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ABSTRACT
 The goals of this paper are to expose ecologists to the problem related to statistical inference when testing

the association between data sets that are autocorrelated and to introduce a relatively new method for controlling
the bias introduced by autocorrelation that can be easily incorporated in any statistical approach. In addition, I
show the flexibility of this class of methods to the types of data that ecologists are currently most interested,
namely temporal, spatial and phylogenetic data. In this contribution, I also stress the point that is not all variation
due to autocorrelation that affects statistical inference and is important to control only the component that
biases inference. Thus, statistical frameworks should attempt to separate the autocorrelation component that
biases inference from the one that may prove interesting for understanding important ecological processes,
such as contagious processes, driving spatial patterns in species distributions.
Key words: Statistical inference, Predictors, Autocorrelation, Eigenfunction analysis.

RESUMO
UMA ESTRATÉGIA UNIFICADA PARA A ESTIMATIVA DE COMPONENTES ESPACIAIS,

TEMPORAIS E FILOGENÉTICOS EM MODELOS ECOLÓGICOS. O objetivo deste trabalho é de
expor aos ecólogos o problema relacionado aos testes de inferência estatística quando os dados são
autocorrelacionados e apresentar uma técnica relativamente nova que pode ser facilmente incorporada em
análises estatísticas para controlar os erros causados pela autocorrelação. Além disso, eu demonstro a flexibilidade
deste método utilizando três tipos de dados que são importantes em análises ecológicas: dados temporais,
espaciais e filogenéticos. Neste trabalho, eu reitero que não é toda a variação autocorrelacionada que afeta as
inferências estatísticas e que é importante controlar apenas o componente de variação reponsável. Assim,
análises estatísticas devem ser realizadas com o objetivo de separar o componente de variação autocorrelacionada
– que causa erros em testes de hipóteses – do componente que pode ser importante para a compreensão de
processos ecológicos, como processos contagiosos (e.g., dispersão), estruturando padrões de distribuição espacial
em espécies.
Palavras-chaves: Inferência estatística, Preditores, Autocorrelação, Análise eigenfunction.

INTRODUCTION

Testing and estimating the level of association
between two or more variables or two or more
multivariate data sets is a long-standing approach in
identifying important processes governing evolutionary
and ecological patterns. For instance, community
ecologists seek to establish relationships between
environmental characteristics and species distribution
(e.g., Jackson & Harvey 1993, Rodríguez & Lewis

1997, Jenkins & Buikema 1998). Ecomorphologists
often test if size and shape variation are correlated to
ecological differences among species (e.g., Losos 1990,
Douglas & Matthews 1992, Van Damme et al. 1998).
Among systematists a common goal is to determine
whether or not spatial distribution is related to phenotypic
or genetic differentiation among populations or species
(e.g., Douglas & Endler 1982, Douglas et al. 1999).
These research programs embrace rather different
questions and types of multivariate data, but they all
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involve comparisons between two or more variables
or data sets in order to measure their degree of
association. If statistically significant, the match
between data sets contributes to evidence about the
processes determining the association.

Perhaps the most stringent assumption in any
parametric, non-parametric and distribution-free
methods (see Peres-Neto & Olden 2001, for a
distinction between these type of methods) used to
estimate the association between data sets (e.g.,
correlation, multiple regression, redundancy analyses,
canonical correspondence analysis, canonical correlation
analysis, Mantel test, Procrustean rotations, to mention
a few) is the independence of sampled observations
(i.e., each observation must be identically independent
of each other). Parametric (e.g., t-distribution, F-
distribution) and non-parametric (e.g., Mann-Whitney,
rank correlations) sampling distributions were developed
by assuming that every observation in the sample was
drawn randomly and independently from each other.
In permutation tests, the assumption of independence
is also relevant (see Manly 1997) as observations are
randomly permuted in relation to each other when
testing, for example, the significance of correlation or
regression slopes.

Independence of observations entails that no
observation in a sample can be predicted by another
observation in the same sample and that the best
predictor of any observation is simply the mean. When
observations are not independently sampled from each
other, they are said to be autocorrelated and in this
case an observation can be predicted as a function of
other observations. For instance, consider a random
variable under spatial dependence (e.g., the abundance
distribution of a particular species). Two pairs of
observations may have values that are more similar
(positive autocorrelation) or less similar (negative
autocorrelation) according to their geographic distance
to a greater extent than one would expect if the
differences among those values were due to chance
alone or to other predictors of interest (e.g.,
environment). Therefore, in the presence of
autocorrelation, the number of degrees of freedom in
the sample is smaller than when observations are
independent. As a consequence, association tests
generate unrealistic significance estimates because a
larger number of degrees of freedom than the

appropriate one is used, thus generating narrow
confidence limits for hypothesis testing, making the test
less conservative than expected by pure chance when
the null hypothesis is true. In order words, the nominal
type I error is greater than the pre-established one (i.e.,
significance level or alpha). In addition, autocorrelation
can also promote bias in estimates (e.g., slope).  We
will take a closer look into this issue in the next section
where the problem is demonstrated by means of
simulation.

