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ABSTRACT

The goals of this paper are to expose ecol ogists to the problem related to statistical inference when testing
the association between data setsthat are autocorrel ated and to introduce arel atively new method for controlling
the biasintroduced by autocorrel ation that can be easily incorporated in any statistical approach. In addition, |
show the flexibility of this class of methods to the types of data that ecologists are currently most interested,
namely temporal, spatial and phylogenetic data. Inthiscontribution, | also stressthe point that isnot all variation
due to autocorrelation that affects statistical inference and is important to control only the component that
biases inference. Thus, statistical frameworks should attempt to separate the autocorrelation component that
biases inference from the one that may prove interesting for understanding important ecological processes,
such as contagious processes, driving spatial patternsin speciesdistributions.
Key wor ds: Statistical inference, Predictors, Autocorrel ation, Eigenfunction analysis.

RESUMO

UMA ESTRATEGIA UNIFICADA PARA A ESTIMATIVA DE COMPONENTES ESPACIAIS,
TEMPORAIS E FILOGENETICOS EM MODELOS ECOLOGICOS. O objetivo deste trabalho é de
expor aos ecologos o problema relacionado aos testes de inferéncia estatistica quando os dados sao
autocorrel acionados e apresentar uma técnica relativamente nova que pode ser facilmente incorporada em
andlises estatisticas paracontrolar os erros causados pelaautocorrel acgo. Além disso, eu demonstro aflexibilidade
deste método utilizando trés tipos de dados que sdo importantes em andlises ecoldgicas: dados temporais,
espaciais e filogenéticos. Neste trabal ho, eu reitero que ndo é toda a variag&o autocorrel acionada que af eta as
inferéncias estatisticas e que € importante controlar apenas 0 componente de variagdo reponsavel. Assim,
andlises estatisticas devem ser realizadas com o objetivo de separar o componente de variagao autocorrel acionada
— gue causa erros em testes de hipéteses — do componente que pode ser importante para a compreensdo de
processos ecol 6gicos, como processos contagiosos (e.g., dispersdo), estruturando padrfes de distribui¢do espacial
em espécies.
Palavras-chaves: Inferéncia estatistica, Preditores, Autocorrelacéo, Analise eigenfunction.

INTRODUCTION 1997, Jenkins & Buikema 1998). Ecomorphologists

often test if size and shape variation are correlated to

Testing and estimating the level of association
between two or more variables or two or more
multivariate data sets is a long-standing approach in
identifying important processes governing evolutionary
and ecological patterns. For instance, community
ecologists seek to establish relationships between
environmental characteristicsand speciesdistribution
(e.g., Jackson & Harvey 1993, Rodriguez & Lewis

ecological differencesamong species(e.g., L0osos 1990,
Douglas & Matthews 1992, Van Dammeet al. 1998).
Among systematists a common goal is to determine
whether or not spatid distributionisrelated to phenotypic
or genetic differentiation among popul ations or species
(e.g., Douglas & Endler 1982, Douglas et al. 1999).
These research programs embrace rather different
guestions and types of multivariate data, but they all
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involve comparisons between two or more variables
or data sets in order to measure their degree of
association. If statistically significant, the match
between data sets contributes to evidence about the
processes determining the associ ation.

Perhaps the most stringent assumption in any
parametric, non-parametric and distribution-free
methods (see Peres-Neto & Olden 2001, for a
distinction between these type of methods) used to
estimate the association between data sets (e.g.,
correlation, multiple regression, redundancy analyses,
canonical correspondenceanalysis, canonical correlation
anaysis, Mantel test, Procrustean rotations, to mention
afew) is the independence of sampled observations
(i.e., each observation must beidentically independent
of each other). Parametric (e.g., t-distribution, F-
distribution) and non-parametric (e.g., Mann-Whitney,
rank correlations) sampling distributionswere devel oped
by assuming that every observation inthe samplewas
drawn randomly and independently from each other.
In permutation tests, the assumption of independence
isalso relevant (see Manly 1997) as observations are
randomly permuted in relation to each other when
testing, for example, the significance of correlation or
regression slopes.

Independence of observations entails that no
observation in a sample can be predicted by another
observation in the same sample and that the best
predictor of any observationissimply the mean. When
observations are not independently sampled from each
other, they are said to be autocorrelated and in this
case an observation can be predicted as afunction of
other observations. For instance, consider a random
variable under spatial dependence (e.g., the abundance
distribution of a particular species). Two pairs of
observations may have values that are more similar
(positive autocorrelation) or less similar (negative
autocorrel ation) according to their geographic distance
to a greater extent than one would expect if the
differences among those values were due to chance
alone or to other predictors of interest (e.g.,
environment). Therefore, in the presence of
autocorrelation, the number of degrees of freedomin
the sample is smaller than when observations are
independent. As a consequence, association tests
generate unrealistic significance estimates because a
larger number of degrees of freedom than the
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appropriate one is used, thus generating narrow
confidencelimitsfor hypothesistesting, making thetest
less conservative than expected by pure chance when
thenull hypothesisistrue. In order words, the nominal
typel error isgreater than the pre-established one(i.e.,
significancelevel or apha). In addition, autocorrelation
can also promote bias in estimates (e.g., slope). We
will takeacloser look into thisissuein the next section
where the problem is demonstrated by means of
simulation.

