), these rates were 1.93 to 8.04 and 0.05 to 1.16 mgN/m²/h, for sediments and water, respectively. No statistically significant differences between nitrification rates for different depths and sampling stations were found; however, significant differences were observed between hydrological periods, independent of station and depth. Inorganic nitrogen input in the wet season was not reflected in significant nitrification rates, as a result of unfavorable environmental conditions (chiefly low oxygen) and of assimilation by producers. Greater availability of N-NH$_4^+$, from organic matter mineralization, and adequate environmental conditions permitted higher nitrification rates in the dry season. The magnitudes of these rates demonstrated that the ecological significance of this process in Infernão Lake is quantitatively minimal compared to the mineralization and ammonium assimilation processes, which can be considered the preferential pathways for transformation of nitrogen compounds in the system.

Key-words: nitrification, nitrogen dynamics, nitrapyrin, oxbow lake.
Introduction

Linnological studies of nitrogen dynamics have been concerned with
determination of the concentrations of nitrogen compounds, assimilation of its inor-
ganic forms, and ammonium regeneration (Klingensmith & Alexander, 1983), as
well as with obtaining knowledge of the pathways and transformation rates of the
nitrogen compounds participating in specific processes (Miller et al., 1986).

Nitrate production, referred to as nitrification, is a primary consequence of
biological oxidation of ammonium (Takahashi et al., 1982). Nitrate concentration
in the environment is a result of the balance between nitrification, assimilation and
denitrification, with maximum levels occurring during periods of high oxygen con-
centrations and low organic productivity (Chen et al., 1972). The ecological impor-
tance of nitrification lies in the potential oxygen consumption from the environ-
ment, in the supply of nitrogen for the biotic community, and mainly in constituting
the link between the stages of oxidation (biological fixation) and reduction (denitrifi-
cation) of the nitrogen cycle (Keeney, 1973; Downes, 1988).

Oxbow lakes of the Mogi Guacu River floodplain are fundamentally character-
ized on the basis of the periodicity of their hydrological cycle, giving rise to contrasting
ecological conditions, with, principally, more reducing conditions in the wet season than
in the dry season (Ballester & Santos, 1997; Freitas, 1989; Krusche, 1989; Esteves et al.,
1991; Feresin, 1991; Obata & Santos, 1996), and greater nutrient consumption (Coutinho,
1990; Dias Jr., 1990; Silva, 1990), leading to different responses in some stages of the
nitrogen dynamics in relation to the hydrological cycle (Ballester & Santos, 1997; Esteves
et al., 1991; Obata & Santos, 1996; Gianotti & Santos, 1997). In this context, the ob-
jective of the present work was to ascertain the qualitative and quantitative ecological sig-
nificance of the nitrification process for nitrogen dynamics in one of these lakes (Infernão
Lake), by estimating the nitrification activity in sediment and water samples.

Site Information

Infernão Lake is one of the group of 15 lakes on the floodplain of the Mogi
Guacu River within the boundaries of the Jataí Ecological Station, municipality of Luiz
Antônio, São Paulo State, Brazil (Fig. 1). The lake is horseshoe-shaped, small (area 3.65
ha) and shallow (maximum depth 4.9 m in the low-water period), and is connected with
the river only during high water periods. Its littoral supports dense growths of different
species of aquatic macrophytes, 30% of the total lake area being occupied by a floating
mixed stand formed mostly by Scirpus cubensis Poep. & Kunth and Eichhornia azurescens
Kunth. These macrophytes directly influence the thermal stratification and dissolved
oxygen patterns of the littoral zone (Nogueira et al., 1996).

Two sampling stations were established for the present study (Fig. 1), one in
the littoral zone, covered by the bank of aquatic macrophytes (Station I), the other more
central, without plant cover (Station II). Collections were made monthly, during two
distinct hydrological periods according to the precipitation regime and the lake flooding
Nitrification in a oxbow lake
(Ballester, 1994), i.e. in months representative of the high-water season (February, March and April 1990) and the low-water season (July, August and September 1990).

Figure 1. A. Location of the Jataí Ecological Station in the State of São Paulo. B. Vegetation and hydrographic map of the Jataí Ecological Station and locations of the oxbow lakes (approximate scale 1:95600). C. Morphometry of Infernão Lake showing depth intervals (1, 2, 3 and 4 m) and location of Sampling Stations I and II.

