A REVIEW OF HELMINTHS OF THE GREEN TURTLE (Chelonia mydas) IN BRAZIL

Mário Roberto Castro Meira Filho1*, Mariane Ferrarini Andrade2, Camila Domit2 and Ângela Teresa Silva-Souza3

1 Universidade Federal do Rio Grande, Instituto de Oceanografia, Programa de Pós-Graduação em Aquicultura. Rua do Hotel, nº2, Rio Grande, RS, Brasil. CEP: 96210-030
2 Universidade Federal do Paraná, Centro de Estudos do Mar, Centro de Estudos do Mar, Laboratório de Ecologia e Conservação. Av. Beira Mar s/n, Pontal do Paraná, PR, Brasil. PO Box 61, CEP: 83255-000
3 Universidade Estadual de Londrina (UEL), Centro de Ciências Biológicas, Departamento de Biologia Animal e Vegetal, Laboratório de Ecologia de Parasitos de Organismos Aquáticos, Londrina, PR, Brasil. CEP: 86057-970
E-mails: mariorcmf@hotmail.com, marianeferrarinia@gmail.com, cadomit@gmail.com, ateresa09@yahoo.com.br

ABSTRACT

The study of helminths can supply information about the ecology of their hosts and support evaluations of population stocks, migration patterns and trophic ecology. However, little is known about the parasites of Chelonia mydas, a globally distributed endangered species, along the Brazilian coast. Here we present a review of the literature of helminth species found in green turtles along the Brazilian coast, considering their global distribution, their infection sites and their other host species. The findings show that in recent years there has been a large increase in the number of studies reporting the parasitic species of these turtles in Brazil, which consequently increased the parasite species list of the green turtle. The helminth fauna of green turtles from Brazil is composed of 31 species of digenetic trematodes of seven families, and four species of nematodes of two families. Two of these helminth species are endemic, while 33 are widely distributed. They are concentrated in particular regions, although the observed distribution is likely related to the main research centers and not the actual geographical distribution of the species. Endemism was observed only for the digenean Ruicephalus minutus and for the nematoda Tonaudia freitasi.

Keywords: endoparasites; geographic distribution; occurrence records.

INTRODUCTION

The green turtle, Chelonia mydas (Linnaeus 1758) occurs in tropical and subtropical seas, generally close to continental coastlines and islands (Márquez 1990), with reports from about 140 countries (Spotila 2004). Although widely distributed, it is considered an endangered species (IUCN 2016).

Considering that C. mydas is migratory, little is known about its movement pattern along the Brazilian coast and along the rest of the western South Atlantic Ocean. Studies of the ecology of the green turtle are necessary to formulate protective measures to preserve this species.

The study of parasites is considered an important tool to understand the ecology of host populations. Ecological analyses of the parasite-host relationship and reports of infection can help to evaluate population stocks (Mackenzie 1987, Moser 1991, Williams et al. 1992), migration patterns (Moser 1991, Williams et al. 1992) and trophic ecology (Williams et al. 1992) of the hosts.

The main studies of the parasite ecology of the sea turtle until 2016 refer to the helminth communities of the loggerhead turtle Caretta caretta (Aznar et al. 1998, Valente et al. 2009, Santoro et al. 2010). Santoro et al. (2006) were the first to study the helminth communities of C. mydas and Werneck & Silva (2015) first analyzed the helminth composition of juvenile green turtles found on the Brazilian coast between 2004 and 2011.

Historical overview and compilation of the data obtained for each parasite species recorded can be an important tool for future studies about population stocks, migratory routes and diet of turtle species occurring along the Brazilian coast. Here we present an overview of the studies of the parasitism of helminths of C. mydas in Brazil, considering their distributions.

MATERIAL AND METHODS

We examined books, scientific papers, theses, dissertations and monographs in the library collection
of Universidade Estadual de Londrina (UEL) or obtained by research of internet databases (PubMed, Web of Science, Google Scholar and Scopus). We used the classifications proposed by Gibson et al. (2002) and Jones et al. (2005) for Digenea Carus 1863 and the one proposed by Vicente et al. (1993) for Nematoda. To check the validity of scientific names and their authors, we used the website WoRMS (www.marinespecies.org). Information about the world distribution of the species of parasites that infect C. mydas in Brazil were compiled. The relationship between the number of helminth species of C. mydas and the number of published records in the literature, from 1918 to 2016, is presented in a graph.

