
Oecologia Australis
24(2):505-523, 2020
https://doi.org/10.4257/oeco.2020.2402.19

A PROTECTION AREA IN A SUBTROPICAL FLOODPLAIN INFLUENCED THE 
PHYTOPLANKTON TAXONOMIC AND FUNCTIONAL DIVERSITY

Alfonso Pineda1*, Aline Caroline Magro de Paula2, Patrícia Iatskiu2, Geovani Arnhold 
Moresco2, Yasmin Rodrigues Souza2, Laura Andrea Ortega Corredor2, Felipe Morais Zanon3, 
Bárbara Furrigo Zanco2, Susicley Jati4, Jascieli Carla Bortolini5 & Luzia Cleide Rodrigues2,4

1 Universidade Estadual de Maringá, Centro de Ciências Biológicas, Programa de Pós-graduação em Biologia Comparada, 
Av. Colombo, 5790, CEP: 87020-900, Maringá, PR, Brazil

2 Universidade Estadual de Maringá, Centro de Ciências Biológicas, Programa de Pós-graduação em Ecologia de 
Ambientes Aquáticos Continentais, Av. Colombo, 5790, CEP: 87020-900, Maringá, PR, Brazil

3 Universidade Estadual de Maringá, Centro de Ciências Biológicas, Av. Colombo, 5790, CEP: 87020-900, Maringá, PR, 
Brazil

4 Universidade Estadual de Maringá, Centro de Ciências Biológicas, Núcleo de Pesquisas em Limnologia e Aquicultura, 
Av. Colombo, 5790, CEP: 87020-900, Maringá, PR, Brazil

5 Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Botânica, Chácaras Califórnia, CEP: 
74045-155, Goiânia, GO, Brazil.

E-mails: amanecce@gmail.com (*corresponding author); alinecmagro@gmail.com; patiiatskiu@gmail.com; 
geovanimoresco@gmail.com; yasmin.noris@gmail.com; lauraa.ortegac@gmail.com; fmz.morais10@gmail.com; 
zanco.bf@gmail.com; susi@nupelia.uem.br; jcbortolini@ufg.br; luziac.rodrigues@gmail.com

Abstract: Protection areas favor diversity as they decrease the impact of anthropic disturbance on biological 
communities. Testing its effects on diverse biological communities is a pivotal step to understand how 
different trophic levels react to such management and conservation strategies. Here, we used data collected 
from 1993 to 2018 from a subtropical floodplain to evaluate the effect of the installation of a protection 
zone on the taxonomic and functional diversity of the phytoplankton community. We showed that the 
installation of the park had a positive effect on the aquatic community, mainly related to the decrease of 
cyanobacteria dominance and to the increase of phytoplankton functional groups. However, our results 
also suggested that dynamics occurring in a scale beyond the park seemed to influence key factors for the 
phytoplankton community, such as transparency and nutrient concentrations. Thus, although we showed 
that a compensatory measure had a positive effect on biodiversity, we believe that the establishment of 
protection zones must also consider and integrate the management of the river basin where the areas to be 
protected are located.
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INTRODUCTION

Biodiversity loss is increasing worldwide due 
to the rise of anthropogenic disturbances (e. g. 

habitat fragmentation, overexploitation of natural 
resources, and introduction of exotic species), 
affecting natural environments (Tockner & 
Stanford 2002, Dudgeon et al. 2006). This reduction 
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of biodiversity is related to the loss of both species 
and genetic variability (Olden et al. 2004, Petsch 
2016), what consequently debilitate human well-
being, since loss of biodiversity decreases the food 
stocks and increases the occurrence of pests and 
diseases (Hooper et al. 2005).

The loss of biodiversity and the consequent 
loss of ecosystem services (e.g. food supply) 
highlight the importance of actions to prevent 
environmental degradation and the extinction of 
the species (Berkes 2009). In this way, the creation 
of environmental protection areas is essential to the 
conservation of biodiversity (Di Minin et al. 2017). 
These areas can range from exclusive research 
areas with restricted access to areas subjected to 
sustainable use by local communities and tourism 
(Shahabuddin & Rao 2010). In any case, protection 
areas aim to protect the natural dynamics of diverse 
ecosystems around the world.