Autocorrelation is common in nature and operates
either as a factor moulding or constraining ecological
variables, or as a confounding variable that introduces
bias by influencing the interpretation of statistical models
(Clifford et al. 1988, Dutilleul 1993).  In Ecology, three
important processes that may cause autocorrelation have
drawn a great deal of attention in recent years: spatial,
temporal and phylogenetic variation (Ives & Zhu 2006).
Although these processes can introduce bias in ecological
models, they can be also interesting on their own. For
instance, geographically contagious biotic processes
such as dispersal may promote spatial autocorrelation
in species distributions that may cause bias in models,
but they are also interesting as an ecological process
(e.g., the study of ecological factors driving dispersal
differences among species). The analysis of time series
(see Bence 1995) of population abundances may also
cause problems due to autocorrelation caused, for
instance, by density-dependent processes (i.e.,
abundances tend to be correlated through time), but it
also allows ecologists to understand, for instance,
population dynamics and predict the fate of populations.
In the case of phylogenetic analysis, controlling for
autocorrelation may allow us to study correlated
evolution due to selective processes but it can be also
used to assess the level of plasticity or canalization of
ecological features (e.g., feeding mode, morphology,
behavior) across species.

Given the great deal of attention that was given to
the problems caused by autocorrelation, it seems that
ecologists do not recall at times that autocorrelation in
itself may be caused by interesting ecological
phenomena (e.g., contagious processes, density
dependence, evolution) and we should not perceive
autocorrelation always as a problem. In this paper, I
advocate a balanced view where not all the variation in
ecological data that is autocorrelated should be
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eliminated in order to allow for unbiased hypothesis
testing. Only the component of variation due to
autocorrelation that causes bias in statistical tests
should be removed, whereas the component that does
not should be left in the data and further analyzed to
address interesting questions regarding the processes
driving this variation. Note, however, that the amount
of autocorrelation that may bias statistical testing will
vary among data sets and it is not always possible to
eliminate the component that causes bias and still have
some autocorrelated variation left for interpretation.
There are numerous techniques that aim at controlling
the effects of autocorrelation in ecological models
(Legendre 1993, Diniz-Filho 2000, Dale & Fortin 2002,
Martins et al. 2002), but most of them are designed
only for controlling autocorrelation. The goal of this
paper is two-fold: (1) show how the problems in
hypothesis testing arise under autocorrelation, and (2)
describe a statistical approach that attempts to control
for the autocorrelation component of ecological
variation that affects hypothesis testing. The method
is flexible enough to tackle three of the most important
ecological processes that may generate dependence
among observations, namely spatial, temporal and
phylogenetic autocorrelation, providing a unified
strategy for estimating and controlling autocorrelation
in ecological models. Moreover, the class of method
presented here is flexible enough that it can be applied
to any type of distribution under generalized linear
model procedures (e.g., analysis of variance, logistic/
binomial and Poisson regressions) and also applicable
to non-parametric modeling tools such as regression
and classification trees (CART) and artificial neural
networks (see Elith et al. 2006 for a review of novel
modeling techniques in ecology). Examples dealing with
spatial, temporal and phylogenetic variation are
provided.

HOW DOES AUTOCORRELATION AFFECT
ECOLOGICAL MODELS?
THE ANALYSIS OF TIME SERIES

Let us suppose that an ecologist is interested in testing
whether the abundance of a lake fish species is
controlled by total zooplankton abundance based on a
time series of 10 years with samples collected every 2
months in a lake, totalizing 60 observations. To test

for their association, a regression slope between fish
and zooplankton abundance will be used based on an
alpha level of 0.05. If regression residuals are
independent and normally distributed, and if the
population slope (i.e., true slope between fish and
zooplankton in the study lake) is zero, there is a 5 %
(i.e., alpha = 0.05) chance that a sample slope of 60
observations randomly selected through time will be
significant even though the population value is zero.
This chance of committing a type I error is known and
established a priori (i.e., alpha). However, if fish and
zooplankton are temporally autocorrelated, the chance
of sampling 60 observations and finding a significant
slope between them is greater than 0.05 (in some cases
much greater, e.g., 0.30).

In order to show the problem in a more compelling
manner, I will use a simulation to demonstrate the
problem. Assume that the abundances of the fish species
and zooplankton are independent (slope = 0) of each
other but that their abundances are regulated by intra-
taxa density dependence under a stochastic logistic
model (or a first-order nonlinear autoregression model;
see Dennis & Taper 1994, Clark & Bjørnstad 2004) as
follows:

ln(Nt) = ln(Nt-1) + b0 + b1 exp (ln(Nt-1)) + ze

where b0, b1 and z are constants, and e is a normally
distributed N(0,1) random shock (i.e., mean=0 and
variance=1) to the population growth rate (e.g.,
environmental noise).