REPORTS OF THE HELMINTH FAUNA OF THE GREEN TURTLE

The first study published in Brazil about parasites of the green turtle, Chelonia mydas, was that of Travassos (1918), using samples from the Bacteriological Institute of São Paulo. In this study, the author presented a redescription of the nematode Kathlania leptura (Rudolphi 1819), which was found parasitizing Testudo mydas (= C. mydas). The site of infection was not reported by the author.

Travassos (1934) organized a synopsis about the helminths of the superfamilial Paramphistomoidea Stiles & Goldberger, 1910 of the green turtle in the world, but there was no information about the parasites of Brazilian green turtles. This review mentioned 11 species of digenetic trematodes of C. mydas and their respective infection sites: Schizamphistomoides spinulosum (Looss 1901) in the large intestine; Schizamphistoma scleroporum (Creplin 1844) Looss 1912 and Microscaphidium reticulare (van Beneden 1859) Looss 1900 in the intestine; Polyangium linguatula (Looss 1899), P. miyajimai Kobayashi 1921 Angiodictyum parallelum (Looss 1901) Looss 1902, Octangium sagitta (Looss 1899), O. hasta Looss 1902, O. takanoi Kobayashi 1921 and Deuterobaris proteus (Brandes 1891) Looss 1900 in the digestive tract; and M. aberrans (Looss 1902), without infection site identified. The digenetic parasites were found in hosts of the Mediterranean Sea, except S. scleroporum, which was also recorded in the Atlantic Ocean, and O. takanoi, which was only obtained from specimens of the Pacific Ocean.

Freitas & Lent (1938) published the first study of parasites of C. mydas in Brazil, on the coast of Rio de Janeiro, deposited in the Helminthological Collection of the Oswaldo Cruz Institute (CHIOC). Many species of Pronocephalidae Looss 1900, all the species of Telorchidae Looss 1898 and Orchidasmus amphiorchis (Braun 1899) were found in the stomach and small intestine. The species of Paramphistomidae Fischoeder 1901 and Polyangiunm linguatula were found in the intestine. Furthermore, three specimens of digenetic trematodes were found in the small intestine, which made it possible to describe the family Metacetabulidae Freitas & Lent 1938, the genus Metacetabulum Freitas & Lent 1938, and the species M. invaginatum Freitas & Lent 1938.

Ruiz (1943) described the genus Neoctangium and the species N. travassosi, of Microscaphidiidae Looss 1900, and presented an identification key for the genera of this family. This study was carried out with trematode samples of the Butantan Institute, which were obtained from the intestine of a green turtle found in Praia Grande, Santos, São Paulo State, Brazil.

Freitas & Lent (1946) found nematode parasites of a green turtle specimen from Guanabara Bay purchased in a market in Rio de Janeiro. These nematodes were identified as Porrocaecum sulcatum (Rudolphi 1819) and were found attached to the wall of the stomach.

Ruiz (1946) reported a historical survey of the Brazilian species and the revision of the family Pronocephalidae. In conducting this review, he found that Pleurogonius trigonocephalus, described by Rudolphi (1809) as Monostoma trigonocephalus while examining samples from Europe, was the first species of Pronocephalidae reported in Brazil. Ruiz also noted that Diesing (1850) referred to M. trigonocephalus as P. trigonocephalus while examining samples from Europe, was the first species of Pronocephalidae reported in Brazil. Ruiz also noted that Diesing (1850) referred to M. trigonocephalus as P. trigonocephalus while examining samples from Europe, which is the first species of Pronocephalidae reported in Brazil. Ruiz (1946) concluded that the species described by
Rudolphi (1809) was *Pleurogonius trigonocephalus* (Rudolphi 1809) Looss, 1901, which he considered truly distinct from *Pronocephalus trigonocephalus* Looss, 1899, and also argued that *Pronocephalus trigonocephalus* was a synonym of *Pronocephalus obliquus* Looss 1901.