Floodplains are ecological systems with high 
environmental heterogeneity that favor high 
biodiversity (Thomaz et al. 2004, Thoms et al. 2005, 
Lansac-Tôha et al. 2016, Junk et al. 2014). However, 
most of these ecosystems suffer from environmental 
degradation (Tockner & Stanford 2002, Junk et 
al. 2014). One of the greatest anthropogenic 
impacts presented in this ecosystem is the habitat 
fragmentation, mainly caused by dam construction 
(Nilsson et al. 2005, Winemiller et al. 2016). Dams 
alter river flow, modify environmental conditions 
(e.g. shifts from lotic to lentic conditions), and 
reduce the connectivity between floodplain 
environments (Poff 1997, Ward et al. 1999, Stanford 
& Ward 2001, Oliver & Merrick 2006, Thomaz et al. 
2007, Agostinho et al. 2008, Souza-Filho 2009). 

In this regard, areas of environmental protection 
have been proposed as an ecological compensation 
for dam construction. Protected areas play a pivotal 
role in biodiversity conservation, and they are a valid 
and measurable indicator of the progress toward 
conserving the world’s remaining biodiversity, or, 
at least, reducing the loss rates (Chape et al. 2005). 
Indeed, these areas have shown a positive effect 
on the diversity of trees, mammals and birds (Lees 
& Peres 2008). However, little is known about how 
the implementation of such areas could affect the 
diversity of aquatic microorganisms.

In the case of phytoplankton, understanding 
the effect of conservation areas is of foremost 
importance, since this community is the main 

responsible for primary productivity and it is 
the base of trophic cascade in several freshwater 
ecosystems. In addition, as the phytoplankton 
community is composed of small species with 
short generation time, this community responds 
fast to environmental variation, with fluctuations 
in community structure (e.g. changes in 
composition and biomass) over time, thus, being 
excellent indicators of environmental changes 
(Reynolds 2006).

A growing approach to understand the ecological 
processes that influence the phytoplankton 
community (e.g. Beamud et al. 2015, Rodrigues 
et al. 2018) is the usage of the functional 
characteristics of the phytoplankton species 
(Reynolds et al. 2002, Litchman & Klausmeier 
2008, Padisák et al. 2009). According to their 
functional features and response to environmental 
variation, phytoplankton species can be classified 
in functional groups to decrease the variation of 
the community and enhance the association with 
environmental processes (Reynolds et al. 2002, 
Beamud et al. 2015, Mutshinda et al. 2016). In this 
sense, while, at species level, communities can 
be strongly affected by neutral processes, such as 
random dispersion and ecological drift (extinctions 
related to demographic stochasticity) (e. g. Fukami 
et al. 2005), functional characteristics respond at a 
greater degree to the environment (Mutshinda et 
al. 2016), as environmental processes act over the 
species functional traits (Kraft et al. 2015). Besides, 
each functional group relates to different ecological 
functions (e.g. nitrogen fixing), and understanding 
its response to natural and anthropic disturbances 
could help us to assess the resilience capacity of the 
ecosystems (Elmqvist et al. 2003, Chillo et al. 2011) 
and the risk of losing ecological functions (Walker 
et al. 1999, Chillo et al. 2011).

Here, we aimed to test how the implementation 
of a protected area affects the functional and 
taxonomic attributes of the phytoplankton 
community. For this, we used a long time series (24 
years) of data derived from a Long-Term Ecological 
Research (PELD - site 6), which includes biovolume 
data of phytoplankton species and environmental 
data. The data were collected in an area of 
biodiversity protection, created as a compensation 
for the construction of reservoirs upstream 
Upper Paraná River floodplain. We tested the 
hypothesis that the implementation of a protection 
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area changes the environmental conditions 
and alters the structure of the phytoplankton 
community, acting positively on the number of 
species and functional groups. Thus, we were 
interested in evaluating changes in the number of 
phytoplankton species and functional groups, its 
biomass, composition, and diversity (Shannon and 
dominance as the effective number of species) in 
a subtropical river-lake flood system, both before 
and after being made into a protected area.