Autocorrelation iscommon in nature and operates
either asafactor moulding or constraining ecological
variables, or asaconfounding variable that introduces
biasby influencing theinterpretation of statistical models
(Clifford et al. 1988, Dutilleul 1993). In Ecology, three
important processesthat may cause aLtocorrelation have
drawn agreat deal of attentioninrecent years: spatial,
temporal and phylogenetic variation (Ives& Zhu 2006).
Although these processescanintroduce biasin ecologica
models, they can be al so interesting on their own. For
instance, geographically contagious biotic processes
such as dispersal may promote spatial autocorrelation
in speciesdistributionsthat may cause biasin models,
but they are also interesting as an ecological process
(e.g., the study of ecological factorsdriving dispersal
differencesamong species). Theanalysisof time series
(see Bence 1995) of population abundances may also
cause problems due to autocorrelation caused, for
instance, by density-dependent processes (i.e.,
abundances tend to be correlated through time), but it
also allows ecologists to understand, for instance,
population dynamicsand predict thefate of populations.
In the case of phylogenetic analysis, controlling for
autocorrelation may allow us to study correlated
evolution dueto selective processes but it can be also
used to assessthelevel of plasticity or canalization of
ecological features (e.g., feeding mode, morphology,
behavior) across species.

Given the great deal of attention that was given to
the problems caused by autocorrelation, it seems that
ecologistsdo not recall at timesthat autocorrelationin
itself may be caused by interesting ecological
phenomena (e.g., contagious processes, density
dependence, evolution) and we should not perceive
autocorrelation always as a problem. In this paper, |
advocate abalanced view wherenot all thevariationin
ecological data that is autocorrelated should be
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eliminated in order to allow for unbiased hypothesis
testing. Only the component of variation due to
autocorrelation that causes bias in statistical tests
should be removed, whereas the component that does
not should be left in the data and further analyzed to
address interesting questions regarding the processes
driving thisvariation. Note, however, that the amount
of autocorrelation that may bias statistical testing will
vary among data sets and it is not always possible to
eliminate the component that causes biasand still have
some autocorrelated variation left for interpretation.
There are numeroustechniquesthat aim at controlling
the effects of autocorrelation in ecological models
(Legendre 1993, Diniz-Filho 2000, Dale & Fortin 2002,
Martins et al. 2002), but most of them are designed
only for controlling autocorrelation. The goal of this
paper is two-fold: (1) show how the problems in
hypothesistesting arise under autocorrelation, and (2)
describe astatistical approach that attemptsto control
for the autocorrelation component of ecological
variation that affects hypothesis testing. The method
isflexible enough to tacklethree of the most important
ecological processes that may generate dependence
among observations, namely spatial, temporal and
phylogenetic autocorrelation, providing a unified
strategy for estimating and controlling autocorrelation
in ecological models. Moreover, the class of method
presented hereisflexible enough that it can be applied
to any type of distribution under generalized linear
model procedures (e.g., analysisof variance, logistic/
binomial and Poisson regressions) and also applicable
to non-parametric modeling tools such as regression
and classification trees (CART) and artificial neural
networks (see Elith et al. 2006 for areview of novel
moddling techniquesin ecology). Examplesdedingwith
spatial, temporal and phylogenetic variation are
provided.

HOW DOES AUTOCORRELATION AFFECT
ECOLOGICAL MODELS?
THE ANALYSSOF TIME SERIES

Let ussupposethat an ecologistisinterested intesting
whether the abundance of a lake fish species is
controlled by total zooplankton abundance based ona
time series of 10 yearswith samplescollected every 2
months in a lake, totalizing 60 observations. To test
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for their association, aregression slope between fish
and zooplankton abundance will be used based on an
alpha level of 0.05. If regression residuals are
independent and normally distributed, and if the
population slope (i.e., true slope between fish and
zooplankton in the study lake) is zero, thereisa5 %
(i.e., apha= 0.05) chance that a sample slope of 60
observations randomly selected through time will be
significant even though the population value is zero.
This chance of committing atypel error isknown and
established a priori (i.e., alpha). However, if fish and
zooplankton aretemporally autocorrel ated, the chance
of sampling 60 observations and finding a significant
slope between them is greater than 0.05 (in some cases
much greater, e.g., 0.30).

In order to show the probleminamore compelling
manner, | will use a simulation to demonstrate the
problem. Assumethat the abundances of thefish species
and zooplankton are independent (slope = 0) of each
other but that their abundances are regulated by intra-
taxa density dependence under a stochastic logistic
model (or afirst-order nonlinear autoregression model;
see Dennis& Taper 1994, Clark & Bjgrnstad 2004) as
follows.

In(N) =In(N_,) + b, + b, exp (In(N_)) + ze

where b, b, and z are constants, and e is a normally
distributed N(0,1) random shock (i.e., mean=0 and
variance=1) to the population growth rate (e.g.,
environmental noise).