Ruiz (1946) also analyzed samples of the helminthological collections of Butantan Institute and Oswaldo Cruz Institute. The specimens evaluated from the former Institute were *Metacetabulum invaginatum*, *Pronocephalus trigonocephalus* (= *P. obliquus*), *Pleurogonius linearis* Looss 1901, and the new species *Pronocephalus minutus* Ruiz 1946 (*Ruiz et al.*, collected from a turtle found in Praia Grande, Santos, São Paulo State, Brazil. Those specimens donated by Oswaldo Cruz Institute were identified as *Pronocephalus trigonocephalus*, *Cricocephalus albus* (Kuhl & Hasselt 1822), *Pyelosomum crassum* (Looss 1901) Ruiz, 1946, *Pleurogonius longiusculus* Looss 1901 and *P. lobatus* (Looss 1901), parasites of green turtles of Rio de Janeiro (Ruiz 1946).

In 1971, Yamaguti revised information about the various species that parasitize some groups of vertebrates, including the sea turtles. However, the author considered only seven species as parasites of the green turtle in Brazil: *Polyangiun lingualeta*, *Neoctangium travassosi*, *Pronocephalus obliquus*, *Cricocephalus albus*, *Pleurogonius longiusculus*, *Ruicephalus minutus* and *Metacetabulum invaginatum*.

Thatcher (1993) presented identification keys of families and genera of the known digenetic parasites of vertebrates of the Neotropics. Of the species listed by Travassos *et al.* (1969), nine were recognized by Thatcher (1993) as parasites of *C. mydas* in Brazil. The species *Pleurogonius longiusculus* was cited in the review of Travassos *et al.* (1969), but Thatcher (1993) reported those specimens as *Pyelosomum longiusculus* Looss, 1901. In addition, he did not cite the species *Glyphicephalus lobatus* and *Pleurogonius trigonocephalus*, which were reported by Travassos *et al.* (1969), but mentioned *Pyelosomum linearis* (= *Pleurogonius linearis*), a species not considered to occur in Brazil. Also, in 1993, Vicente *et al.* published a new report on nematodes of the green turtles of Brazil, adding *Tonaudia freitasi* Vicente & Santos 1968 and *Sulcascaris sulcata* (Rudolphi 1819) (= *Porrocaecum sulcatum*) to the parasite species list.

In 2006, Werneck *et al.* published the first record of *Learedius learedi* Price 1934, from the heart, liver, pancreas, lungs, kidneys, mesentery and body cavity of green turtles collected in Ubatuba, São Paulo State. Two years later, Werneck *et al.* (2008a) reported, for the first time in Brazil, the occurrence of *Monticellius indicum* Mehra 1939, which was found parasitizing the heart of two juvenile green turtles on the coast of São Paulo State.

A checklist of the parasites of threatened vertebrates in Brazil was published by Muniz-Pereira *et al.* (2009), using published and unpublished information obtained from the Helminthological Collection of the Oswaldo Cruz Institute. The authors listed the same nematodes reported on previous papers and added *Anisakis* sp. as a new parasite of *C. mydas*. The digenetic species *Ruicephalus minutus* and *Monticellius indicum*, already recognized in Brazil, were not cited. Also, *Pyelosomum longiusculus* and *Pleurogonius longiusculus* were cited as distinct species. However, according to Gibson (2001), they are synonyms, and *Pleurogonius longiusculus* is considered the valid name.

Werneck *et al.* (2011) reported, for the first time, the occurrence of an individual of the digenetic species *Amphiorchis solus* (Simha & Chattopadhyaya 1970) Platt 2002 in the heart of a green turtle found on the beach of Barra Nova, Ceará State, Brazil. The occurrence of another species of Spirorchiidae Stunkard 1921, *Amphiochis indicus* Mehrotra 1973 was reported in the first time in Brazil, by Werneck.
& Silva (2013). The specimens were found parasitizing the digestive tract and the liver of turtles from the southern coast of Rio de Janeiro State and the northern coast of São Paulo State. Werneck et al. (2013) reported the first occurrence of Carettacola stunkardi (Martin & Bamberger 1952) Dailey, Fast & Balazs 1992, parasitizing the heart of a green turtle found on the northern coast of Espírito Santo State.