MATERIAL AND METHODS

Study area
The study area is located at the Upper Paraná 
River floodplain (Figure 1 and 2 - 22°37’S 53°6’W 
and 24°03’S 54°15’W), within the boundaries of 
Ivinhema State Park (PEVRI), a state conservation 
unit created as compensation (Law nº 9985/00, Mato 
Grosso do Sul) for the upstream construction, in the 

Paraná River, of the hydroelectric dam Engenheiro 
Sérgio Motta reservoir (Porto Primavera). Created 
in the year 2000, the Park covers much of the lower 
Ivinhema River’s course to its mouth on the Paraná 
River, where numerous lagoons, canals, and rivers 
are found, with a total area of 73.345,15 hectares. 
After the installation of the park the forest cover had 
an important recovery (Figure 2). The hydrological 
regime is characterized by a high-water season 
(October–February) and a low-water season (June–
September). However, the frequency, duration, 
and intensity of the floods have changed due to 
the construction of several dams upstream in the 
Paraná River (Souza Filho et al. 2004). These dams 
have caused nutrients and sediment retention that 
affects this floodplain negatively (Roberto et al. 
2009, Oliveira et al. 2018). 

The samples were collected in the Ivinhema 
River and in one lake with permanent connection 
to the river. The Ivinhema River is influenced by 

Figure 1. Map and location of the study area showing the sampling sites.
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water level oscillations of the Paraná River, but 
because it is non-dammed, it still preserves pristine 
conditions. As a reference, the Paraná flooding 
reaches the Ivinhema environments when the water 
level rises above 4.5m (Thomaz et al. 2014). The 
Ivinhema River (22º47’59”S; 53º32’21”W) shows 
a width:depth ratio of 22:1 and high current flows 
(about 0.85 ms-1). The Patos lake (23º49’33.66”S; 
53º33’4.89”W) has a large extension with an area of 
ca. of 113.8 ha, and a mean depth of 3.5 m. 

Sampling
Samplings of the environmental variables and 
phytoplankton were performed in the sub-surface 
(20 cm), at the limnetic zone of the lake and at the 
central channel of the river. Before the installation 
of the park, a sampling was carried out monthly, 
between 1993 and 1994 (final N = 23, as one sample 
was accidentally lost), embracing two dry seasons 
and two rainy seasons. After the installation of the 
park, samples were collected quarterly from 2000 
through 2018 (except in 2001 and 2003, when only 
two samplings were conducted) (N = 140). These 
data are part of the Brazilian “Long Term Ecological 
Research” (PELD - site 6).

Phytoplankton samples were taken directly, 
using bottles (150 mL), and preserved with 1% acetic 

Figure 2. Land use before (1998) and after (2018) the installation of Ivinhema State Park. The land-use map 
was generated use Landsat 5 and 8 data in Qgis. 

Lugol. We also collected samples with plankton net 
(15 µm) and preserved them with Transeau solution. 
Net samples were used exclusively to support 
the species identification, since net samples 
are selective and do not represent the whole 
phytoplankton community. Water temperature 
(WT, °C), dissolved oxygen (DO, mg L-1), pH and 
electrical conductivity (EC, µS cm-1) were measured 
with portable digital potentiometers in situ. Water 
transparency was quantified using a Secchi disc 
(SEC, m). National Water Agency (ANA) provided 
data on the water level (WL, m) of the Paraná River.

