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Abstract: The combination of species distribution models based on climatic variables, with spatially explicit 
analyses of habitat loss, may produce valuable assessments of current species distribution in highly disturbed 
ecosystems. Here, we estimated the potential geographic distribution of the threatened palm Euterpe 
edulis Mart. (Arecaceae), an ecologically and economically important species inhabiting the Atlantic Forest 
biodiversity hotspot. This palm is shade-tolerant, and its populations are restricted to the interior of forest 
patches. The geographic distribution of E. edulis has been reduced due to deforestation and overexploitation 
of its palm heart. To quantify the impacts of deforestation on the geographical distribution of this species, we 
compared the potential distribution, estimated by climatic variables, with the current distribution of forest 
patches. Potential distribution was quantified using five different algorithms (BIOCLIM, GLM, MaxEnt, 
Random Forest and SVM). Forest cover in the biome was estimated for the year 2017, using a recently-
released map with 30 m resolution. A total of 111 records were kept to model climatic suitability of E. edulis, 
varying from 6 to 1500 m a.s.l and spanning almost the entire latitudinal gradient covered by the Atlantic 
Forest (from 7.72º S to 29.65º S). Based on climatic suitability alone, ca. 93 million hectares, or 66% of the 
area of the Atlantic Forest, would be suitable for the occurrence of E. edulis. However, 76% of this climatically 
suitable area was deforested. Therefore, currently, only ca. 15% of the biome retains forest patches that are 
climatically suitable for E. edulis. Our analyses show that E. edulis has suffered a dramatic loss of potential 
distribution area in the Atlantic Forest due to widespread deforestation. Our results provided updated 
information on the distribution of E. edulis, and may be used to identify which forested and deforested areas 
could receive priority in future conservation and restoration efforts. 
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Abstract: The flood pulse associated with local factors is the main drivers of the phytoplankton functional 
groups. The aim of this study was to evaluate the dynamics of the phytoplankton community and the Reynolds 
Functional Groups (RFG) and their relationships with the alternative states in a Pantanal floodplain lake. The 
Coqueiro Lake (municipality of Poconé, state of Mato Grosso, Brazil) was sampled monthly at three sites from 
April 2002 to May 2003. Three periods were identified: i) period I (first receding) with colonization of Egeria 
najas (Alismatales, Hydrocharitaceae), reduced depths and clear waters, characterized by the lowest species 
richness (mean = 23 taxa/sample) and reduced phytoplankton biomass (mean = 1.0 mg L-1); ii) periods II 
(low waters and rising) without Egeria najas, with lowest influence from the river, lowest depths, turbid 
waters, highest phytoplankton biomass (mean = 9.8 mg L-1) and species richness (mean = 29 taxa/sample); 
iii) periods III (high waters and beginning of the second receding) with Egeria najas and high influence 
from the river, greater depths, clear waters, with intermediate species richness (mean = 26 taxa/sample) and 
lowest phytoplankton biomass (mean = 0.7 mg L-1). Phytoplankton was composed mainly of nanoplanktonic 
algae with greatest contributions in the low waters without Egeria najas and was represented by 16 RFG, 
with reduced variability between the three periods and sites. The functional groups K, P, F, J, H1 and H2 
were important in this shallow flood lake governed by natural mechanisms of alternation of clear water 
regime with reduced phytoplankton biomass to a new state of turbid water dominated by phytoplankton. 
The variations in the phytoplankton functional groups were related to the physical and chemical regime 
of the lake and the hydrodynamics of the flood system, which acts as a continuous renewal of the habitat 
conditions in the different alternative states the lake. 

Keywords: microalgae; shallow lakes; wetland.

INTRODUCTION

River hydrodynamics in floodplains subjects the 
many shallow lakes of these regions to water level 
fluctuations and to the flow of matter and energy 
(Junk et al. 1989, 2011, Junk & Wantzen 2006) 

where phytoplankton dynamics is as variable as 
the seasonal patterns of flooding and isolation 
(Townsend 2006). Considering these aspects, the 
classic concept of habitat model (Southwood 
1977) has been applied to phytoplankton, based 
on a number of diagnostic environmental axes, 
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which distinguish attributes and adaptations of 
the species that make up the pelagic vegetation 
(Padisák et al. 2009, Brasil & Huszar 2011).