Fernandes & Kohn (2014) published a catalogographic list of the trematode parasites of amphibians and reptiles of South America. According to the authors, the 18 species of trematodes that parasitize C. mydas from the Brazilian coast are: Amphiorchis indicus, A. solus, Carettacola stunkardi, Cricocephalus albus, Learedius learedi, Metacetabulum invaginatum, Monticellius indicum, Orchidasma amphiorchis, Pleurogonius linearis, P. lobatus, P. longiusculus, P. trigonocephalus, Pyelosomum linguataula, Pronocephalus obliquus, Pyelosomum crassum, P. longiusculus, Ruicephalus minutus, and Rhytidodes gelatinosus. In this publication, Pleurogonius longiusculus and Pyelosomum longiusculus were still considered as distinct species.

Pathological changes caused by the digenetic species Hapalotrema postorchis Rao 1976 in a green turtle found dying on the beach of São Mateus, in Espirito Santo State, were studied by Werneck et al. (2013). Six of these parasites were found within an aneurysm in the aorta, near the heart. Werneck & Silva (2015) conducted a parasitological examination of the digestive tract, urinary bladder, liver, heart, lungs, kidneys and body wash of 136 juvenile green turtles found dead between 2004 and 2011 in Rio de Janeiro and São Paulo States. The authors recorded the digenetic Cymatocarpus solearis Looss 1899 (Brachycoeliidae Looss 1899), Schizamphistomum scleroporum (Cladorchiidae Fischodoer 1901), Cricocephalus albus, C. megastomus Looss 1902, Diaschistorchis pandus (Braun 1901) Johstone 1913, Metacetabulum invaginatum, Pleurogonius linearis, P. lobatus, P. longiusculus, P. trigonocephalus, Pronocephalus obliquus, Pyelosomum cochlear Looss 1899, P. crassum, Rameshwarotrema uterocrescens Rao 1975, Ruicephalus minutus (Pronocephalidae), Angiodictyum longum Blair 1986, A. parallelum, Deuterobaris proteus, Microscaphidium reticulare, Neoctangium travassossi, Polyangium linguatula (Microscaphidiidae), Rhytidodes gelatinosus (Rhytidodidae Odhner 1926), Learedius learedi, Neospirochiris sp., Amphiorchis indicus and Monticellius indicum (Spirorchiidae), and an unidentified nematode larva. Brazil was considered a new geographical distribution site for A. longum, A. parallelum, R. uterocrescens, P. cochlear, S. scleroporum, C. solearis and Neospirochiris sp.

Werneck et al. (2015b) reported the occurrence of four specimens of Rhytidoides similis Price, 1939, parasitizing the gallbladder of a green turtle, found on the coast of Espirito Santo State. No gallbladder injury could be directly associated with the infection by this adult parasite. However, granulomas were found in the liver, with eggs of trematodes similar to spirorchiids. Finally, the most recent report was the occurrence of two specimens of Neospirochiris schistosomatoïdes Price, 1934 parasitizing the heart of a green turtle found on the coast of Espirito Santo State (Werneck et al. 2016).

Thus, it is evident that in the recent years, with the increase of the studies in different regions, larger sample sizes and more methodological details from samplings and screenings, there has been a large increase in the number of known species of parasites of C. mydas in Brazil, mainly in Digenea (Figure 1). The number of nematode species did not quite increase after 1995’ studies (Figure 1). However, considering that there are still few published studies on this topic and the difficulty in obtaining helminth specimens from well preserved host samples, specially of Nematoda, it is possible that there are species of parasites yet to be recorded, mainly in organs other than those of the digestive tract.