Now, let us simulate a time series for the fish species
fish and total zooplankton abundance as follows:

ln(Ntfish) = ln(Nt-1 fish) +0,5 – 0.01exp(ln(Nt-1 fish)) + 0.1e

ln(Ntzoo) = ln(Nt-1 zoo) +0,5 – 0.01exp(ln(Nt-1 zoo)) + 0.3e

The initial abundances were set as N0fish = ln(70)
and N0zoo = ln(1000). Two simulated time series using
these equations are shown in Fig. 1. Note that if another
time series is generated either for fish or zooplankton,
the temporal trajectories would be different and
independently generated from the one presented in Fig.
1 due to the random shock introduced by e. Because
regression slopes of the simulated time series represent
independent realizations of the same statistical
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population, they can be used to illustrate the bias in
statistical tests for regression slopes. In this case,
because zooplankton and fish time series are
independently generated, the population slope is, by
definition, zero.  I have generated 10,000 time series
based on the above formulae and tested the slope based
on the parametric t test and a permutation test (999
permutations), as presented by Peres-Neto & Olden
(2001). The frequency of significant tests based on an
alpha value of 0.05 was 0.1199 (1,199 rejections/10,000
time series) for the t test and 0.1280 (1,280 rejections/
10,000 time series) for the permutation test. These
frequencies represent type I error estimates, i.e., the
sampling frequency at which the null hypothesis will
be rejected when it is true, given that the slope in the
population is zero. The significance level, or alpha value,
established a priori is the probability of committing
the so-called type I error. In other words, if a significance
level of 0.05 is chosen, for 10,000 sample values of
the test being conducted, 500 of them will be considered
significant when in reality (i.e., in the population) they
are not. If we had used the following non-density
dependent processes

ln(Ntfish) = ln(70) + 0.5 – 0.01exp(ln(70)) + 0.le

ln(Ntzoo) = ln(1000) + 0.5 – 0.001exp(ln(1000)) +0.3e

for generating fish and zooplankton abundances,
respectively, instead, the frequency of significant slope
tests based on an alpha value of 0.05 was 0.0499 (499

rejections/10 000 time series) for the t test and 0.051
(510 rejections/ 10 000 time series) for the permutation
test. Thus, simply because the data points were not
independently generated in the first set of simulations,
the sampling tests tended to reject more often than the
pre-established significance level (alpha). Hence,
because of the autocorrelation between the data points,
statistical tests become biased as they present greater
nominal type I error rates than the pre-established
significance level. Under extreme circumstances, the
estimation of the slope may be also biased.

THE ANALYSIS OF SPATIAL DATA

Perhaps one of the most innate patterns in natural
systems is their spatial organization. The issues of
autocorrelation in modelling ecological data have been
of particular interest when considering spatial
distributions given that one of the most common
routines in ecological investigations is to collect data
on species distribution and environmental data across
space to assess how habitat features drive species
distribution across a particular landscape of interest.
The problem of autocorrelation in this case is manifested
by the fact that spatial processes may influence both
species’ distributions and environmental factors
generating apparent species-environment concordance
(Legendre 1993).  Species abundances are spatially
organized across landscapes due to ecological
contagious processes such as population growth,
geographic dispersal, differential fertility or mortality,
social organization or competition dynamics, for
instance. Environmental factors are also often spatially
organized across landscapes where nearby sites tend
to contain more similar habitat conditions than distant
ones. Establishing relationships between species
distributions and environmental characteristics is a
widely-used approach (e.g., Legendre & Fortin 1989,
Jackson & Harvey 1993, Diniz-Filho & Bini 1996,
Rodríguez & Lewis 1997) in the search for causes
dictating patterns in species distributions. Habitat
models relating habitat characteristics and community
structure (species occurrence or abundance) are
expected to answer at least two questions: (1) How
well is the distribution of a set of species explained by
the given set of predictive variables? and (2) Which
variables are irrelevant or redundant in the sense of
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Figure 1. Two simulated time series using a first-order nonlinear
autoregression model to generate density dependence in fish and
zooplankton.  Models are described in the text.
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failing to strengthen the explanation of patterns after
certain other variables have been taken into account?
The first question relates to the predictive power of
the model that can be used in conservation management,
for questions such as estimating habitat suitability,
forecasting the effects of habitat change due to human
interference, establishing potential locations for species
re-introduction, or predicting how community structure
may be affected by the invasion of exotic species. The
second question is important for heuristic issues such
as determining the likelihood of competing hypotheses
to explain particular patterns in community structure
(Peres-Neto et al. 2001).

Regardless of the goal, both questions involve
statistical tests that may prove challenging under spatial
autocorrelation. In order to demonstrate the problem
of testing the relationship between spatially
autocorrelated processes, I have applied a very simple

method for generating spatially dependent data (but
see Legendre et al. 2005 for other possibilities). First,
I generated a matrix Y containing two normally
distributed variables N (0.1) with ten observations each.
Then, for each observation in Y, I have generated nine
other observations that were created by adding small
normally distributed deviates –N (0.1)/15 to each of
the ten original observations; after that, matrix Y
contained two variables and 100 observations. A second
matrix X was generated in the same manner. The spatial
patterns depicted by two independent realizations of
this process (i.e., matrices X and Y) are shown in Fig.
2. Note that we can distinguish well the ten clusters of
ten observations each generated by the simulation
process in both matrices. Here, because the goal is
simply to show the inferential problems under spatial
autocorrelation, I did not generate abundance-like data
and I will simply test the association between matrices
Y and X.