According to the complexity of these 
macrosystems, some shallow lakes are eutrophic 
and may change “abruptly” alternating from a 
macrophyte-dominated state of clear waters 
to a new state of turbid waters, dominated by 
phytoplankton (Scheffer 1993, Scheffer & Carpenter 
2003, 2007). The sharp transitions between a clear 
macrophyte-dominated state and a turbid state 
without submerged plants also occur in the tropical 
floodplain lake, albeit driven by a largely different 
set of mechanisms. Contrary to what is found in 
temperate lakes there is no evidence for top-down 
control of phytoplankton biomass associated with 
the macrophyte-dominated state in a tropical lake 
(Loverde-Oliveira et al. 2009). 

Studies have analyzed phytoplankton in shallow 
lakes governed by natural mechanisms driving 
regime alternation (O’Farrell et al. 2011, Izaguirre 
et al. 2012, Tezanos-Pinto & O’Farrell 2014, Bertani 
et al. 2016, Gamito et al. 2019) and applied the 
approach of functional groups in systems with 
alternative states (Loverde-Oliveira 2005, Tezanos-
Pinto et al. 2015). The studies using the functional 
groups to analyze the phytoplankton variation and 
the driving factors have been efficient in several 
floodplain lakes for example in the Paraná River 
(Devercelli 2006, Devercelli et al. 2014, Bortolini 
et al. 2016), Pantanal (Loverde-Oliveira & Huszar 
2007), Araguaia River (Nabout et al. 2006, Nabout & 
Nogueira 2007) and Amazonian basin (Alves 2011, 
Lobo et al. 2018). 

The objective of this study was to evaluate 
the dynamics of the phytoplankton community 
and the Reynolds Functional Groups (RFG) and 
their relationships with the alternative states in a 
Pantanal floodplain lake. We tested the hypothesis 
that the flood pulse represents a macro-factor 
that regulates the phytoplankton biomass and 
composition expressed by the RFG in the studied 
ecosystem.

MATERIAL AND METHODS 

Study area
The study was conducted in Coqueiro Lake in 
the Pantanal of Poconé (16º15’12” S, 56º22’12” 
W; SIRGAS 2000), state of Mato Grosso, Brazil, 

belonging to the floodplain of the Cuiabá River 
(Figure 1). It is a shallow, elongated, polymictic 
and eutrophic. During the high-water period, 
has clear waters and is characterized by the 
colonization of Egeria najas Planch. (Alismatales, 
Hydrocharitaceae) and by populations of Eichhornia 
azurea Kunth (Commelinales, Pontederiaceae) and 
Eichhornia crassipes (Mart.) Solms (Commelinales, 
Pontederiaceae) in the littoral zone (Loverde-
Oliveira et al. 2009).

The climate of the region is hot and humid 
(Koeppen Aw), with dry winter and rainy summer. 
The average historical temperature ranges from 
24°C to 26°C, with historical annual total rainfall of 
1,000 - 1,600 mm (Alvares et al. 2014).

Sampling and sample analyses
Monthly samples were taken from April 2002 to 
May 2003 at three sites (Figure 1): E1, located 
in the limnetic region under the influence of a 
channel (Corixo) that connects the Coqueiro Lake 
to the Piraim River, in the flood; E2, located in the 
limnetic and deeper region of the lake; and E3, in 
the littoral zone next to a stand of emergent aquatic 
macrophytes and under the influence of a temporary 
channel. For analyses of the phytoplankton and 
the environmental variables, water samples were 
collected under the water surface, simultaneously. 
Quantitative samples of phytoplankton were fixed 
with Lugol acetic solution.