Now, let ussimulate atime seriesfor thefish species

fish and total zooplankton abundance asfollows:

In(Nfish) =In(N, , fish) +0,5-0.01exp(In(N , fish)) + 0.1e
In(N:zoo) =In(N,, zoo) +0,5-0.01exp(In(N, , z00)) + 0.3e

Theinitial abundances were set as N fish = In(70)
and N,zoo =1n(1000). Two simulated time seriesusing
theseequationsareshowninFig. 1. Notethat if another
time seriesisgenerated either for fish or zooplankton,
the temporal trajectories would be different and
independently generated from the one presented in Fig.
1 due to the random shock introduced by e. Because
regression slopes of the simulated time seriesrepresent
independent realizations of the same statistical
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Figure 1. Two simulated time series using afirst-order nonlinear

autoregression model to generate density dependencein fish and
zooplankton. Models are described in the text.

population, they can be used to illustrate the biasin
statistical tests for regression slopes. In this case,
because zooplankton and fish time series are
independently generated, the population slope is, by
definition, zero. | have generated 10,000 time series
based on the above formul ae and tested the slope based
on the parametric t test and a permutation test (999
permutations), as presented by Peres-Neto & Olden
(2001). Thefrequency of significant testsbased onan
aphavaueof 0.05was0.1199 (1,199 rgjections/10,000
time series) for thet test and 0.1280 (1,280 rejections/
10,000 time series) for the permutation test. These
frequencies represent type | error estimates, i.e., the
sampling frequency at which the null hypothesiswill
be rejected when it istrue, given that the slopein the
populationiszero. Thesignificancelevd, or dphavalue,
established a priori is the probability of committing
theso-called typel error. In other words, if asignificance
level of 0.05 is chosen, for 10,000 sample values of
thetest being conducted, 500 of themwill be considered
significant wheninreality (i.e., inthe population) they
are not. If we had used the following non-density
dependent processes

In(Nfish) =In(70) + 0.5—-0.01exp(In(70)) + 0.le
In(N z00) =In(1000) + 0.5-0.001exp(In(1000)) +0.3

for generating fish and zooplankton abundances,
respectively, instead, thefrequency of significant dope
testsbased on an al phavalue of 0.05 was 0.0499 (499

Oecol. Bras., 10 (1): 105-119, 2006

rejections/10 000 time series) for thet test and 0.051
(510 rgjections/ 10 000 time series) for the permutation
test. Thus, simply because the data points were not
independently generated in thefirst set of simulations,
the sampling teststended to reject more often than the
pre-established significance level (alpha). Hence,
because of the autocorrel ation between the data points,
statistical tests become biased as they present greater
nominal type | error rates than the pre-established
significance level. Under extreme circumstances, the
estimation of the slope may be al so biased.

THE ANALYS SOF SPATIAL DATA

Perhaps one of the most innate patterns in natural
systems is their spatial organization. The issues of
autocorrelation in modelling ecol ogical datahave been
of particular interest when considering spatial
distributions given that one of the most common
routinesin ecological investigationsisto collect data
on species distribution and environmental data across
space to assess how habitat features drive species
distribution across a particular landscape of interest.
The problem of autocorrelation inthiscaseismanifested
by the fact that spatial processes may influence both
species’ distributions and environmental factors
generating apparent speci es-environment concordance
(Legendre 1993). Species abundances are spatially
organized across landscapes due to ecological
contagious processes such as population growth,
geographic dispersal, differential fertility or mortality,
social organization or competition dynamics, for
instance. Environmental factorsare also often spatially
organized across landscapes where nearby sites tend
to contain more similar habitat conditionsthan distant
ones. Establishing relationships between species
distributions and environmental characteristics is a
widely-used approach (e.g., Legendre & Fortin 1989,
Jackson & Harvey 1993, Diniz-Filho & Bini 1996,
Rodriguez & Lewis 1997) in the search for causes
dictating patterns in species distributions. Habitat
model srelating habitat characteristics and community
structure (species occurrence or abundance) are
expected to answer at least two questions: (1) How
well isthedistribution of aset of speciesexplained by
the given set of predictive variables? and (2) Which
variables are irrelevant or redundant in the sense of
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failing to strengthen the explanation of patterns after
certain other variables have been taken into account?
The first question relates to the predictive power of
themodel that can be used in conservation management,
for questions such as estimating habitat suitability,
forecasting the effects of habitat change dueto human
interference, establishing potential locationsfor species
re-introduction, or predicting how community structure
may be affected by theinvasion of exotic species. The
second question isimportant for heuristic issues such
asdetermining thelikelihood of competing hypotheses
to explain particular patterns in community structure
(Peres-Neto et al. 2001).

Regardless of the goal, both questions involve
statistical teststhat may prove challenging under spatial
autocorrelation. In order to demonstrate the problem
of testing the relationship between spatially
autocorrel ated processes, | have applied avery simple
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Figure 2. Spatial patterns depicted from two independent
realizations of asimple processto generate spatial autocorrelation
(seetext for adescription of the process). This processwas used
to generate two sets of matrices (X and Y) to test for their
correlation when data matrices are spatially autocorrelated. Axes
represent artificial geographic coordinates.

method for generating spatially dependent data (but
seelLegendreet al. 2005 for other possibilities). First,
| generated a matrix Y containing two normally
distributed variables N (0.1) with ten observations each.
Then, for each observationin Y, | have generated nine
other observations that were created by adding small
normally distributed deviates —N (0.1)/15 to each of
the ten original observations; after that, matrix Y
contained two variablesand 100 observations. A second
matrix X wasgenerated inthe same manner. Thespatia
patterns depicted by two independent realizations of
thisprocess(i.e., matrices X and Y) areshownin Fig.
2. Notethat we can distinguish well theten clusters of
ten observations each generated by the simulation
process in both matrices. Here, because the goal is
simply to show the inferential problems under spatial
autocorrelation, | did not generate abundance-like data
and | will simply test the association between matrices
Y and X.