Considering all this information, the helminth fauna of the green turtles that occur along the Brazilian coast is composed of 31 species of digenetic trematodes of seven families and four species of nematodes of two families. The parasites of Chelonia mydas from the Brazilian waters reported up to now have been found parasitizing several organs and tissues (Table 1). Some of these parasite species also infect other species of sea turtles, such as Caretta caretta, Eretmochelys imbricata, Lepidochelys kempii, and
Lepidochelys olivacea, the subspecies Chelonia mydas agassizi and also the terrapin Podocnemis expansa (Table 1). These parasites have also been found in sea turtles from all the oceans in both northern and southern hemispheres (Table 1). It is important to consider the endemism found for only one digenean species, Ruicephalus minutus, and one nematode species, Tonaudia freitasi, which according to our research, are the species that occurred only in green turtles from Brazil so far (Table 1).

Figure 1. Relationship between the number of Digenea and Nematoda species parasitizing the digestive tract of Chelonia mydas along the Brazilian coast and the number of published records from 1918 to 2016.

Table 1. Infection site, geographical distribution and other hosts of the helminths of the green turtle, Chelonia mydas, found along the Brazilian coast.

<table>
<thead>
<tr>
<th>Parasites taxa</th>
<th>Infection site</th>
<th>Geographical distribution</th>
<th>Hosts</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Platyhelminthes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Trematoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Plagiorchiida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Brachycoelidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymatocarpus solearis</td>
<td>In, Mi, Si, St, Ui</td>
<td>Au, Br, Fl, GP, Jp, MS, PM</td>
<td>Cc, Cm, Lk, Lo, Ei</td>
<td>23, 26, 28</td>
</tr>
<tr>
<td>Schizamphistomum scleroporum</td>
<td>In, Li, Ps, St</td>
<td>AO, Au, Br, CR, Cu, Eu, Fl, MS, NA, PO, Tr</td>
<td>Cc, Cm, Ei</td>
<td>4, 23, 26, 37, 47, 61</td>
</tr>
<tr>
<td>Family Cladorchiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Microscaphidiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiodictyum longum</td>
<td>Li, Ps, Si</td>
<td>Au, Br, Ha, SL, Ma</td>
<td>Cm</td>
<td>5, 15, 47</td>
</tr>
<tr>
<td>Angiodictyum parallelum</td>
<td>Li, Mi</td>
<td>Br, Eg, Fl, PR</td>
<td>Cm</td>
<td>5, 16, 26, 47, 61</td>
</tr>
<tr>
<td>Deuterobaris proteus</td>
<td>Es, In, Li, Mi</td>
<td>Br, CS, Fl, MS, PR</td>
<td>Cm</td>
<td>16, 18, 26, 42, 47, 61</td>
</tr>
<tr>
<td>Microscaphidium reticulare</td>
<td>Es, In, Ps</td>
<td>Au, Br, CR, Cu, Eg, Fl, Gh, Jp, Ma, MS, NS, PR</td>
<td>Cm</td>
<td>5, 18, 23, 26, 36, 37, 42, 47, 61</td>
</tr>
<tr>
<td>Neoctangium travassosi</td>
<td>In, Mi, St</td>
<td>Br, CS, Fl, SP</td>
<td>Cm, Ei</td>
<td>6, 23, 25, 34, 47</td>
</tr>
<tr>
<td>Polyanium lingualula</td>
<td>In, Mi, Si, St</td>
<td>Au, Br, CR, Cu, Eg, Fl, Ha, Id, MS, PR, Sg</td>
<td>Cc, Cm</td>
<td>5, 15, 16, 18, 19, 21, 23, 26, 36, 37, 40, 41, 42, 47, 61</td>
</tr>
</tbody>
</table>