The densities of phytoplankton (ind mL-1) 
were estimated in random fields (Uehlinger 1964) 
according to the sedimentation method (Utermöhl 
1958). Phytoplankton biovolume (mg L-1) was 
estimated as the product of population density by 
the mean volume of each species (Hillebrand et al. 
1999). Phytoplankton taxa were grouped according 
to the Reynolds Functional Groups (Reynolds et 
al. 2002, Padisák et al. 2009, Kruk et al. 2017) for 
species that contributed on average with more than 
4% to the total biomass. The taxonomic diversity of 
phytoplankton was calculated using richness (i.e., 
species per sample), Shannon and Wiener diversity 
index (Shannon & Weaver 1963), and evenness 
(Pielou 1966) of species.

Meteorological data were provided by Padre 
Ricardo Remetter Meteorological Station, about 
80 km in a straight line from the lake. The water 
temperature, electrical conductivity, pH and 
dissolved oxygen were determined using a Mettler 
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Toledo meter; alkalinity according to Golterman et al. 
(1978) and Mackereth et al. (1978); the concentrations 
of CO2 based on Carmouze (1994); turbidity with 
HACH 2100P portable turbidimeter, color by direct 
reading (Nessler-Quanti 200), suspended material 
according to Teixeira et al. (1965); the depth of the 
lake (Zmax, m), water transparency (m) was obtained 
using a Secchi disk, and the euphotic zone (Zeu, 
m) was calculated as 2.7 times the depth of the 
Secchi disk (Cole 1994); total nitrogen (TN), total 
phosphorus (TP), ammonium (N-NH4

+), nitrate 
(N-NO3

-), soluble reactive phosphorus (SRP) and 
soluble reactive silica (SRSi), based on Golterman 
et al. (1978). Chlorophyll-a was analyzed using the 
method of Nusch & Palme (1975).

Data analyses
The TN:TP, Si SO3- :P PO4

3- and Si SO3-:NID were 
calculated by atomic ratio. Approximations of the 
limitation of phytoplankton growth by nutrients, 
related to the taxonomic groups, were made 
comparing the semi-saturation (Km) constants with 
the nutrient concentrations of the Coqueiro Lake 
(Sommer 1989). The dissolved inorganic nutrients 
and the Km values of literature were used according to 
Huszar & Caraco (1998). The percentage of limitation 
was calculated as % limitation = 100*[1- (Ci/ Ci+ 
Km)], where Km is the median value for the different 
taxonomic groups and Ci is the concentration of the 
inorganic nutrient in sample i.

To order the environmental variability and to 

Figure 1. Location of the Coqueiro Lake, Cuiabá River Basin, state of Mato Grosso, Brazil, showing the 
sampling sites.
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determine spatial and temporal changes in the 
physical and chemical conditions of the lake, 
the Principal Components Analysis (PCA) was 
performed from the following descriptor variables: 
water temperature, zeu, zmax, suspended matter, 
turbidity, dissolved oxygen, pH, CO2, alkalinity, 
electrical conductivity, N NH4+, N NO3-, SRP, SRSi, 
NT, PT, chlorophyll a (CANOCO 4.0; Ter Braak 1986). 
The significance of the four axes and the variables 
was obtained through the Monte Carlo permutation 
test (199 non-restrictive permutations, p < 0.05) 
from transformed data. The averages of the biotic 
and abiotic variables of the water were compared 
through unidirectional Analysis of Variance (ANOVA) 
considering the sampling stations and periods of 
the hydrological cycle (p < 0.05). To determine how 
much of the variance of the phytoplankton (RGF) 
was explained from the environmental variables, 
a Redundancy Analysis (RDA) was performed. 
Before performing the RDA, we avoided the 
multicollinearity of the abiotic variables excluding 
those with an inflation factor (FVI) greater than 
10. In relation to the biotic data (RGF), they were 
previously transformed by the Hellinger method 
using the “decostand” function of the Vegan package 
(Oksanen et al. 2019). In addition, in order to obtain 
the most important variables, we performed a 
forward selection using the “ordistep” function (R 
Core Team 2018).

RESULTS

Environmental variability
In the study period, the total annual precipitation 
(1,259 mm) was within the climatological patterns 
of the region, when compared with the historical 
averages (800-1,600 mm). Precipitations on average 
presented maximum values in period II and the 
minimum in period I (Table 1).