Perhaps canonical analyses such as redundancy
analysis(RDA, Rao 1964), canonical correspondence
analysis (CCA, ter Braak 1986), and distance-based
redundancy analysis (db-RDA, Legendre & Anderson
1999) are the most commonly used tool for modeling
communities through environmental predictors.
Canonical analyses can be best understood as methods
for extending multiple regression, which hasasingle
response y and multiple predictors X (e.g., severa
environmental predictors), to multiple regression
involving multipleresponsevariablesY (e.g., severd
species) and acommon matrix of predictors X. | have
applied here a RDA to test the association between
matrices Y and X simulated above. | have generated
10,000 and X matricesbased on the process described
abovefor generating spatially autocorrel ated dataand
tested their association using the redundancy statistic

R{|x based onawell-established permutation test (999
permutationswere used) described el sewhere (Manly
1997, Legendre & Legendre 1998, Peres-Neto et al.
2006). Asfor thetime seriessimulation, because Y and
X represent independent realizations, they can be used
to illustrate the bias of statistical tests for under
autocorrelation. Because Y and X are independently
generated, the population isalso, by definition, zero.
The frequency of significant tests based on an alpha
valueof 0.05was0.9431 (9431 rejections/10,000 time
series), indicating an extremely high nomind typel error
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rate. Ontheother hand, thetest for basedonY and X
matrices containing only two normally distributed
variables N(0,1) with 100 observations each (i.e.,
without the small deviates around the original
observations) provided a correct type | error (0.0498,
498/10,000 tests).

THE ANALYS SOF PHYLOGENETIC DATA

Ecologistsand evol utionary biologistsare commonly
interested in testing the associ ation between variables
wherethe observations represent species (usually mean
values for each species). Examples of these type of
data include the relationship between gestation time
and timeto sexual maturity in primates (Harvey et al.
1987), the relationship between homerange and body
size(Garland et al. 1992) and the rel ationship between
behavioural and morphological characters (Losos
1990), to mention just a few. However, because
closely related speciestend to be more similar to each
other due to evolutionary processes, they may not
represent independent observationsthat can bedirectly
used to assess these rel ationships (Fel senstein 1985).
In this case, variables of interest (e.g., body size) are
said to be phylogenetically autocorrel ated.

There are different ways of generating
phylogenetically autocorrel ated data(Martins & Garland
1991, Fleckleton et al. 2002, Martinset al. 2002) and
they are used to assessthe performance of comparative
methods in correcting the problem of inflated type |
errorsdueto autocorrelation. Most methodsassumea
model of evolution such as Brownian movement (BM)
or Ornstein-Uhlenbeck (OU) process (Felsestein 1988,
see also Diniz-Filho 2000 for a discussion on these
processes) that generates data under independence
evolution by assuming that characters evolve by drift
(i.e., without selection in the case of BM) or different
levelsof congtraints such as stabilizing selection towards
an optimum across phylogenetic lineages (in the case
of OU). Therefore, one of the goals of testing the
correlation between characters under a comparative
framework isto test whether the correlation between
charactersisbeyond what isexpected by independence
evolution and hence estimate the importance of
correlated evolution due to selection in driving these
correlations. Regardless of the model used, the
evolution of a character is proportional to the shared

Oecol. Bras., 10 (1): 105-119, 2006

PERES-NETO, P. R.

evolutionary history due to common ancestry. In the
case of Brownian movement, the evolution isdirectly
proportional to the shared history, whereas in the OU
processthe common history islessened.

There are different computational implementations
inorder to generate phylogenetically autocorrelated data
under the BM and OU processes. Inorder toillustrate
the problem, | suggest yet another implementation that
generates data similar to a BM process. | will not
demonstrate that the algebra behind this new
implementation generates data akin to aBM process,
but it follows the work developed by Garland & Ives
(2000), Butler et al. (2000) and Rohlf (2001). Assume
the phylogenetic tree depicted in Fig. 3a and its
associated phylogenetic covariance matrix (Fig. 3b),
which is calculated directly from the tree. The main
diagonal of the covariance matrix represents the
variance, which is calcul ated as the distance from the
root to tip (i.e., the total time of evolution). In this
case, the variance is 14.3. The covariance values (off
diagonal) are the shared evolution between any given
two species. For instance, Anolis opalinus and Anolis
grahami share 12.2 path lengths (arbitrary unitsof time;
1.0+6.8+ 05+ 20+ 1.9=122). Phylogenetically
autocorrelated data for two independent characters x
and y were generated asfollows:

X=eV* and y =eV*

where e is a (1,n) vector containing n (number of
species) normally distributed variablesN(0,1) and V*
istheroot (here | used a Cholesky decomposition) of
the covariance matrix.