Laboratory analyses
Soluble reactive phosphorus (SRP, µg L-1; Golterman 
et al. 1978), nitrate (N-NO3

-, µg L-1; Giné et al. 1980), 
nitrite (N-NO2

-, µg L-1; Giné et al. 1980), ammonium 
(N-NH4

+, µg L-1; Koroleff 1976) and alkalinity (ALK, 
µEq L-1) were estimated. The dissolved inorganic 
nitrogen (DIN) was considered as the sum of 
the N-NO3

-, N-NO2
-, and N-NH4

+. The counting 
of individuals (cells, colonies, and filaments) of 
phytoplankton followed the Utermöhl method 
(Utermöhl 1958) and Lund et al. (1958). The 
taxonomic framework of eukaryotic phytoplankton 
species at class level followed the classification 
system of van den Hoeck et al. (1995). Komárek 
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and Anagnostidis (2005, 1998, 1989) were used for 
the Cyanobacteria classification. The biomass was 
considered as biovolume, which was estimated by 
multiplying the density of each taxon by its volume. 
We estimated the cell volume by calculating the 
volume of the geometric shape that was the most 
similar to each cell form (Sun & Liu 2003). The 
composition was based on the presence vs. absence 
of the species and functional groups.

All species of phytoplankton were categorized 
into Reynolds Functional Groups – RFGs (Reynolds 
et al. 2002, Padisák et al. 2009). Reynolds Functional 
Groups uses 41 assemblages, identified by alpha-
numeric codes according to their sensitivities and 
tolerances (Padisák et al. 2009). Species within 
a functional group share adaptive features (e.g, 
morphological, physiological, and ecological 
attributes) and enhance the response of the 
phytoplankton community to environmental 
variations, as relationships can be established 
between morphological and/or functional features 
and several niche aspects of phytoplankters (e.g. 
availability of resources and turbulence) (Reynolds 
et al. 2002, Litchman & Klausmeier 2008, Padisák et 
al. 2009, Kruk et al. 2017). 

For the discussion of the values of richness 
and biomass at the species level, we considered 
five groups of algae-based on taxonomic and 
ecological characteristics. 1. Mixotrophic 
flagellates (Chlamydophyceae, Chrysophyceae, 
Cryptophyceae, Dinophyceae, Euglenophyceae 
and Raphidophyceae classes): include potentially 
heterotrophic flagellate organisms that can 
incorporate organic forms of carbon into 
their metabolism (Reynolds 2006; Bellinger 
& Sigee 2011). 2. Diatoms (Bacillariophyceae, 
Coscinodiscophyceae and Mediophyceae 
classes): include organisms with silica carapace, 
which are favored in environments with high 
water column mixing (Bellinger & Sigee 2011). 3. 
Greens (Chlorophyceae, Klebsormidiophyceae, 
Oedogoniophyceae, Trebouxiophyceae, 
Ulvophyceae and Zygnematophyceae 
classes): include organisms that are favored by 
environments with high light availability and water 
column mixing at a medium level (Jensen et al. 
1994). 4. Blue-greens (Cyanobacteria division): 
composed of prokaryotic organisms (without 
true cell nucleus) with the potential to produce 
toxins (Whitton & Potts 2002), which are adapted 

to environments with low water column mixing 
and high nutrient concentration (Bellinger & Sigee 
2011). 5. Xanthophyceans (Xanthophyceae class): 
comprise unicellular or colonial organisms without 
mobility, poorly represented in the phytoplankton 
community, associated with temporary pools and 
wet mud (Bellinger & Sigee 2011). To calculate the 
richness, we considered the total number of taxa 
(species richness) and RFG (number of functional 
groups) present in each quantitative sample.

Statistical analyses
The spatial and temporal environmental variation 
was summarized with a Principal Component 
Analysis (PCA). We were interested in verifying the 
existence of environmental differences between the 
samples collected before and after the installation 
of the park. Axes for interpretation were selected 
according to the Broken stick method (Jackson 1993). 

We performed Permutational Multivariate 
Analysis of Variance (PERMANOVA) (Anderson 
2001) to verify the effect of the installation of the 
park (before vs. after) on the composition (presence 
– absence) and biomass of the species and RFGs. 
PERMANOVA was performed on all the data and in 
each environment (lake and river), considering the 
Bray-Curtis dissimilarity index (for biomass) and the 
Jaccard index (for composition). 