Material and Methods

Sediment samples were obtained with a modified collector as described by Ambuhl & Buhrer (1975), and the upper 5 cm used, part for determination of organic matter by weight loss after ignition, end part for determination of in situ nitrifying activity. The interstitial water was extracted to a depth of 5 cm, using minipiezometers attached to a manual vacuum pump, and alkalinity (Gran, 1952) and concentrations of N-NH\(_4^+\) (Krug et al., 1983), N-NO\(_3^-\) and N-NO\(_2^-\) (Giné, 1980) were determined. The pH and temperature at the sediment-water interface were also determined.

Samples from the water surface and at 0.5 m above the sediment were collected with a Van Dorn bottle and used for determination of pH, temperature, dissolved oxygen (Golterman et al., 1978), alkalinity, and inorganic-N (N-NH\(_4^+\), N-NO\(_3^-\) and N-NO\(_2^-\)), and estimation of in situ nitrifying activity. The concentration of dissolved inorganic carbon was calculated from the total alkalinity of the samples from the water column and the sediment interstitial water (Mackereth et al., 1978),
Nitrification rates were estimated from dark uptake of \(^{14}\text{C}\cdot\text{HCO}_3^-\) in samples with and without nitrapyrin (Billen, 1976; Somville, 1978; Vincent & Downes, 1981). Triplicate samples from the water column and the sediment (sediment samples were suspended in water from the sampling site, in a 1:50 proportion), from both sampling stations, were preincubated with nitrapyrin dissolved in acetone (5 mg/l nitrapyrin final concentration) or an equal volume of acetone (control) for 1 hour. Next, NaH\(^{14}\text{C}\cdot\text{CO}_3^-\) (activity 7.9 mCi/ml) was added to the samples and these were incubated in situ for four more hours. At the end of the experiment, the samples were vacuum-filtered (30 ml for water column samples and 5 ml for sediment samples) through 0.45 mm cellulose-acetate membranes. After being dried, the membranes were read in a liquid scintillation counter. The results, expressed as mgC/m\(^3\)/h, were calculated as a function of the following factors: difference between samples not inhibited and inhibited with nitrapyrin, concentration of dissolved inorganic carbon and \(^{14}\text{C}\cdot\text{HCO}_3^-\) added, and volume and incubation time of samples (Vincent & Downes, 1981). From these values, the nitrification rate (mgN/m\(^3\)/h) was calculated using a conversion factor (Belser, 1984). The results were compared statistically by the Mann-Whitney test.

Results and Discussion

The results of the physical and chemical variables of the sediment and interstitial water, and of the water column, respectively, at different depths, for both sampling stations, and for each hydrological period studied, are shown in Tables I and II. During the rainy season, for the system as a whole, independent of sampling station, and sample type (sediment or water column), more reducing conditions (as indicated by lower dissolved oxygen levels and higher pH values), reduced water transparency and lower concentrations of inorganic N were evident. The predominant form of inorganic N in the interstitial water and in the water column was N-NH\(^+_4\), independent of sampling station and hydrological period. N-NO\(^+_3\); sampled quantitatively in the interstitial water was detected when N-NO\(^+_2\) and N-NH\(^+_4\) also showed higher concentrations during the dry period.

Sediment and water column nitrification rates (Tables I and II, respectively) showed different behavior during each hydrological period, independent of sampling stations and collection depths, with higher values during the dry period. The rates varied from 0.14 to 4.84 and 0.02 to 0.68 mgN/m\(^3\)/h for the sediment and water column, respectively, during the rainy season, and from 1.93 to 8.04 and 0.05 to 1.16 mgN/m\(^3\)/h for the sediment and water column, respectively, during the dry season. The sediment as well as the water column showed statistically significant differences (95% confidence level) in measured nitrification rates between the different hydrological periods; however, no such difference was observed between the stations and water depths.

Higher nitrification rates during the dry period for the sediment (Fig. 2) and water column (Fig. 3), at both sampling stations, resulted from the better oxygenation conditions and greater availability of N-NH\(^+_4\) in the system at that time. Lower nitrification rates in the rainy season suggest a greater ecological significance, in
quantitative terms, of this process during the dry season, when the system is more dependent on its own dynamics with relation to nitrogen cycling.

Table I. Physical and chemical variables of sediment and interstitial water (*) and sediment nitration rate for two sampling stations (St.), during wet (Feb. – Apr.) and dry (July – Sept.) periods.