| have generated 10,000 x and y vectors sets and
therate of rgjection of at-test for their correlation based
on an alphaequal to 0.05was0.1655 (1655 rejections/
10000 character sets). A permutation test (Peres-Neto
& Olden 2001) provided arate of 0.1574. Note that x
and y were independently generated, though the
rejection rate of their correlation test was much higher
than the expected 0.05. Next, | simulated data sets
where only x isphylogenetically autocorrelated and y
issimply avector of random normally distributed N(0,1)
values (i.e., without autocorrelation). In this case, the
rejection rate was 0.049 (i.e., 490 rejections/10 000
character sets) indicating that only when both variables
are autocorrelated that statistical inference is biased.
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Thefact that both variables or datasetsinvolvedinthe | hope to have convinced the readership of the
comparison need to be autocorrelated to affect problemsrelated to statistical testing of autocorrelated
hypothesis testing is not unique to phylogenetic data  data and that this type of data has to be properly
and thisfact hasbeen already stressedintheliterature  analyzed. Inthe next section, | introduce amethod for
inthe case of spatial data(e.g., Dutilleul 1993, Legendre  filtering out (removing) the autocorrelated variation that

et al. 2004). causeshiasin statistical testing.
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Figure 3. (a) Phylogenetic tree of 13 species of West Indian Anolis lizards (adapted from Losos 1990). Numerical values on the tree
indicate branch length that are used to cal cul ate the phylogenetic covariance matrix; (b) phylogenetic covariance matrix based on the
Anolisphylogeny. Notethat varianceis 14.3 (main diagonal) and that covariance values (off diagonal) are the shared evolution between
any given two species. For instance, Anolisopalinus and Anolis grahami share 12.2 path lengths (arbitrary units of time; 1.0 + 6.8 +
05+20+19=122).
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EIGENFUNCTION BASED FILTERING
METHOD

The eigenvector filtering method has been
suggested independently by different researchersboth
in the context of spatialy (Griffith 2000, Borcard &
Legendre 2002, Griffith & Peres-Neto 2006 reviewed
this method in the case of spatial data) and
phylogenetically autocorrelated data(Diniz-Filho et al.
1998). These implementations were distinct from the
one presented here though. Thefiltering method begins
with an eigenfunction decomposition of a truncated
matrix (see bel ow) representing the proximity among
observations(i.e., temporal, spatial and species). These
eigenvectors, corresponding to positiveeigenvalues, are
then used as spatial descriptors in regression or any
type of analysis aiming at testing the association of
autocorrelated data. Inthe original method described
by Borcard & Legendre (2002) and Diniz-Filhoet al.
(1998), the truncated matrix of temporal, spatial or
phylogenetic distances was built in such away that it
considered the influence of an observation on itself
(e.0., the geographic and phylogenetic distance matrix
has non-zero valuesin the main diagonal). Although
this consideration may be seen as difficult to justify,
there are examples of spatial modelswhereit hasbeen
applied (Bavaud 1998). Here | usetheimplementation
provided by Dray et al. (2006) where this problem is
solved. The eigenvector procedure (after Dray et al.
2006) may be summarized with thefollowing steps:

1. Compute a pairwise Euclidean distance matrix
among observations units (D = gd; H);

2. For spatial data, choose a threshold value t and
construct atruncated connectivity matrix W (i.e., not
all observationsare connected) using thefollowingrule:

Diti=7;
c0ifd; =t

[1—{% /4t) } if d, <t

where t is chosen as the maximum distance that
maintains all sampling units being connected using a
minimum spanning tree algorithm (Legendre &
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Legendre 1998). Other methods (see Dray et al. 2006
and Griffith & Peres-Neto 2006) are also availablefor
establishing thresholds and different options can be
explored to the specific problem at hand. However,
simulationwork (Peres-Neto & Legendre, unpublished
data) indicates that the method based on minimum
spanning tree correctsfor the problem of inflated type
| errorsin spatially autocorrelated data.

In the case of temporal datathat has been sampled
according to aconstant timeinterval, the procedureis
simplified as W becomes simply a matrix where the
distance between adjacent time periodsis equal to 1
and the distance between non-adjacent periodsisequal
to0(i.e d": lonlyifi-j=-1or1,ifi-j takesany other
value, e.g., | =3andj =1, then dij =0). Note, however,
that irregular sampling time periods can easily be
incorporated by using the method described for spatial
data where a pairwise distance matrix representing
the difference between time periodsis applied. In the
case of phylogenetic data, matrix W can be easily
calculated by subtracting the phylogenetic variance by
each element in the variance-covariance matrix.