Continued on next page...
… continued

<table>
<thead>
<tr>
<th>Parasites taxa</th>
<th>Infection site</th>
<th>Geographical distribution</th>
<th>Hosts</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Platyhelminthes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Trematoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subclass Digenea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Plagiorchida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Pronocephalidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cricocephalus albus</td>
<td>DT, Es, In, Li, Si, St, Ui</td>
<td>Au, Br, CR, CS, Eg, Fl, Sp, Ic, Jp, MS, NA, Pn, PN, RJ, SG, US</td>
<td>Cm, Ei, Lk, Cc</td>
<td>10, 17, 19, 23, 25, 26, 30, 35, 37, 40, 41, 47, 57, 61</td>
</tr>
<tr>
<td>Cricocephalus megastomus</td>
<td>Es, St</td>
<td>Br, CR, Eg, Ic</td>
<td>Cm, Ei</td>
<td>26, 35, 37, 47, 61</td>
</tr>
<tr>
<td>Diaschistorchis pandus</td>
<td>Es, St</td>
<td>Au, Be, Br, Cu, Fl, Jp, MG</td>
<td>Cc, Cm, Ei</td>
<td>23, 26, 35, 47, 57, 61</td>
</tr>
<tr>
<td>Metacentubulum invaginatum</td>
<td>In, Si, St, Ui</td>
<td>Br, Fl, SP</td>
<td>Cm, Ei</td>
<td>17, 19, 20, 26, 35, 41, 47, 57, 61</td>
</tr>
<tr>
<td>Phylum Nematoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Rhabditida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Anisakidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anisakis spp.</td>
<td>L</td>
<td>Br, It, MA, Sp</td>
<td>Cc, Cm, Ei</td>
<td>30, 38, 43, 57</td>
</tr>
<tr>
<td>Family Kathlaniidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kathlania leptura</td>
<td>In, Li, St</td>
<td>Br, Cy, Eg, Eu, It, Sp, US, Za</td>
<td>Cc, Cm, Lo</td>
<td>7, 8, 23, 27, 30, 39, 45, 51</td>
</tr>
<tr>
<td>Tonaudia freitasi</td>
<td>St</td>
<td>Br</td>
<td>Cm</td>
<td>30, 45</td>
</tr>
</tbody>
</table>

Infection sites: Aa=aortic aneurism; Ao=Aorta; BW=body wash; Cl=cloaca; DT=digestive tract; Es=esophagus; GB=gall
In recent years there has been an increase of studies of helminth parasites of the digestive tract of *C. mydas* found in Brazil, which is probably related to the greater interest in understanding the ecology of this threatened species. In addition, 33 species of helminths of *C. mydas* have been found to be widely distributed, while two are apparently endemic to particular regions. The concentration of some species only in particular regions may suggest that these geographical records can be related to the location of the major research centers and do not correspond to the actual geographical distribution of these species.

Therefore, studies that evaluate the parasites of the digestive tract of green turtles in places not yet investigated are necessary to elucidate the life cycles of the helminths and the geographic distribution of parasites and hosts, and to define population stocks and migratory routes. Furthermore, it is necessary to confirm if indeed few nematode species parasitize green turtles.

CONCLUSION

ACKNOWLEDGMENTS

The authors thank the Post-Graduation Program in Biological Sciences of UEL for support. Dr. A. Leyva (USA) and Guy Fulkerson helped with the English translation. Mario R. C. Meira Filho is a CAPES fellow.

REFERENCES

bladder; GBV=gall bladder blood vessels; He=heart; In=intestine; Ki=kidneys; LA=left aorta; Li=large intestine; L=liver; Lu=lungs; Me=mesentery; Mi=middle intestine; Mv=meningeal venule; Ps=pseudocecum; RA=right aorta; Si=small intestine; Sp=spleen; St=stomach; UB=urinary bladder; Ul=upper intestine.

Bursey, C. R., Richardson, K. E., & Richardson, D. J. 2006. First North American Records of Kathlania lepta and Tonaudia tonaudia (Nematoda: Kathlanidae), Parasites of Marine Turtles. Comparative Parasitology, 73(1), 134-135. DOI: 10.1654/0002.1

Inglis, W. G. 1957. A revision of the nematode genera Kathlania and Tonaudia. Annals and Magazine of Natural History: Series 12, 10, 785-800

Viana, L. 1924. Tentativa de catalogação das espécies brasileiras de trematódeos. Memórias do Instituto Oswaldo Cruz, 17(1), 95-227.

Werneck, M. R., & Silva, R. J. 2015 Helminth parasites of juvenile green turtles Chelonia mydas (Testudines, Cheloniidae) in...