To analyze the biomass distribution of species 
and RFGs before and after the creation of the park, 
as well as its relationship with the environmental 
variables, we conducted a Redundancy Analysis 
(RDA) (Legendre & Legendre 1998). We performed 
RDA for the entire period of study (1993 to 2018) 
and, separately, for the phase before and after the 
installation of the park. As a response, we used 
Hellinger-transformed matrices of biomass of 
species and RFGs. The environmental variables 
(logarithmized except pH) used in the analysis were 
water temperature (WT - °C), dissolved oxygen (DO 
- mg L-1), dissolved inorganic nitrogen (DIN - µg L-1, 
as the sum of nitrate, nitrite, and ammonia), soluble 
reactive phosphorus (SRP - µg L-1), alkalinity (Alk - 
mEq L−1), Secchi disc (m), Paraná water level (WL - 
m), electric conductivity at 25 °C (EC - µS cm-1), and 
pH. We tested the collinearity of the variables with 
the variance inflation factor (VIF) and removed 
variables with VIF > 10. The significance of variables 
included in the final models was considered with p 
< 0.05. We considered the adjusted R2 to evaluate the 
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relationship between environment and community 
variation, since the number of predictive factors 
do not affect these values and make the results 
comparable.

For each sampling, we calculated the Shannon 
and Simpson diversity indexes (based on a matrix of 
presence vs absence of species and RGFs) to obtain 
the entropy value at both regional and local scales. 
Then, the entropy values were transformed into an 
effective number of species. Thus, we obtained the 
total richness, as well as the number of typical and 
abundant species. These three measures of diversity 
as effective number of species are derived from:

 
λ = ∑(pi)q 

, where
pi = ni/N

, where ni = the abundance of species i, and N = the 
total number of individuals in a sample, only 
to change the coefficient q (which controls the 
weights of common and rare species) (Jost 2007). 
For instance, when q = 0, the species abundance 
is not considered for the diversity calculation, 
only its presence, so that this measure can 
simply represent the species richness. For q = 1, 
the diversity represents the number of “typical 
species” (Chao et al. 2010) and can be calculated 
using the traditional Shannon index (H) as the exp 
(H). When q = 2, the diversity refers to the number 
of dominant species, as it gives more importance 
to the abundant species in a community and 
severely discounts the contribution of rare species 
(Gotelli & Chao 2013). In the last case, the value can 
be obtained using the Simpson index (D), as the 
1/1-D. The traditional measures used to evaluate 
diversity (e.g. Shannon index) represent entropy 
and to compare derived values from different 
communities is something difficult. Thus, by 
converting and analyzing the effective number 
of species (or groups), we can verify differences 
among communities that the analysis of entropy 
measures hide (Jost 2006). 

We analyzed the temporal variation of the 
number of species and RFGs (q = 0, q = 1, q = 2) in 
two ways. On one hand, with Generalized Additive 
Models (GAM) and using a Poisson error structure, 
we analyzed the temporal pattern considering 
the species (groups) recorded at each sampling. 
On the other hand, we used sample-size-based 

rarefaction (Chao et al. 2014) to compare the 
number of species and groups (total, typical, 
and abundant) recorded before and after the 
installation of the park.

RESULTS

Environmental scenario before and after
The first two PCA axes summarized 50 % of 
the environmental variation. The second axis 
showed spatial separation between the studied 
environments. In general, the lake was related to 
higher transparency (Sec) whereas the River was 
positively associated with the pH. Both the river 
and the lake showed a high variation of nutrient 
concentrations (SRP, TP, DIN) and low variability 
of pH and alkalinity. The other variables showed a 
coefficient of variation < 30 % (Table 1).

Phytoplankton Community
Before the installation of the park, we registered 
251 species and 22 RFGs (88 species and 19 
RFGs in the river, and 222 species and 22 RFGs 
in the lake). After the installation of the park, we 
recorded 656 species and 23 RFGs (289 species 
and 26 RFGs in the river, and 624 species and 25 
RFGs in the lake) (Figure 4). 