3. Computethe eigenvectors of the centered W matrix:

(I = 117 /M)W(l — 117 / n)

The eigenvector matrix is a square matrix (i.e., a
matrix with equal numbersof rowsand columns) where
the columns contain variables representing distinct
temporal, spatial or phylogenetic patterns, depending
on the application, and the rows represent observations
(i.e., temporal samples, spatial sample or species).
Given the non-Euclidean nature of W, both positive
and negative eigenvalues are produced. The non-
Euclidean part isintroduced by thefact that only certain
connections among observations, and not all, are
considered in W. The extracted eigenvectorsrepresent
the decomposition of the Moran’s index of
autocorrelation (M1; see Legendre & Legendre 1998,
for theuseof M| in spatial data, and Diniz-Filho 2001
in phylogenetic data) into all mutually orthogonal and
uncorrelated temporal, spatial or phylogenetic patterns.
Eigenvectors having associated eigenvalues that are
positive represent positive autocorrelation, whereas
eigenvectors having negative eigenvalues represent
negative autocorrelation. A M1 for any eigenvector v
canbedirectly calculated asfollows:
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vIWwy

MCiv)= V-1 ) W(I- 11" mjv =

1751 1"51

Inthecontext of spatia data, eigenvectorswithlarge
eigenvalues represent coarse scales of variability or
landscape-widetrends (e.g., global); eigenvectorswith
intermediate size eigenval ues represent medium scales
(e.g., regional); eigenvectors with small eigenvalues
represent fine scales or patchiness (e.g., local).
Therefore, the extracted eigenvectors capture arange
of geographic scales encapsulated in a given dataset,
restricted by the landscape boundary extent of sample

0.20

locations and the threshold value used to truncate
distance. The same analogy can be made to temporal
and phylogenetic data. In thelatter case, eigenvectors
withlarge eigenval uesrepresent early speciation events,
whereas eigenvectorswith small elgenvaluesrepresent
later events. Inorder to provide apicture of thetypes
of patterns that these eigenvectors represent, | have
plotted thetemporal patterns depicted by three selected
eigenvectors constructed for a time series containing
100 observations (Fig. 4, top three panels).

The resulting eigenvectors, themselves, are then
used directly as synthetic explanatory variablesin the
analysis. Thismodeling approachis semiparametricin
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Figure 4. Temporal patterns depicted by three selected eigenvectors (1, 15 and 26) constructed for a time series containing 100
observations and by the sum of four randomly selected eigenvectors for the same time series. The latter series mimics a possible
outcome of alinear combination of eigenvector maps created by amodel selection technique in regression analysis.
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nature, casting autocorrelation as some unknown
function (nonparametric) - which must be estimated
from agiven dataset - that isadditively coupled with a
set of covariates whose coefficients need to be
estimated (parametric). For instance, in a multiple
regression model of y on a set of predictors, we add
theeigenvectorsasadditiona predictorsinto the model
and linear combinations between them constitute an
estimate of the unknown autocorrelation function. In
practice (see next section), we only apply ajudiciously
selected subset of eigenvectors, since some of them
may not estimate well the autocorrel ation function of
a particular data set. Here, and in other ecological
applications, the set of candidate eigenvectors to be
selected represents positive spatial autocorrelation (i.e.,
only eigenvectors having positive eigenvalues are
retained for further analysis) which is the one known
to inflate type | error rates (Legendre et al. 2004.
Linear combinations of selected eigenvectors are
capabl e of representing complex patternsin data. Fig.
4 (bottom panel) shows the sum of four randomly
selected eigenvectors for the time series containing
100 observations, which mimicsapossible outcome of
alinear combination of eigenvector maps created with
a model-selection technique in regression analysis.
Note how the combination of eigenvectors can depict
complex patterns of variation. Dray et al. (2006) and
Griffith & Peres-Neto (2006) proposed model selection
techniques for eigenvectors in the context of spatial
data, but they are directly applicable to temporal and
phylogenetic data. The sel ection procedureintroduced
by Griffith & Peres-Neto (2006) reduces the level of
autocorrelation in regression residuals so that the
assumption regarding independence is met, whereas
the method proposed by Dray et al. (2006) selects
eigenvectors based on a forward selection procedure
aiming at maximizing the amount of autocorrelation
explained by the eigenvectors. In the next section, |
provide acomplete example of application for temporal,
gpatial and phylogenetic data.

APPLICATIONS OF EIGENFUNCTION
FILTERINGMETHOD
ANALYS SOF ATIME SERIES

Asan example, | analyzed atime series of yellow
perch and chlorophyll concentration from Sparkling lake
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in Wisconsin, USA. Data comes from to the North
Temperate Lakes — Long-term ecological research
project (http://Iter/limnol ogy/wisc.edu) and detailson
these particular data and sampling procedures can be
found in Beisner et al. (2003). Fig. 5a shows the
temporal trends for yellow perch and chlorophyll.
Although wesak (Fig. 5b), thereisasignificant positive
correlation between chlorophyll and yellow perch (a
zooplanktivorous species). This suggests a top-down
trophic cascade in which fish predation controls
zooplankton, thereby reducing grazing pressure on
phytoplankton, leading to an increase of chlorophyll
concentration when perchisrelatively more abundant.
First, | tested for each variable separately whether all
positiveeigenvectorssignificantly explaineditsvariation
using amultipleregression model (perch: F=18.54, P
=0.0001; chlorophyll: F=3.019, P=0.0004), indicating
that both variables have a strong degree of temporal
autocorrelation. In this case, all eigenvectors were
used because selection procedures (e.g., forward
selection) tend to inflate the overall significance of the
model. Once an autocorrelation component is
considered to be present in both variables, aselection
procedure should be used. Next, | performed aforward
selection for a multiple regression of chlorophyll on
the positively autocorrelated eigenvectors, and 11
eigenvectors were found to be significant. Finally, in
order to test for the effect of perch on chlorophyll,
while controlling for temporal autocorrelation, |
performed amultipleregression of chlorophyll on perch,
and the 11 selected eigenvectors. The perch
contribution was no longer significant to the model
(dopesignificance=0.9137), indicating that theinitial
conjecture of top-down control was due to temporal
autocorrelation inherent to perch and chlorophyll
dynamics.