Perhaps canonical analyses such as redundancy
analysis (RDA, Rao 1964), canonical correspondence
analysis (CCA, ter Braak 1986), and distance-based
redundancy analysis (db-RDA, Legendre & Anderson
1999) are the most commonly used tool for modeling
communities through environmental predictors.
Canonical analyses can be best understood as methods
for extending multiple regression, which has a single
response y and multiple predictors X (e.g., several
environmental predictors), to multiple regression
involving multiple response variables Y (e.g., several
species) and a common matrix of predictors X. I have
applied here a RDA to test the association between
matrices Y and X simulated above. I have generated
10,000 Y and X matrices based on the process described
above for generating spatially autocorrelated data and
tested their association using the redundancy statistic

2
YR X  based on a well-established permutation test (999

permutations were used) described elsewhere (Manly
1997, Legendre & Legendre 1998, Peres-Neto et al.
2006). As for the time series simulation, because Y and
X represent independent realizations, they can be used
to illustrate the bias of statistical tests for  under
autocorrelation. Because Y and X are independently
generated, the population  is also, by definition, zero.
The frequency of significant tests based on an alpha
value of 0.05 was 0.9431 (9431 rejections/10,000 time
series), indicating an extremely high nominal type I error
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Figure 2. Spatial patterns depicted from two independent
realizations of a simple process to generate spatial autocorrelation
(see text for a description of the process).  This process was used
to generate two sets of matrices (X and Y) to test for their
correlation when data matrices are spatially autocorrelated. Axes
represent artificial geographic coordinates.
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rate.  On the other hand, the test for  based on Y and X
matrices containing only two normally distributed
variables N(0,1) with 100 observations each (i.e.,
without the small deviates around the original
observations) provided a correct type I error (0.0498,
498/10,000 tests).

THE ANALYSIS OF PHYLOGENETIC DATA

Ecologists and evolutionary biologists are commonly
interested in testing the association between variables
where the observations represent species (usually mean
values for each species). Examples of these type of
data include the relationship between gestation time
and time to sexual maturity in primates (Harvey et al.
1987), the relationship between home range and body
size (Garland et al. 1992) and the relationship between
behavioural and morphological characters (Losos
1990), to mention just a few.  However, because
closely related species tend to be more similar to each
other due to evolutionary processes, they may not
represent independent observations that can be directly
used to assess these relationships (Felsenstein 1985).
In this case, variables of interest (e.g., body size) are
said to be phylogenetically autocorrelated.

There are different ways of generating
phylogenetically autocorrelated data (Martins & Garland
1991, Fleckleton et al. 2002, Martins et al. 2002) and
they are used to assess the performance of comparative
methods in correcting the problem of inflated type I
errors due to autocorrelation.  Most methods assume a
model of evolution such as Brownian movement (BM)
or Ornstein-Uhlenbeck (OU) process (Felsestein 1988,
see also Diniz-Filho 2000 for a discussion on these
processes) that generates data under independence
evolution by assuming that characters evolve by drift
(i.e., without selection in the case of BM) or different
levels of constraints such as stabilizing selection towards
an optimum across phylogenetic lineages (in the case
of OU). Therefore, one of the goals of testing the
correlation between characters under a comparative
framework is to test whether the correlation between
characters is beyond what is expected by independence
evolution and hence estimate the importance of
correlated evolution due to selection in driving these
correlations. Regardless of the model used, the
evolution of a character is proportional to the shared

evolutionary history due to common ancestry. In the
case of Brownian movement, the evolution is directly
proportional to the shared history, whereas in the OU
process the common history is lessened.

There are different computational implementations
in order to generate phylogenetically autocorrelated data
under the BM and OU processes. In order to illustrate
the problem, I suggest yet another implementation that
generates data similar to a BM process. I will not
demonstrate that the algebra behind this new
implementation generates data akin to a BM process,
but it follows the work developed by Garland & Ives
(2000), Butler et al. (2000) and Rohlf (2001). Assume
the phylogenetic tree depicted in Fig. 3a and its
associated phylogenetic covariance matrix (Fig. 3b),
which is calculated directly from the tree. The main
diagonal of the covariance matrix represents the
variance, which is calculated as the distance from the
root to tip (i.e., the total time of evolution). In this
case, the variance is 14.3. The covariance values (off
diagonal) are the shared evolution between any given
two species. For instance, Anolis opalinus and Anolis
grahami share 12.2 path lengths (arbitrary units of time;
1.0 + 6.8 + 0.5 + 2.0 + 1.9 = 12.2). Phylogenetically
autocorrelated data for two independent characters x
and y were generated as follows:

x = eV½  and  y = eV½

where e is a (1,n) vector containing n (number of
species) normally distributed variables N(0,1) and V½

is the root (here I used a Cholesky decomposition) of
the covariance matrix.