Green algae showed the highest number of 
species in the lake and river in both phases (120 
taxa before and 170 taxa after) (Figure 5). The 
number of species increased in all groups before 
the installation of the park, especially in the river. 
Diatoms showed higher richness in the river (23 
taxa before and 72 taxa after) compared to lake (26 
taxa before and 66 taxa after).

High values of the phytoplankton biovolume 
occurred in both environments and were higher 
in the lake (2.60 mm3.L-1) than river 0.21 mm3.L-1) 
(Figure 6). The mean values increased after the 
installation of the park (2.57 mm3.L-1 after and 
1.22 mm3.L-1 before). Blue-green algae (especially 
RFG H1) dominated in biomass before and after 
the installation of the park in the lake and in the 
river. Diatoms (mainly the Coscinodiscophyceae, 
RFGs P and C) showed the highest biovolume. After 
installation of the park, in the lake, the biovolume 
of blue-green algae (before: 3.02 mm3.L-1 ; after: 
0.93 mm3.L-1) and mixotrophic flagellates (before: 
0.27 mm3.L-1 ; after 0.21 mm3.L-1) decreased whereas 
the biovolume of diatoms increased (before: 0.67 
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mm3.L-1; after: 0.96 mm3.L-1). In the river, only blue-
green algae decreased after the installation of the 
park (before: 0.32 mm3.L-1; after: 0.02 mm3.L-1).

Permanova showed differences in composition 
and biomass between the phases of the installation 
of the park for both species and RFGs (Table 2). 
The RDA indicated that environmental variation, 
related to the creation of the preservation area, 
influenced the distribution of the species and 
RFGs biomass (Figure 7). We evidenced a stronger 
relationship between the environment and the 
phytoplankton community when we analyzed 
RFGs (Adj. R² = 8 % to 11 %), rather than the species 
(Adj. R² = 4 % to 8 %). Before the installation of the 
park, the biomass of the cyanobacteria species was 
positively associated with electrical conductivity 
and dissolved oxygen. For RFGs, the biomass 
of nitrogen-fixing cyanobacteria (RFG H1), 
diatoms (RFG C and P) and desmids (RFG P) were 
negatively associated with dissolved oxygen before 
the installation of the park. In the after phase, the 

biovolume of the diatom species from RFG MP, 
was positively associated with dissolved oxygen 
and nutrient concentrations, dissolved inorganic 
nitrogen, and soluble reactive phosphorus, 
respectively.

Rarefaction showed that after the installation of 
the park, the number of species (total, typical, and 
abundant) increased in the River and decreased in 
the lake and at regional scale. On the other hand, 
only the number of total RFGs showed differences 
between the phases of the park, with the increase 
in the Ivinhema River and at regional scale (Figure 
8). GAM revealed that only the number of species 
showed a significant temporal pattern (non-
linear) at both local and regional scales (Figure 9 
and Table 3).

DISCUSSION

Protection areas favor diversity as they decrease 
the impact of anthropic disturbance on biological 

Figure 3. Environmental variation represented in the two first axes of principal components analyses 
discriminating between environment type and phases of park’s installation. The axes for interpretation 
were selected based on the Broken Stick criteria. DO dissolved oxygen, DIN dissolved inorganic nitrogen, 
SRP soluble reactive phosphorus, WT water temperature, WL Paraná water level, Sec secchi disk depth, ALK 
alkalinity, EC electry conductivity.
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Table 1. Mean values and coefficient of variation in parentheses (%) of the measured environmental factors 
before and after the installation of the park. WT: Water temperature (°C), DO: dissolved oxygen (mg.L-1), 
EC: electrical conductivity (µS.cm-1), Sec: Secchi disk (m), Alk: Alkalinity (µg.L-1), DIN: dissolved inorganic 
nitrogen (µg.L-1), SRP: soluble reactive phosphorus (µg.L-1), TP: total phosphorus (µg.L-1), WL: water level of 
the Paraná River (m).