<table>
<thead>
<tr>
<th>Month</th>
<th>St.</th>
<th>Temp. (°C)</th>
<th>pH</th>
<th>%OM</th>
<th>ALK. meq/l</th>
<th>N-NH₄⁺⁺⁺</th>
<th>N-NO₂⁻⁺⁺</th>
<th>N-NO₃⁻⁻⁻</th>
<th>Nitrification mgN/m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb.</td>
<td>I</td>
<td>28</td>
<td>6.25</td>
<td>30.9</td>
<td>1160.0</td>
<td>< 21.5</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>26</td>
<td>6.39</td>
<td>25.6</td>
<td>984.4</td>
<td>< 30.9</td>
<td>4.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar.</td>
<td>I</td>
<td>27</td>
<td>6.54</td>
<td>23.4</td>
<td>1450.4</td>
<td>< 16.8</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>25</td>
<td>6.12</td>
<td>23.6</td>
<td>1382.6</td>
<td>< 15.4</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar.</td>
<td>I</td>
<td>25</td>
<td>6.36</td>
<td>20.7</td>
<td>482.5</td>
<td>< 10.3</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>25</td>
<td>6.34</td>
<td>21.4</td>
<td>379.2</td>
<td>< 10.3</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.</td>
<td>I</td>
<td>24</td>
<td>6.65</td>
<td>25.0</td>
<td>560.8</td>
<td>< 10.3</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>24</td>
<td>6.48</td>
<td>25.1</td>
<td>274.2</td>
<td>< 34.4</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>I</td>
<td>19</td>
<td>5.79</td>
<td>26.4</td>
<td>735.0</td>
<td>< 329.7</td>
<td>3.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>18</td>
<td>5.55</td>
<td>26.8</td>
<td>778.3</td>
<td>< 425.5</td>
<td>4.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.</td>
<td>I</td>
<td>19</td>
<td>5.25</td>
<td>25.4</td>
<td>375.0</td>
<td>< 1194.6</td>
<td>2.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>19</td>
<td>5.58</td>
<td>27.4</td>
<td>547.5</td>
<td>< 1305.6</td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept.</td>
<td>I</td>
<td>22</td>
<td>5.74</td>
<td>26.5</td>
<td>279.2</td>
<td>< 240.7</td>
<td>8.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>21</td>
<td>5.82</td>
<td>27.5</td>
<td>128.3</td>
<td>< 1342.2</td>
<td>7.39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(<=) Value lower than detection level of method (10mg/l).
(+) No data.
(%) OM: Percentage organic matter
(ALK) Total alkalinity.

The preliminary conceptual model, represented in Fig. 4, was proposed in an attempt to illustrate the nitrification behavior in relation to nitrogen dynamics and periodicity of the hydrological cycle in Infernão Lake.

Input of water in the rainy season and consequent contribution of inorganic-N and organic matter caused a reduction in transparency and oxygenation of the water column. However, the lower availability of inorganic-N observed in the rainy season is explained by increases in phytoplankton productivity (Dias J., 1990; Silva, 1990) and biomass of aquatic macrophytes (Nogueira et al., 1996) via assimilation from their roots (Coutinho, 1990), which appear to function as veritable pumps extracting the nutrients from the sediment (Santos et al., 1986). Responses of biotic and abiotic structural and functional parameters similar to those observed in Infernão Lake are considered typical of ecosystems maintained by pulse mechanisms, which are represented by the periodic fluctuation in water levels, and are considered a principal driving force in the productivity of these systems (Junk et al., 1989). However, it must be emphasized that the change in ecological conditions in Infernão Lake in relation to the addition of water in the rainy season is, basically, much more a consequence of the processes of infiltration and surface drainage, than of the nature of the waters of the main floodplain channel.
Table II. Physical and chemical variables in the water column and nitrification rate for the two sampling stations (St.), during wet (Feb. – Apr.) and dry (July – Sept.) periods.