I have generated 10,000 x and y vectors sets and
the rate of rejection of a t-test for their correlation based
on an alpha equal to 0.05 was 0.1655 (1655 rejections/
10 000 character sets). A permutation test (Peres-Neto
& Olden 2001) provided a rate of 0.1574. Note that x
and y were independently generated, though the
rejection rate of their correlation test was much higher
than the expected 0.05. Next, I simulated data sets
where only x is phylogenetically autocorrelated and y
is simply a vector of random normally distributed N(0,1)
values (i.e., without autocorrelation). In this case, the
rejection rate was 0.049 (i.e., 490 rejections/10 000
character sets) indicating that only when both variables
are autocorrelated that statistical inference is biased.
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Figure 3. (a) Phylogenetic tree of 13 species of West Indian Anolis lizards (adapted from Losos 1990). Numerical values on the tree
indicate branch length that are used to calculate the phylogenetic covariance matrix; (b) phylogenetic covariance matrix based on the
Anolis phylogeny.  Note that variance is 14.3 (main diagonal) and that covariance values (off diagonal) are the shared evolution between
any given two species.  For instance, Anolis opalinus and Anolis grahami share 12.2 path lengths (arbitrary units of time; 1.0 + 6.8 +
0.5 + 2.0 + 1.9 = 12.2).

The fact that both variables or data sets involved in the
comparison need to be autocorrelated to affect
hypothesis testing is not unique to phylogenetic data
and this fact has been already stressed in the literature
in the case of spatial data (e.g., Dutilleul 1993, Legendre
et al. 2004).

I hope to have convinced the readership of the
problems related to statistical testing of autocorrelated
data and that this type of data has to be properly
analyzed. In the next section, I introduce a method for
filtering out (removing) the autocorrelated variation that
causes bias in statistical testing.
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EIGENFUNCTION BASED FILTERING
METHOD

The eigenvector filtering method has been
suggested independently by different researchers both
in the context of spatially (Griffith 2000, Borcard &
Legendre 2002, Griffith & Peres-Neto 2006 reviewed
this method in the case of spatial data) and
phylogenetically autocorrelated data (Diniz-Filho et al.
1998). These implementations were distinct from the
one presented here though. The filtering method begins
with an eigenfunction decomposition of a truncated
matrix (see below) representing the proximity among
observations (i.e., temporal, spatial and species). These
eigenvectors, corresponding to positive eigenvalues, are
then used as spatial descriptors in regression or any
type of analysis aiming at testing the association of
autocorrelated data.  In the original method described
by Borcard & Legendre (2002) and Diniz-Filho et al.
(1998), the truncated matrix of temporal, spatial or
phylogenetic distances was built in such a way that it
considered the influence of an observation on itself
(e.g., the geographic and phylogenetic distance matrix
has non-zero values in the main diagonal).  Although
this consideration may be seen as difficult to justify,
there are examples of spatial models where it has been
applied (Bavaud 1998). Here I use the implementation
provided by Dray et al. (2006) where this problem is
solved. The eigenvector procedure (after Dray et al.
2006) may be summarized with the following steps:
1. Compute a pairwise Euclidean distance matrix
among observations units ( ijd =  D );
2. For spatial data, choose a threshold value t and
construct a truncated connectivity matrix W (i.e., not
all observations are connected) using the following rule:

Legendre 1998). Other methods (see Dray et al. 2006
and Griffith & Peres-Neto 2006) are also available for
establishing thresholds and different options can be
explored to the specific problem at hand. However,
simulation work (Peres-Neto & Legendre, unpublished
data) indicates that the method based on minimum
spanning tree corrects for the problem of inflated type
I errors in spatially autocorrelated data.

In the case of temporal data that has been sampled
according to a constant time interval, the procedure is
simplified as W becomes simply a matrix where the
distance between adjacent time periods is equal to 1
and the distance between non-adjacent periods is equal
to 0 (i.e, dij = 1 only if i-j = -1 or 1, if i-j takes any other
value, e.g., I = 3 and j = 1, then dij = 0). Note, however,
that irregular sampling time periods can easily be
incorporated by using the method described for spatial
data where a pairwise distance matrix representing
the difference between time periods is applied. In the
case of phylogenetic data, matrix W can be easily
calculated by subtracting the phylogenetic variance by
each element in the variance-covariance matrix.
3. Compute the eigenvectors of the centered W matrix:

(I – 11T /n)W(I – 11T / n)

The eigenvector matrix is a square matrix (i.e., a
matrix with equal numbers of rows and columns) where
the columns contain variables representing distinct
temporal, spatial or phylogenetic patterns, depending
on the application, and the rows represent observations
(i.e., temporal samples, spatial sample or species).
Given the non-Euclidean nature of W, both positive
and negative eigenvalues are produced. The non-
Euclidean part is introduced by the fact that only certain
connections among observations, and not all, are
considered in W. The extracted eigenvectors represent
the decomposition of the Moran’s index of
autocorrelation (MI; see Legendre & Legendre 1998,
for the use of MI in spatial data, and Diniz-Filho 2001
in phylogenetic data) into all mutually orthogonal and
uncorrelated temporal, spatial or phylogenetic patterns.
Eigenvectors having associated eigenvalues that are
positive represent positive autocorrelation, whereas
eigenvectors having negative eigenvalues represent
negative autocorrelation.  A MI for any eigenvector v
can be directly calculated as follows:
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where t is chosen as the maximum distance that
maintains all sampling units being connected using a
minimum spanning tree algorithm (Legendre &