Variables
Lake River

Before After Before After

WT
23.71 25.37 22.91 25.29

(15.57) (15.46) (14.48) (15.39)

DO
5.62 5.22 7.6 6.71

(55.18) (50.96) (11.65) (21.9)

pH
6.59 6.67 6.93 6.96

(5.91) (9.2) (3.1) (6.51)

EC
33.75 38.5 42.09 42.98

(25.27) (20.17) (7.77) (9.87)

Sec
1.16 0.69 0.67 0.73

(62.6) (67.44) (30.17) (39.49)

Alk
281.67 274.56 367.27 335.76
(31.24) (27.3) (9.82) (22.91)

DIN
7.49 33.73 5.35 112.6

(91.77) (106.28) (141.54) (49.78)

SRP
5.43 11.12 11.65 17.92

(86.32) (64.84) (74.76) (44.36)

TP
38.93 47.85 44.3 41.86

(48.46) (43.13) (25.56) (32.61)

WL
3.57 2.86 3.4 2.86

(24.23) (29.15) (19.12) (29.21)

Figure 4. Number of species and functional groups (in parentheses) recorded in the Patos Lake and in the 
Ivinhema River before and after the park installation. Exclusive and shared species (and functional groups) 
between the phases of the installation of the park are shown.
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Figure 5. Temporal variation of the phytoplankton richness (Taxonomic a, b: and RFGs c, d) in the Patos 
Lake and in the Ivinhema River before and after the installation of Ivinhema State Park.

communities (Mittermeier et al. 2005). Testing 
its eff ect on diverse biological communities is a 
pivotal step to understand how diff erent trophic 
levels react to such management and conservation 
strategies. Here, by analyzing data collected from 
1993 to 2018, we evidenced that the installation 
of a protection park in a subtropical fl oodplain 
infl uenced changes in the aquatic biodiversity, 
in specifi c, related to the number and biomass of 
phytoplankton species and functional groups.

In time, we evidenced a non-linear decrease 
in the total species and typical species richness at 
the regional scale. The non-linear pattern could 
be related to the temporal (and cyclic) variation 
in environmental conditions at the Ivinhema 
subsystem, which infl uence the number of species 
that can be established. For instance, fl ood pulse 
phases can be related to a higher or a lower 
number of phytoplankton species in accordance 
with the hydrological period (Train & Rodrigues 
1998, Bortolini et al. 2014). Of course, biological 
communities react to more than one temporal 
climatic event, some acting on broad and others 

on fi ne temporal scales (Pineda et al. 2019). 
The reduction of species in time was probably 
infl uenced by the operation of dams upstream 
which has reduced the frequency and intensity of 
fl ooding (Souza-Filho et al. 2004, Leira & Cantonati 
2008), and henceforward has decreased the eff ect 
of the fl ood pulse of the Paraná River as promoter 
of the connectivity and exchange of material and 
organisms among all the sites in the fl oodplains 
(Junk et al. 1989, Simões et al. 2012, Rodrigues et 
al. 2015). 

Diff erent from the species richness, the number 
of functional groups did not show a temporal 
pattern. The absence of a temporal pattern 
suggests that functional groups were more resilient 
to any possible temporal change in environmental 
conditions, or that the number of functional 
groups could be more sensible to dynamics acting 
in temporal scales that were diff erent from the 
ones we approached. However, as we will show 
below, changes in the community structure, 
with variation in the importance (in biomass) of 
functional groups, were the main changes at the 
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functional level of the phytoplankton community 
at the Ivinhema sub-basin. 

Rarefaction showed that, for a similar number 
of samples, after the installation of the park, fewer 
species were registered, but with a higher number 
of functional groups. This result suggests that the 
environmental conditions after the installation 
of the park were related to an increase in the 
number of niches, since each functional group 
fills different niches (Reynolds et al. 2002, Padisák 
et al. 2009). This is advantageous for ecological 
processes like primary productivity, because, with 
a higher number of functional features, a higher 
number of resources can be exploited (Loreau et 
al. 2001, Litchman & Klausmeier 2008). Moreover, 
a higher number of phytoplankton functional 
groups increases the resistance and resilience of 
ecosystems to disturbances, since the negative 
effect of disturbance on species with particular 
features can be compensated for the better 
adaptation to the new disturbed conditions of 
another group of species (Tilman 1996).