ANALYS S OF A SPATIAL DATA

Herel analyzeafish datacomprising thedistribution
of 27 species and environmental data in 53 sample
sites of theriver Macacu, Brazil (details on sampling
procedures, species and environmental data are
provided in Peres-Neto 2004). My goal hereisto test
whether species distributions are driven by the
environmental variation found in the system. In this
data, 12 eigenvectorshaving positive el genvalueswere
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extracted and used as spatial descriptors. The
eigenvectors were calculated on the basis of
geographic distances between sites, though one could
also consider the water-course distance withintheriver
network, which can better represent spatial
relationshipsinriverine systems (Olden et al. 2001).
In order to assessthe significance of environmental
predictors on species distributions, | used variation
partitioning for redundancy analysis (RDA) as a
template. Aninitial test of the significance of the RDA
datistic Ri‘x indicatesthat environment isasignificant
driver of species distribution (R(ZY‘X)adj =0.191, P=
0.001). Here, | report adjusted values () for the RDA
statistic, asunadjusted valuesare highly biased (Peres-
Neto et al. 2006). The adjusted RDA statistic parallels
the adjusted R? (coefficient of determination) inlinear

120.0
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regression analysis. First, | tested the significance of
based on all 12 spatial eigenvectorswhichindicated a
significant amount of autocorrelation in both species
distribution and environmental matrices (species
distribution: =0.199, P= 0.001; environment: = 0.599,
P=0.001). Next, tofilter out theinfluence of the spatia
autocorrelation on the analysis, | applied variation
partitioning by RDA (Borcard et al. 1992) to the matrix,
using fish distribution as the dependent matrix, and
environmental and spatial predictors as two sets of
predictors. Variation partitioning is used to identify
common and unique contributionsto model prediction
and hence better address the question of the relative
influences of the groups of independent variables
considered in the model. When partitioning variation
in RDA, independent variables are grouped into sets

-
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Figure 5. (a) Time series of yellow perch catches and chlorophyll concentration; (b) linear regression of chlorophyll on yellow perch

based on the time series values.
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representing broad factors (here environment and
space). In that context, variation partitioning is more
suitablethan analyzing theindividual contributions of
regressorsviatheir partial correlation coefficients. In
thisapproach, thetotal adjusted percentage of variation
explained by the model is partitioned into unique and
common contributions of the setsof predictors (details
of these calculations are provided in Peres-Neto et al.
2006).

A forward stepwise selection procedure for RDA
(ter Braak & Smilauer 2002) was applied to select
spatial eigenvectors that are important in explaining
thespatial autocorrelation in speciesdistribution. Only
four out of the original 12 eigenvectors representing
positive spatial autocorrelation were retained. Results
of the variation partitioning based on the selected
eigenvectors and adjusted fractions of variation are
presented in Fig. 6. After partitioning the spatial
variation, environment continued to explain asignificant
amount of thevariation (fraction[a] in Fig. 6).

Components of variation
[d]=0.760

[4]=0.092
P=0.004

[b]=0.099

“[g=0.049
P=0.001

Figure 6. Variation partitioning Venn diagrams representing the
adjusted percentages of unique contribution of spatial [c] and
environmental [a] componentsto the fish distribution in Macacu
river.

Significance of fractions was tested using
permutation tests (999 permutationswere applied here;
see Legendre & Legendre 1998 for details on test of
fractions). As applied here, the variation partitioning
fractions presented in Fig. 6 represent the following
values: fraction [a] is the unique variation of species
distribution explained by environment (i.e., after the
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spatial variation is removed from the environmental
variation); fraction [c] isthe unique variation of species
distribution explained by spatial autocorrelation (i.e.,
after the environmental variation isremoved from the
gpatial predictors); fraction [b] isthevariationin species
distribution that cannot be uniquely assigned to space
or environment and represents the level of
multicolinearity (i.e., shared variation) between thetwo
sets of predictors (i.e, space and environment). Only
fractions [a] and [c] can be tested.

Variation partitioning raises an important issue
related to the control of spatial autocorrelation in any
ecological model, and not only in the present case. It
isnot all variation due to spatial autocorrelation that
will bias statistical inference, but only a particular
component, here expressed by fraction [b]. Unlikein
variation partitioning, fraction [b] cannot be easily
estimated for some other modeling procedures (e.g.,
logistic regression). However, this fraction is
automatically consideredin significancetestsviapartia
approaches that eliminate multicolinearity among
predictors when spatial eigenvectors are entered in
themodel, in addition to the other regressors of interest.
Thispoint isnot commonly understood and isworthy
of mention because not all spatial autocorrelation is
detrimental tointerpretation. Infact, theleft-over spatial
component (i.e., residual variation of spatial variation
independent of environment, or fraction [c] in ordinary
least square models) can be interpreted further and
aid in understanding contagious ecological processes
that areimportant in driving speciesdistribution (e.g.,
dispersal). However, it is important to keep in mind
that part of thisresidual variation may still represent
spatial autocorrelation of unmeasured environmental
predictors.