The first two PCA axes explained 50% of the total 
variability of the data, showing the occurrence of 
three periods: period I (4/16 to 7/21/2002); first 
receding; period II (02/08/2002 to 01/31/2003), low 
waters and includes the beginning of the rising; and 
period III (10/02 to 05/31/2003) of high waters and 
beginning of the second receding. The periods I and 
III had the greatest depths, waters and euphoric 
zone, clear waters, lowest richness and lowest 
phytoplankton biomass, with lowest concentrations 
of nutrients, suspended matter, highest values of 

CO2, alkalinity and electrical conductivity; the period 
II (low water) had lowest fluvial influence, lower 
maximum depths and the euphotic zone, turbid 
waters, highest biomass and species richness, and 
highest concentrations of phosphorus, ammonium 
and chlorophyll-a (Table 1).

Phytoplankton Community and Functional Groups 
(RFG)
A total of 140 phytoplankton species were identified, 
distributed in 10 taxonomic classes: Chlorophyceae 
(N = 39 species), Zygnemaphyceae (N = 29), 
Cyanobacteria (N = 28), Bacillariophyceae (N = 
23), Euglenophyceae (N = 8), Chrysophyceae (N = 
6), Chryptophyceae (N = 3), Dinophyceae (N = 2) 
and Oedogoniophyceae and Rhodophyceae with 
one species each. A total of 16 RFG was recognized 
throughout the study, composed especially of 
nanoplanktonic algae with greatest contributions in 
the low water period.

The period I was marked by the expressive 
colonization of Egeria najas, and reduced 
phytoplanktonic biomasses in the three sampling 
sites, varying on average from 0.9 to 1.2 mg L-1, 
intermediate values, when compared with other 
periods, of specific richness (mean = 23 taxa/sample) 
and diversity (mean = 2.8 bits ind-1). Evenness 
ranged from 36 to 83% and indicated a significant 
variability in the contribution of species in biomass 
for the whole, with no marked dominance of species 
(Figure 2). The site E1 was characterized by the 
dominance of zygnemaphyceans of the functional 
group P at the beginning of the period, followed by 
cyanobacteria, mainly colonial small-cell coccoids 
functional group K (Figure 3). In turn, at E2, there 
was dominance of centric diatoms of the functional 
group P accompanied by coccoid cyanobacteria 
of the functional group K. It is worth noting the 
occurrence in the three sites of the functional group 
A, exclusive of this period. E3 was more similar to 
the E2 site, but with more expressive contributions 
of nanoplanktonic cromulinales, chrysophyceae of 
the functional group X3 (Figure 3; Supplementary 
Material 1). Sites E1 and E2 were marked by the 
dominance of the nano (< 20 μm) and microplankton 
(20-50 μm), but the littoral zone (E3) also showed 
significant contributions of the fraction larger than 
50 μm (Figure 3). The period II, without Egeria najas, 
was characterized by high phytoplanktonic biomass 
(mean = 9.8 mg L-1, p < 0.0001), with very significant 
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Table 1. Annual mean values of the variables per site (E1, E2, E3) and collection periods of receding (PI), low 
waters and beginning of the rising (PII), end of the flood, high waters and second receding (PIII), in Coqueiro 
Lake, municipality of Poconé, state of Mato Grosso, Brazil.

Variables E1 E2 E3 PI PII PIII

Precipitation (mm) - - - 23.85 869.5 463.8
Water temperature (oC) 27.9 27.7 27.7 26.4 28.5 28.1
Maximum depth (m) 1.5 1.6 1.2 1.5 1 1.9
Water transparency (m) 0.9 0.9 1 1 0.4 1.4
Euphotic zone (m) 1.5 1.5 1.2 1.5 1 1.9
Suspended material (mg L-1) 51 39 36 42 51 31
Turbidity (NTU) 28 30 17 26 37 8
Color (mg L-1 Pt) 67 75 76 64 107 43
Electrical conductivity (µS cm-1) 30 26 22 26 23 30
pH 5.9 6.3 5.4 5.8 6.2 5.4
Alkalinity (mg CaCO3 L-1) 15 12 10 14 9 15
CO2 (µ Mol L-1) 28 27 49 31 18 60
Dissolved oxygen (%) 41 41 13 21 37 37
NT (µg L-1) 458 537 515 701 610 162
PT (µg L-1) 222 309 190 204 283 223
N NH4