<table>
<thead>
<tr>
<th>Month</th>
<th>St.</th>
<th>Depth (m)</th>
<th>Temp. (°C)</th>
<th>pH</th>
<th>% sat.</th>
<th>D.O.</th>
<th>Alk.</th>
<th>N-NH₄⁺</th>
<th>N-NO₂⁻</th>
<th>N-NO₃⁻</th>
<th>Nitrification mgN/m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb.</td>
<td>I</td>
<td>0.0</td>
<td>0.85</td>
<td>30</td>
<td>6.7</td>
<td>35</td>
<td>-</td>
<td>11.5</td>
<td><</td>
<td><</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>28</td>
<td>6.6</td>
<td>45</td>
<td>-</td>
<td>29.9</td>
<td><</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.0</td>
<td>1.25</td>
<td>28</td>
<td>6.5</td>
<td>115</td>
<td>-</td>
<td>15.2</td>
<td><</td>
<td><</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>26</td>
<td>6.3</td>
<td>15</td>
<td>-</td>
<td>40.9</td>
<td><</td>
<td><</td>
<td>0.23</td>
</tr>
<tr>
<td>Mar.</td>
<td>I</td>
<td>0.0</td>
<td>1.25</td>
<td>32</td>
<td>6.8</td>
<td>-</td>
<td>-</td>
<td>20.7</td>
<td><</td>
<td><</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>29</td>
<td>6.3</td>
<td>-</td>
<td>-</td>
<td>64.4</td>
<td><</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.0</td>
<td>1.5</td>
<td>28</td>
<td>6.4</td>
<td>55</td>
<td>-</td>
<td>9.6</td>
<td><</td>
<td><</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.0</td>
<td>27</td>
<td>6.7</td>
<td>-</td>
<td>-</td>
<td>48.2</td>
<td><</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar.</td>
<td>I</td>
<td>0.0</td>
<td>0.75</td>
<td>30</td>
<td>6.6</td>
<td>46</td>
<td>266</td>
<td>9.6</td>
<td><</td>
<td><</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>28</td>
<td>6.6</td>
<td>16</td>
<td>148</td>
<td>15.2</td>
<td><</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.0</td>
<td>1.25</td>
<td>31</td>
<td>6.5</td>
<td>115</td>
<td>171</td>
<td>28.0</td>
<td><</td>
<td><</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5</td>
<td>28</td>
<td>6.5</td>
<td>15</td>
<td>57.5</td>
<td>18.8</td>
<td><</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.</td>
<td>I</td>
<td>0.0</td>
<td>0.5</td>
<td>27</td>
<td>6.8</td>
<td>37</td>
<td>153</td>
<td>39.1</td>
<td><</td>
<td><</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>25</td>
<td>6.7</td>
<td>-</td>
<td>179</td>
<td>17.0</td>
<td><</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.0</td>
<td>0.75</td>
<td>25</td>
<td>6.7</td>
<td>28</td>
<td>94.2</td>
<td>26.2</td>
<td><</td>
<td><</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5</td>
<td>24</td>
<td>6.6</td>
<td>21</td>
<td>158</td>
<td>33.5</td>
<td><</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>I</td>
<td>0.0</td>
<td>1.5</td>
<td>21</td>
<td>5.9</td>
<td>140</td>
<td>108</td>
<td>104.2</td>
<td><</td>
<td><</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2</td>
<td>19</td>
<td>5.6</td>
<td>110</td>
<td>156</td>
<td>88.2</td>
<td><</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.0</td>
<td>2.5</td>
<td>19</td>
<td>5.4</td>
<td>128</td>
<td>203</td>
<td>92.6</td>
<td><</td>
<td><</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5</td>
<td>18</td>
<td>5.7</td>
<td>115</td>
<td>83.8</td>
<td>50.1</td>
<td>83.8</td>
<td><</td>
<td><</td>
<td>0.09</td>
</tr>
<tr>
<td>Aug.</td>
<td>I</td>
<td>0.0</td>
<td>1.25</td>
<td>20</td>
<td>5.7</td>
<td>135</td>
<td>214</td>
<td>90.3</td>
<td><</td>
<td><</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>19</td>
<td>5.9</td>
<td>85</td>
<td>147</td>
<td>138.2</td>
<td><</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.0</td>
<td>2.25</td>
<td>20</td>
<td>5.9</td>
<td>140</td>
<td>65.1</td>
<td>88.2</td>
<td><</td>
<td><</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>19</td>
<td>5.6</td>
<td>95</td>
<td>450</td>
<td>94.9</td>
<td><</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept.</td>
<td>I</td>
<td>0.0</td>
<td>1.75</td>
<td>21</td>
<td>6.1</td>
<td>140</td>
<td>50.7</td>
<td>104.5</td>
<td><</td>
<td><</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>20</td>
<td>5.8</td>
<td>95</td>
<td>70.5</td>
<td>94.7</td>
<td><</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.0</td>
<td>1.75</td>
<td>20</td>
<td>6.2</td>
<td>140</td>
<td>137</td>
<td>54.2</td>
<td><</td>
<td><</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>19</td>
<td>5.9</td>
<td>85</td>
<td>193</td>
<td>89.8</td>
<td><</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Value lower than detection level of method (10mg/l).
(−) No data.
(D.O.) Dissolved oxygen.
(ALK) Total alkalinity.