In the context of spatial data, eigenvectors with large
eigenvalues represent coarse scales of variability or
landscape-wide trends (e.g., global); eigenvectors with
intermediate size eigenvalues represent medium scales
(e.g., regional); eigenvectors with small eigenvalues
represent fine scales or patchiness (e.g., local).
Therefore, the extracted eigenvectors capture a range
of geographic scales encapsulated in a given dataset,
restricted by the landscape boundary extent of sample

locations and the threshold value used to truncate
distance. The same analogy can be made to temporal
and phylogenetic data. In the latter case, eigenvectors
with large eigenvalues represent early speciation events,
whereas eigenvectors with small eigenvalues represent
later events.  In order to provide a picture of the types
of patterns that these eigenvectors represent, I have
plotted the temporal patterns depicted by three selected
eigenvectors constructed for a time series containing
100 observations (Fig. 4, top three panels).

The resulting eigenvectors, themselves, are then
used directly as synthetic explanatory variables in the
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Figure 4. Temporal patterns depicted by three selected eigenvectors (1, 15 and 26) constructed for a time series containing 100
observations and by the sum of four randomly selected eigenvectors for the same time series.  The latter series mimics a possible
outcome of a linear combination of eigenvector maps created by a model selection technique in regression analysis.

analysis. This modeling approach is semiparametric in
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nature, casting autocorrelation as some unknown
function (nonparametric) - which must be estimated
from a given dataset - that is additively coupled with a
set of covariates whose coefficients need to be
estimated (parametric).  For instance, in a multiple
regression model of y on a set of predictors, we add
the eigenvectors as additional predictors into the model
and linear combinations between them constitute an
estimate of the unknown autocorrelation function. In
practice (see next section), we only apply a judiciously
selected subset of eigenvectors, since some of them
may not estimate well the autocorrelation function of
a particular data set. Here, and in other ecological
applications, the set of candidate eigenvectors to be
selected represents positive spatial autocorrelation (i.e.,
only eigenvectors having positive eigenvalues are
retained for further analysis) which is the one known
to inflate type I error rates (Legendre et al. 2004.
Linear combinations of selected eigenvectors are
capable of representing complex patterns in data. Fig.
4 (bottom panel) shows the sum of four randomly
selected eigenvectors for the time series containing
100 observations, which mimics a possible outcome of
a linear combination of eigenvector maps created with
a model-selection technique in regression analysis.
Note how the combination of eigenvectors can depict
complex patterns of variation. Dray et al. (2006) and
Griffith & Peres-Neto (2006) proposed model selection
techniques for eigenvectors in the context of spatial
data, but they are directly applicable to temporal and
phylogenetic data. The selection procedure introduced
by Griffith & Peres-Neto (2006) reduces the level of
autocorrelation in regression residuals so that the
assumption regarding independence is met, whereas
the method proposed by Dray et al. (2006) selects
eigenvectors based on a forward selection procedure
aiming at maximizing the amount of autocorrelation
explained by the eigenvectors. In the next section, I
provide a complete example of application for temporal,
spatial and phylogenetic data.

APPLICATIONS OF EIGENFUNCTION
FILTERING METHOD
ANALYSIS OF A TIME SERIES

As an example, I analyzed a time series of yellow
perch and chlorophyll concentration from Sparkling lake

in Wisconsin, USA. Data comes from to the North
Temperate Lakes – Long-term ecological research
project (http://lter/limnology/wisc.edu) and details on
these particular data and sampling procedures can be
found in Beisner et al. (2003). Fig. 5a shows the
temporal trends for yellow perch and chlorophyll.
Although weak (Fig. 5b), there is a significant positive
correlation between chlorophyll and yellow perch (a
zooplanktivorous species). This suggests a top-down
trophic cascade in which fish predation controls
zooplankton, thereby reducing grazing pressure on
phytoplankton, leading to an increase of chlorophyll
concentration when perch is relatively more abundant.
First, I tested for each variable separately whether all
positive eigenvectors significantly explained its variation
using a multiple regression model (perch: F = 18.54, P
= 0.0001; chlorophyll: F = 3.019, P = 0.0004), indicating
that both variables have a strong degree of temporal
autocorrelation. In this case, all eigenvectors were
used because selection procedures (e.g., forward
selection) tend to inflate the overall significance of the
model. Once an autocorrelation component is
considered to be present in both variables, a selection
procedure should be used. Next, I performed a forward
selection for a multiple regression of chlorophyll on
the positively autocorrelated eigenvectors, and 11
eigenvectors were found to be significant. Finally, in
order to test for the effect of perch on chlorophyll,
while controlling for temporal autocorrelation, I
performed a multiple regression of chlorophyll on perch,
and the 11 selected eigenvectors. The perch
contribution was no longer significant to the model
(slope significance = 0.9137), indicating that the initial
conjecture of top-down control was due to temporal
autocorrelation inherent to perch and chlorophyll
dynamics.