+ (µg L-1) 58 52 105 63 98 42
N NO3

- (µg L-1) 37 59 37 66 30 41
NID (µg L-1) 94 111 142 130 128 83
P PO4

3- (µg L-1) 42 46 32 41 61 13
Si SO3

- (µg L-1) 186 168 170 436 79 41
TN:TP (atomic) 6 6 8 14 5 2
Si SiO3

-:P PO4
3- (atomic) 5 5 6 12 2 4

Si SiO3
-:NID (atomic) 1 0.8 0.6 1.7 0.03 0.3

Chlorophyll -a (µg L-1) 26 24 16 16 39 6

temporal variability, highest specific richness (mean 
= 29 taxa/sample; p < 0.0001) and lowest diversity 
(mean = 2.5 bits ind-1; p < 0.0001), when compared 
with the other periods. The high variability of 
evenness (4 to 81%) indicated that also in this 
period, there was no marked dominance (Figure 
2). The limnetic site (E1) was characterized by the 
dominance of diatoms of the functional group P 
and filamentous cyanobacteria of the functional 
groups H1 and H2, besides cyanobacteria of the 
functional group K, followed by chlorophyceans of 
the functional groups J and F (Figure 3). In E2 and 
E3, there was dominance of centric diatoms of the 
functional group P, accompanied by chlorophyceans 
of the functional group J) and coccoid cyanobacteria 
of the functional group K (Figure 3; Supplementary 
Material 1).

The period III, high water and second 

receding, was again colonized by Egeria najas and 
characterized by reduced phytoplanktonic biomass 
(mean = 0.7 mg L-1), with intermediate specific 
richness (mean = 26 taxa/sample) and greater 
diversity (mean = 3.2 bits ind-1) when compared with 
the other periods. The evenness of 37-79% indicated 
that also in period III there was an expressive 
variability in the contribution of the species to the 
whole, with no marked dominance (Figure 2). The 
limnetic sites did not differ markedly and were 
dominated at the beginning of period III by coccoid 
cyanobacteria of the functional group K and F, as well 
as filaments of the functional group S, followed by 
colonial coccoid chlorophyceans of the functional 
groups F and J and flagellates of functional groups 
X3, W1 and Y (Figure 3). The littoral site in period 
III presented the greatest variability among the 
dominant groups. Initially, it was better represented 
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Figure 2. Variations in diversity, richness and evenness of phytoplankton species at the 
surface of the three sites (E1, E2, E3) in Coqueiro Lake, municipality of Poconé, state of 
Mato Grosso, Brazil, in the periods of receding (I), low waters and beginning of the rising 
(II), end of the flood, high waters and second receding (III).
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Figure 3. Variations in biomass per functional group and size class of phytoplankton, at the surface of the 
three sites (E1, E2, E3), in Coqueiro Lake, municipality of Poconé, state of Mato Grosso, Brazil, in the periods 
of receding (I), low waters and beginning of the rising (II), end of the fl ood, high waters and second receding 
(III). Class I: <20μm; class II: 20-50μm; Class III:> 50μm.

by coccoid cyanobacteria of the functional group K, 
followed by chlorophyceans of functional groups 
F, J and X1 (Figure 3). At this site, there were also 
contributions from nanoplankton chromulinales of 
the functional group X3 and of the functional group Y 
(Supplementary Material 1). Higher contributions of 
zygnemaphyceans were found when compared with 
the other sites, represented by the functional group 
T and TD. Nano (< 20 μm) and microplankton (20-50 
μm) fractions dominated at the three sampling sites. 
At the beginning of period III, the littoral site (E3) 
was dominated by fractions > 50 μm (Figure 3).