Regarding the influence of the hydrological cycle, the Mogi Guaçu River has a unimodal inundation period, which occurs in rapid pulses (Krusche, 1989). However, the influence of the invasion of the main channel water on Infernão Lake is minimized by the distance between these two ecosystems, so that the latter can be characterized as an infiltration lake. During sampling in the rainy season, we verified that the water level of the lake fluctuated considerably over a short period of time (a few days); because of this fluctuation, some samples may have reflected more direct influences than those of the hydrological period as a whole. Thus, the higher nitrification rates observed in February at the two sampling stations, for both water column and sediment, may have resulted from the entrance of N-NH₄⁺ and of nitrifying bacteria from adjacent areas as a result of a period of intense rain, similar to that observed by Freitas (1989) for total heterotrophic bacteria.
In view of the ecological conditions established by the low levels of oxygen saturation and N-NH₄⁺ availability, nitrification was of minimal ecological significance in the rainy season, in supplying nitrate to the producer component. The low nutrient concentrations in the water column (Albuquerque & Menezes, 1997; Nogueira et al., 1996) have indicated the sediment to be the principal storage compartment of the system. In this context, it was established that heterotrophic biological nitrogen fixation contributes only 2% to the stock of this element in the reservoir (Ballester & Santos, 1997). Moreover, these same ecological conditions make possible higher rates of denitrification (Gianotti & Santos, 1997), permitting us to consider this process the preferential pathway of N-NO₃⁻ reduction during the period in question.

The greater availability of N-NH₄⁺, derived from mineralization of organic matter accumulated in the rainy season, or from decomposition of aquatic macrophytes, associated with better oxygenation conditions, may have influenced the increase in nitrification rates observed for the dry season. The presence, although in a low quantity, of oxidized forms (N-NO₂⁻ and N-NO₃⁻) in the sediment (Table I) may

Figure 2. Variation of nitrification rates and concentration of inorganic forms of nitrogen in the sediment of Stations I and II during wet (Feb. – Apr.) and dry (July – Sept.) periods.
Figure 3. Variation of nitrification rates, ammonium concentration and dissolved oxygen saturation levels for the surface and near-bottom of the water column at Stations I and II, during wet (Feb. – Apr.) and dry (July – Sept.) periods.
Figure 4. Preliminary simplified conceptual model of the processes of formation and utilization of nitrogen compounds in Infernão Lake during the two hydrological periods studied, in relation to environmental oxygenation conditions and nutrient input. Width of arrows indicates intensity of process.

be a result of this activity. In spite of the presence of N-NO₃ in the sediment, the rates of denitrification (Gianoti, 1994) and biological fixation of the element (Ballester & Santos, 1997) have been found to be lower for the dry period, probably as a result of inhibition by high oxygen concentrations of these processes. Sediment resuspension by wind action, together with the shallower depths at that time, could probably have contributed to the greater availability of N-NH₄ during the dry period. For some temperate zone lakes, peak nitrifying activity has been observed during the winter, due to the influence of these factors (Cavari, 1977; Christofi et al., 1981).

In environments characterized by changes in ecological conditions because of influences from the floodplain, and with a high density of aquatic macrophytes, such as Infernão Lake, the most significant stages of the nitrogen cycle are related to ammonification and consequent uptake of N-NH₄ by the lake biota (Howard-Williams et al., 1989). In this context, the nitrification rate is quantitatively most significant, during the dry season, in furnishing part of the N-NO₃ requirement for the autotrophic community of Infernão Lake, while the sediment always occupies the role of the largest storage.
component and supplier of nutrients in this system. In the rainy season, the ecological significance of nitrification is limited by the input of inorganic-N coming from adjacent areas and by the ecological conditions established in the system.

References

Address:

FERESIN, E.G. & SANTOS, J.E.

PPG-ERN/UFSCar
Via Washington Luiz Km 235 C.P. 676
13565-905 - São Carlos - SP - Brazil