ANALYSIS OF A SPATIAL DATA

Here I analyze a fish data comprising the distribution
of 27 species and environmental data in 53 sample
sites of the river Macacu, Brazil (details on sampling
procedures, species and environmental data are
provided in Peres-Neto 2004). My goal here is to test
whether species distributions are driven by the
environmental variation found in the system. In this
data, 12 eigenvectors having positive eigenvalues were
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extracted and used as spatial descriptors. The
eigenvectors were calculated on the basis of
geographic distances between sites, though one could
also consider the water-course distance within the river
network, which can better represent spatial
relationships in riverine systems (Olden et al. 2001).

In order to assess the significance of environmental
predictors on species distributions, I used variation
partitioning for redundancy analysis (RDA) as a
template. An initial test of the significance of the RDA
statistic 2

YR X  indicates that environment is a significant
driver of species distribution ( 2

(Y X)R adj = 0.191, P =
0.001). Here, I report adjusted values () for the RDA
statistic, as unadjusted values are highly biased (Peres-
Neto et al. 2006). The adjusted RDA statistic parallels
the adjusted R2 (coefficient of determination) in linear

regression analysis. First, I tested the significance of
based on all 12 spatial eigenvectors which indicated a
significant amount of autocorrelation in both species
distribution and environmental matrices (species
distribution: = 0.199, P = 0.001; environment: = 0.599,
P = 0.001). Next, to filter out the influence of the spatial
autocorrelation on the analysis, I applied variation
partitioning by RDA (Borcard et al. 1992) to the matrix,
using fish distribution as the dependent matrix, and
environmental and spatial predictors as two sets of
predictors. Variation partitioning is used to identify
common and unique contributions to model prediction
and hence better address the question of the relative
influences of the groups of independent variables
considered in the model. When partitioning variation
in RDA, independent variables are grouped into sets
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Figure 5. (a) Time series of yellow perch catches and chlorophyll concentration; (b) linear regression of chlorophyll on yellow perch
based on the time series values.
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representing broad factors (here environment and
space). In that context, variation partitioning is more
suitable than analyzing the individual contributions of
regressors via their partial correlation coefficients. In
this approach, the total adjusted percentage of variation
explained by the model is partitioned into unique and
common contributions of the sets of predictors (details
of these calculations are provided in Peres-Neto et al.
2006).

A forward stepwise selection procedure for RDA
(ter Braak & Smilauer 2002) was applied to select
spatial eigenvectors that are important in explaining
the spatial autocorrelation in species distribution. Only
four out of the original 12 eigenvectors representing
positive spatial autocorrelation were retained. Results
of the variation partitioning based on the selected
eigenvectors and adjusted fractions of variation are
presented in Fig. 6. After partitioning the spatial
variation, environment continued to explain a significant
amount of the variation (fraction [a] in Fig. 6).

spatial variation is removed from the environmental
variation); fraction [c] is the unique variation of species
distribution explained by spatial autocorrelation (i.e.,
after the environmental variation is removed from the
spatial predictors); fraction [b] is the variation in species
distribution that cannot be uniquely assigned to space
or environment and represents the level of
multicolinearity (i.e., shared variation) between the two
sets of predictors (i.e, space and environment). Only
fractions [a] and [c] can be tested.

Variation partitioning raises an important issue
related to the control of spatial autocorrelation in any
ecological model, and not only in the present case. It
is not all variation due to spatial autocorrelation that
will bias statistical inference, but only a particular
component, here expressed by fraction [b]. Unlike in
variation partitioning, fraction [b] cannot be easily
estimated for some other modeling procedures (e.g.,
logistic regression). However, this fraction is
automatically considered in significance tests via partial
approaches that eliminate multicolinearity among
predictors when spatial eigenvectors are entered in
the model, in addition to the other regressors of interest.
This point is not commonly understood and is worthy
of mention because not all spatial autocorrelation is
detrimental to interpretation. In fact, the left-over spatial
component (i.e., residual variation of spatial variation
independent of environment, or fraction [c] in ordinary
least square models) can be interpreted further and
aid in understanding contagious ecological processes
that are important in driving species distribution (e.g.,
dispersal). However, it is important to keep in mind
that part of this residual variation may still represent
spatial autocorrelation of unmeasured environmental
predictors.