When comparing nutrient limitation using 
phytoplankton groups (Figure 4), three patterns 
emerge: in the fi rst (CO2 and N-NH4), all large groups 
are not strongly limited; in the second (N-NO3), 
there could be large diff erences between the groups, 
with limitation only for the group with greater Km 

(dinofl agellates); and in the third (SRSi and SRP), 

there could be limitation at intermediate levels 
and with great variability for any taxonomic group. 
The second pattern could lead to a high selection 
of species in diff erent taxonomic groups. When 
the fi rst pattern dominates, it is not expected that 
dissolved nutrients play a key role in the selection of 
phytoplankton groups. The data of the present study 
based on Km values suggest, therefore, an expressive 
selective potential for N-NO3, intermediate potential 
for SRP and SRSi and low selective potential for CO2 
and N-NH4, for the diff erent phytoplankton groups 
(Figure 4).

In RDA 21% of the data variance was explained (F5, 

36 = 2,57, p = 0.001). The spatial and temporal gradient 
was observed in the fi rst axis that was infl uenced 
by Turb (-0.85), CO2 (0.70), and TN:TP (0.32). The 
second axis was infl uenced by NNO3 (-0.69) and 
NNH4 (0.61). This analysis evidenced high similarity 
spatial and temporal of the phytoplankton, with the 
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Figure 4. Box plot of  the percentage of limitation to phytoplankton growth, based on the semi-saturation 
constants (Km) in Coqueiro Lake, municipality of Poconé, state of Mato Grosso, Brazil. For all nutrients, 
except for silica, the groups with lower (Min) and higher (Max) Km were considered. Initials of taxonomic 
groups: Cri - chrysophyceans; Din - dinofl agellates; Clo - chlorophyceans; Cya - cyanobacteria; Dia - diatoms. 
The line inside the boxes is the median, while the boundaries of the boxes, dashes and points cover 75%, 90% 
and 95% of the data, respectively.

discrimination the majority of RFGs in the fi rst axis 
and only of the RFGs F, T and H1 in the second axis 
(Figure 5). 

DISCUSSION

In this study, we sought to understand the dynamics 
of the phytoplankton community and the RFG during 
a hydrological cycle from their relationships with 
the alternative states in a Pantanal fl oodplain lake. 
We found that the fl ood pulse is the driving factor of 
the seasonal variation of biomass, composition and 
functional groups.

Coqueiro Lake has two the alternative states 
proposed by Scheff er et al. (1993), the turbid and 
clear states have already been documented by 
Loverde-Oliveira & Huszar (2010). During the phase 

of the clear water, the increase in transparency, 
maximum depth and stabilization of the water level, 
determine the limnological conditions favorable 
to the colonization by Egeria najas, especially 
in the areas with stronger lotic infl uence. Flood 
periods and high waters have a direct infl uence 
on the variables related to the availability of light 
and nutrients. Concentrations of total phosphorus 
cannot be considered as limiting to phytoplankton 
growth, but total nitrogen and reactive silica can be 
seen as limiting elements, at least at certain times of 
the year and in certain areas of the lake.

The studied system was highly diverse (annual 
mean = 3.1 bits ind-1), with a high representativeness 
of chlorophyceans in number of taxa during the low 
waters, being comparable to other fl oodplain lakes 
(Tezanos-Pinto et al. 2015, Machado et al. 2016). In 
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Figure 5. Redundancy Analysis ordination diagram of the sampling sites from environmental variables and 
functional groups of the phytoplankton in Coqueiro Lake, municipality of Poconé, state of Mato Grosso, 
Brazil. RFG classification based on Reynolds et al. (2002) and Padisák et al. (2009). Turb = turbidity; CO2 = 
Carbon dioxide; TN:TP = ratio nitrogen/ phosphorus; NNO3 = nitrate; NNH4 = ammonium.

the Coqueiro lake, the variability in phytoplankton 
composition and biomass was mainly related to 
seasonal changes in the water level, with greatest 
biomass and highest species richness at the low 
water period and lowest at the high water period, 
after establishing connectivity with the main river 
and raised water in the lake. The inverse relationship 
between phytoplanktonic biomass and water 
level elevation has been widely documented for 
floodplain lakes of the Paraná (Bortolini et al. 2014), 
Amazon (Lobo et al. 2018), Paraguay (Oliveira & 

Calheiros 2000) and temperate regions (Kasten 2003, 
Schemel et al. 2004).