ANALYS S OF A PHYLOGENETIC DATA

Here an ecomorphological data set comprising 13
species of West Indian Anolis lizards (Losos 1990;
data is presented in his Table 1) is analyzed to test
whether morphological differences amongst species
result in differences in performance in this group of
lizards. This hypothesis was tested by Losos (1990)
using Felsenstein’ s contrasts (1985) for controlling the
effectsof phylogeny and canonical correlation anaysis.
For the sake of illustration, | test the same hypothesis
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but using the eigenvector method and variation
partitioning for RDA instead.

The phylogeny and phylogenetic covariance matrix
are presented in Fig. 3. There was no evidence that
morphology and performance (values were In-
transformed) are phylogenetically dependent
(morphology: =-0.011, P = 0.3260; performance = -
0.002, P = 0.3720), suggesting that the association
between thetwo multivariatetraits(= 0.9017, P=0.001)
is due to adaptive evolution where convergence
evolution has been widespread in these lizards (see
L osos 1990 for further discussion).

CONCLUDING REMARKS

My goalshereweretwo fold: (1) expose ecologists
to the problem related to statistical inference when
testing the association between data sets that are
autocorrelated and (2) introduce arelatively new class
of predictors based on eigenfunction analysisthat can
be easily incorporated in analytical approaches for
controlling the bias dueto autocorrelation. In addition,
I have shown theflexihility of this class of methodsto
thetypesof datain which ecologistsare currently most
interested, namely temporal, spatial and phylogenetic
analyses. Herel applied two commonly used methods
based on ordinary least-square regression (RDA and
regression) asmeans of testing the association between
variables and data sets. However, the two method
introduced herefor controlling autocorrelationisreadily
extensibleto any type of modelling procedure such as
GLMs(e.g., logistic/binomial and Poisson regressions)
and modern computational procedures (seeElithetal.
2006 for areview) by using eigenvectors as additional
predictors in these models. It is worth of noting that
the autoregressive approach used in many temporal,
spatial and phylogenetic applications becomes
cumbersome and difficult to estimate when extended
to GLMs and to other modelling techniques. The
principal problem with autoregressionisthenormalizing
constant, which isthe Jacobian term in thelinear model
case, and requires Markov chain Monte Carlo
edimationinthe GLM case. Inaddition, thereisnothing
akintotheautoregressive model for modelling multiple
variables(e.g., multiple species, several morphological
characters) asin canonical analysis (e.g., RDA).

| fed that isparticularly important to stressthe point

that not all the autocorrelation present in datathat will
affect statistical inference and isimportant to control
only the component that bias inference. Thus, future
analytical devel opmentsshould attempt to separatethe
autocorrel ation bias component from the one that may
prove of interest for understanding important ecological
processes such as contagious processes driving spatial
patterns in species distributions. Parts of variationin
datadueto these contagious processes may cause bias
and should be controlled for, but the component that
does not bias statistical interpretation should be kept
and further analyzed. This is relatively simple to
perform by conducting residual analysis where the
common component of variation dueto autocorrelation
in the data sets being analyzed is removed and the
independent component isanalyzed. Another important
point that should be reiterated is that analytical
approachesfor controlling the effects of autocorrelation
should be only considered in the presence of
dependence among observations and that isthe reason
we should start by testing whether or not the data sets
involved are autocorrelated. Abouheif (1998) raised
the point in evolutionary ecology that if analytical
approaches are used to control for phylogenetic
autocorrelation when it is not relevant, that may also
introduce biasto the analysis. Another important point
isthat statistical inferenceisonly affected when both
variables (or data sets) are autocorrelated. If only one
variableisautocorrel ated whereasthe other isnot, then
the analysis is not affected. This aso reiterates the
point of removing only the common component of
variation stated above.

Model selection can play an important role in
controlling the effects of autocorrelation. For each
eigenvector that is considered in the model, the model
is penalized by the loss of degrees of freedom when
testing for the association between the original
variables of interest (e.g., species distributions and
environmental characteristics). Therefore, only asub-
set of therelevant eigenvectors should be considered,
chosen by a model selection procedure, in order to
maximize the chances of detecting true associations
between thevariablesinvolved (i.e., increase power of
thetest). Modelling selection procedures may biasthe
estimation of variable contribution and modd fit, anong
others, but if not used, there can be areduction in the
power of statistical proceduresto test the association
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between data sets. Therefore, this problem opens
another avenue for future research. Griffith & Peres-
Neto (1996) advocated for a modelling selection
procedure that minimizes the autocorrelation in
residuals of GLM models, however the advantagesand
disadvantages of this and other model selection
procedures should be further examined. In this
contribution, | only considered eigenvectors that are
positively autocorrelated, but future research should
investigate whether negative autocorrelation also
promote biasin statistical inference. If that isthe case,
then the method can also accommodate this type of
autocorrelation by using the eigenvectorsthat represent
negative autocorrelation in the analysis (i.e.,
eigenvectorswith negative eigenvaluesor Ml). There
are many possible avenuesfor applying and expanding
the applications of eigenvector predictors, and the
present study is an illustration of how this relatively
new and flexible technique can be used in ecol ogical
analysis.
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