ANALYSIS OF A PHYLOGENETIC DATA

Here an ecomorphological data set comprising 13
species of West Indian Anolis lizards (Losos 1990;
data is presented in his Table 1) is analyzed to test
whether morphological differences amongst species
result in differences in performance in this group of
lizards. This hypothesis was tested by Losos (1990)
using Felsenstein’s contrasts (1985) for controlling the
effects of phylogeny and canonical correlation analysis.
For the sake of illustration, I test the same hypothesis

Components of variation

[d]=0.760

[a]=0.092 
P=0.004

[b]=0.099

[c]=0.049
P=0.001

Significance of fractions was tested using
permutation tests (999 permutations were applied here;
see Legendre & Legendre 1998 for details on test of
fractions). As applied here, the variation partitioning
fractions presented in Fig. 6 represent the following
values: fraction [a] is the unique variation of species
distribution explained by environment (i.e., after the
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Figure 6. Variation partitioning Venn diagrams representing the
adjusted percentages of unique contribution of spatial [c] and
environmental [a] components to the fish distribution in Macacu
river.



but using the eigenvector method and variation
partitioning for RDA instead.

The phylogeny and phylogenetic covariance matrix
are presented in Fig. 3. There was no evidence that
morphology and performance (values were ln-
transformed) are phylogenetically dependent
(morphology: = -0.011, P = 0.3260; performance = -
0.002, P = 0.3720), suggesting that the association
between the two multivariate traits (= 0.9017, P = 0.001)
is due to adaptive evolution where convergence
evolution has been widespread in these lizards (see
Losos 1990 for further discussion).

CONCLUDING REMARKS

My goals here were two fold: (1) expose ecologists
to the problem related to statistical inference when
testing the association between data sets that are
autocorrelated and (2) introduce a relatively new class
of predictors based on eigenfunction analysis that can
be easily incorporated in analytical approaches for
controlling the bias due to autocorrelation. In addition,
I have shown the flexibility of this class of methods to
the types of data in which ecologists are currently most
interested, namely temporal, spatial and phylogenetic
analyses.  Here I applied two commonly used methods
based on ordinary least-square regression (RDA and
regression) as means of testing the association between
variables and data sets. However, the two method
introduced here for controlling autocorrelation is readily
extensible to any type of modelling procedure such as
GLMs (e.g., logistic/binomial and Poisson regressions)
and modern computational procedures (see Elith et al.
2006 for a review) by using eigenvectors as additional
predictors in these models. It is worth of noting that
the autoregressive approach used in many temporal,
spatial and phylogenetic applications becomes
cumbersome and difficult to estimate when extended
to GLMs and to other modelling techniques. The
principal problem with autoregression is the normalizing
constant, which is the Jacobian term in the linear model
case, and requires Markov chain Monte Carlo
estimation in the GLM case. In addition, there is nothing
akin to the autoregressive model for modelling multiple
variables (e.g., multiple species, several morphological
characters) as in canonical analysis (e.g., RDA).

that not all the autocorrelation present in data that will
affect statistical inference and is important to control
only the component that bias inference. Thus, future
analytical developments should attempt to separate the
autocorrelation bias component from the one that may
prove of interest for understanding important ecological
processes such as contagious processes driving spatial
patterns in species distributions. Parts of variation in
data due to these contagious processes may cause bias
and should be controlled for, but the component that
does not bias statistical interpretation should be kept
and further analyzed. This is relatively simple to
perform by conducting residual analysis where the
common component of variation due to autocorrelation
in the data sets being analyzed is removed and the
independent component is analyzed. Another important
point that should be reiterated is that analytical
approaches for controlling the effects of autocorrelation
should be only considered in the presence of
dependence among observations and that is the reason
we should start by testing whether or not the data sets
involved are autocorrelated. Abouheif (1998) raised
the point in evolutionary ecology that if analytical
approaches are used to control for phylogenetic
autocorrelation when it is not relevant, that may also
introduce bias to the analysis. Another important point
is that statistical inference is only affected when both
variables (or data sets) are autocorrelated. If only one
variable is autocorrelated whereas the other is not, then
the analysis is not affected. This also reiterates the
point of removing only the common component of
variation stated above.

Model selection can play an important role in
controlling the effects of autocorrelation. For each
eigenvector that is considered in the model, the model
is penalized by the loss of degrees of freedom when
testing for the association between the original
variables of interest (e.g., species distributions and
environmental characteristics). Therefore, only a sub-
set of the relevant eigenvectors should be considered,
chosen by a model selection procedure, in order to
maximize the chances of detecting true associations
between the variables involved (i.e., increase power of
the test). Modelling selection procedures may bias the
estimation of variable contribution and model fit, among
others, but if not used, there can be a reduction in the
power of statistical procedures to test the association
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I feel that is particularly important to stress the point



between data sets. Therefore, this problem opens
another avenue for future research. Griffith & Peres-
Neto (1996) advocated for a modelling selection
procedure that minimizes the autocorrelation in
residuals of GLM models, however the advantages and
disadvantages of this and other model selection
procedures should be further examined. In this
contribution, I only considered eigenvectors that are
positively autocorrelated, but future research should
investigate whether negative autocorrelation also
promote bias in statistical inference. If that is the case,
then the method can also accommodate this type of
autocorrelation by using the eigenvectors that represent
negative autocorrelation in the analysis (i.e.,
eigenvectors with negative eigenvalues or MI). There
are many possible avenues for applying and expanding
the applications of eigenvector predictors, and the
present study is an illustration of how this relatively
new and flexible technique can be used in ecological
analysis.
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