According to the variability driven by the flood 
pulse functional groups have been used to explain 
the selection of dominant populations in tropical 
floodplains (Devercelli 2006, Nabout et al. 2006, 
Loverde-Oliveira & Huszar 2007, Bovo-Scomparin 
& Train 2008). In the Coqueiro Lake, stood out the 
groups K, P, F, J, H1, H2, characteristic of enriched and 
generally turbulent environments, including mainly 
cyanobacteria, chlorophyceans and diatoms. 
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During the low water period, the physical and 
chemical conditions of water mediated by the 
hydrological variations characterized the Coqueiro 
Lake as a shallow environment, with continuous 
mixing of the water column, high turbidity mainly 
of inorganic origin and high availability of nutrients, 
especially phosphorus. These conditions were 
favorable to the diatom and zygnematophycean 
species of the functional group P (Aulacoseira 
spp., Aulacoseirales, Aulacoseiraceae and 
Closterium porrectum, Desmidiales, Closteriaceae), 
microplankton species and, in the case of 
diatoms, organisms adapted to live in turbulent 
environments, often turbid (Reynolds 1988, Sommer 
1988) and eutrophic (Reynolds et al. 2002, Padisak 
et al. 2009). This group is usually also dominant in 
lotic environments (Bovo-Scomparin & Train 2008, 
Zanco et al. 2017). 

In addition to diatoms, cyanobacteria, and 
zygmaphyceans, chlorophyceans also stood 
out in the Coqueiro Lake during the low water 
period: functional group J (Hariotina reticulata, 
Sphaeropleales, Scenedesmaceae), of common 
occurrence in enriched shallow lakes with good 
mixing (Reynolds et al. 2002) and group F, also 
occurring in the flood, formed by colonial green 
algae with a broad mucilage sheath. Although 
it is considered to be characteristic of poorly 
enriched lakes with clear epilimnion (Reynolds et 
al. 2002, Huszar et al. 2003), the group F had higher 
contributions in relatively high turbidity periods and 
good nutrient supply. In other tropical (Costa 2005) 
and subtropical (Kruk et al. 2002) environments, 
different species of the group F have also been 
reported for similar conditions.

The functional group A, formed by diatoms 
(Cyclotella sp., Stephanodiscales, Stephanodiscaceae 
Stephanodiscales, Stephanodiscaceae) common in 
shallow, clear, mixed lakes (Reynolds et al. 2002), was 
exclusive to the receding, a period still with strong 
lotic influence and with high availability of silica and 
NID. However, the functional group T, characteristic 
of deep and mixed environments (Reynolds et 
al. 2002), occurred in the lakes under conditions 
of good availability of light and reactive soluble 
phosphorus. It should be noted, especially in the 
littoral site, the contribution of zygnemaphyceans 
(Bambusina borreri, Desmidiales, Desmidiaceae 
and Mougeotia sp., Zygnematales, Zygnemataceae) 
and oedogoniophyceans (Oedogonium sp., 

Oedogoniales, Oedogoniaceae) of the group TD, all 
exclusive to the period of high waters and common 
to the periphyton and metaphyton, besides 
the unicellular desmids (Closterium setaceum, 
Desmidiales, Closteriaceae and Staurodesmus 
validus,  Cosmarium spp., Desmidiales, 
Desmidiaceae). 

The species had a similar spatial distribution 
in the lake, regardless of the water flow or 
collection depth. Importantly is the establishment 
of connectivity with the river, increasing the 
contribution of flagellated algae in the limnetic 
sites. These groups are favored in high water periods 
(Oliveira & Calheiros 2000, Alves 2011, Lobo et al. 
2018), since nanoplankton flagellates due to their 
rapid growth are able to maintain their populations. 
The nanoplanktonic organisms of functional group 
X3 (chrysophyceans, Chromulinales) considered 
as typical of oligotrophic lakes with mixed layers, 
together with W1 (euglenoids) and Y (Cryptomonas 
spp., Cryptomonadales, Cryptomonadaceae) were 
favored by the river-lake connectivity and indicate 
the tolerance of these functional groups to water 
flows (Domitrovic 2003).

Although nitrogen is not the most frequently 
limiting nutrient in tropical and subtropical lakes and 
reservoirs (Huszar et al. 2006), the phytoplankton of 
some Brazilian Pantanal lakes (Loverde-Oliveira & 
Huszar 2007) may be limited by this nutrient. In fact, 
phytoplankton biomass was directly related to the 
concentrations of dissolved inorganic nitrogen, but 
not to the concentrations of total P or SRP. On the 
other hand, assuming the levels of limitation to the 
growth of phytoplankton in general, from the semi-
saturation constants for population growth (Ks) in 
relation to reactive soluble phosphorus, dissolved 
inorganic nitrogen (3-5 µgL-1 and 70-120 µgL-1, 
respectively; Reynolds 1997) and to the growth of 
diatoms in particular in relation to soluble reactive 
silica (42 µg L-1; Sommer1988), mean concentrations 
of reactive soluble phosphorus (mean = 45 μgL-
1) cannot be considered as limiting the growth of 
phytoplankton. As for dissolved inorganic nitrogen 
(mean =117µgL-1), it is possible to consider that 
there is a limitation to phytoplankton development 
in the Coqueiro Lake, at least at certain times of the 
year and in certain areas of the lake.

Considering the Coqueiro Lake as a whole 
and taking into account nutrient concentrations 
in relation to the semi-saturation constants 
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(Km), none of the analyzed nutrients can be 
considered as limiting the growth, for example, of 
cyanobacteria. However, nitrate concentrations, 
may have moderately limited the growth of diatoms 
and chlorophyceans and strongly influenced the 
selection of dinoflagellates. As for soluble reactive 
silica, it was not expected to be one of the nutrients 
limiting the growth of diatoms in Coqueiro Lake, 
since the values of silicates found in Pantanal water 
bodies (Silva & Figueiredo 1999). 

The N:P ratio was generally below that value 
(mean = 7.0) and, in fact, the cyanobacteria were co-
dominant in much of the study and even developing 
bloom, albeit in a relatively restricted period. The low 
N:P ratio, almost always lower than 16 (Redfield et al. 
1963), also suggest that nitrogen can be considered 
with a strong potential to limit phytoplankton 
growth in Coqueiro Lake. Studies considering 
shallow lakes along a latitudinal gradient (5°–55°S) 
in South America detected no relationship between 
the occurrence of cyanobacteria and the N:P ratio 
(Kosten et al. 2009). 

There are strong empirical evidences that 
variations in the input of N and P can cause 
changes in phytoplankton composition (Philippart 
et al. 2000), especially in the Si:N and Si:P ratios, as 
potentially limiting elements for diatom growth, 
since the contribution of nitrogen and phosphorus 
has increased considerably with human activities, 
but not the input of silica (Cloern 2001). In the 
Coqueiro Lake, the Si: NID (atomic) ratio of the 
dissolved fraction was lower than 1 in the low water, 
rising and high water and greater than 1 in the 
receding, indicating potential limitation to diatom 
growth, except in the receding. The Si:P (atomic) 
ratio of the dissolved fraction was lower than 16 
throughout the study, also pointing to a potential 
limitation by Si throughout the study.

Thus, the flood pulse is the main factor driving 
the seasonal variation in biomass, composition and 
RFG of the phytoplankton, during one seasonal 
cycle, in the different alternate states of Coqueiro 
Lake. The phytoplankton community presented 
reduced temporal variability in composition, but 
a wide variability in biomass. The limitation to 
phytoplankton growth by nutrients is related to the 
forms of dissolved nitrogen and, to a lesser extent, to 
silica, defining functional groups typical of turbulent 
and enriched environments.
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