The installation of the park seemed to change 

the composition and biomass of the phytoplankton 
community at both taxonomic and functional 
levels, and at both local and regional scales. 
We are aware that we have a higher number of 
samples collected after the installation of the park, 
which could represent a higher variability of the 
phytoplankton community. However, rarefaction 
(size-based) showed that, before the installation of 
the park, a high number of species was registered, 
despite the lower number of samples collected in 
time. In other words, although a more extensive 
time could favor the phytoplankton diversity 
due to a higher number of incoming of species, 
the results suggested that the differences in the 
community structure were influenced by changes 
in the environmental conditions associated to the 
phases of the park.

However, different processes seemed to drive 
the phytoplankton patterns at each community 
level (species and functional groups) and phases 
of the park. For instance, the environmental 
factors had a higher effect on the variation of the 
functional groups than on the species. In this sense, 

Figure 6. Temporal variation of the phytoplankton biovolume (Taxonomic a, b: and RFGs c, d) in the Patos 
Lake and in the Ivinhema River before and after the installation of Ivinhema State Park.
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Figure 7. Redundancy analysis plot showing the spatial and temporal relationship between phytoplankton 
species and Reynolds Functional Groups (RFG) the environmental variables in the in two ways, one being 
Regional (1993 to 2018) and the other made separately before (1993 and 1994) and after (2000 to 2018) the 
installation of the park. We included only the environmental variables with VIF < 10. WL, water level; WT, 
water temperature; DO, dissolved oxygen; pH; EC, electrical conductivity; Alk, alkalinity; SRP, soluble reactive 
phosphorus; DIN, dissolved inorganic nitrogen; SEC, Secchi disc; Adj. R2, Adjusted R2.
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Figure 8. Sample-size-based rarefaction (solid line) and extrapolation (dashed line) comparing the number 
of species and functional groups recorded before and after the park installation. Values of q are related to 
different diversity measures: q = 0, total richness; q = 1, number of typical species; q = 2, number of the most 
abundant species. Shaded region represent confidence interval of 95 %.

we reduced the effect of the number of variables 
on the relationship environment – community 
variation by considering the adjusted R square 
(Peres-Neto et al. 2006). In other words, a lower 
environment effect on the distribution of species 
was not related to a higher number of response 
variables when considering the species. Thus, a low 
effect of environment on phytoplankton species 
was probably because that stochastic process 
seems to have a high effect on the distribution of 
phytoplankton species (Mutshinda et al. 2016). 
Indeed, in some cases, it is difficult to detect some 
effect of the environment on the distribution of 
phytoplankton species (Beisner et al. 2006, Nabout 

et al. 2009). On the other hand, as environmental 
filtering acts on the functional features of the 
species, selective niche processes have a higher 
effect on the functional group level, hence, it is 
expected a higher explanation of environment 
on the community when considering functional 
groups (Mutshinda et al. 2016).

Redundancy analysis (RDA) showed that the 
differences in the phytoplankton community 
between the phases of the park were mainly related 
to a temporal gradient in the concentrations of 
phosphorus and nitrogen. Despite the increase 
of nutrients in time, the phytoplankton biomass 
decreased, and the dominance pattern changed.   
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Figure 9. Temporal variation of diversity of species based on Hill numbers. q = 0, richness; q = 1, typical 
species; q = 2, most abundant species. Regression line fitted by GAM. Shaded regions represent 95% 
confidence interval. Only the temporal variation of species is shown since the number of functional groups 
did not have a significant temporal pattern.

Before the park, lower concentrations of nutrients 
were related to a higher biomass of nitrogen-fixing 
cyanobacteria (RFG H1), whereas after the park 
it was related to a higher biomass of small-sized 
phytoplankton species of unicellular diatoms and 
greens (RFG MP and X2). Thus, the increase of 
nitrogen concentration after the installation of the 
park probably decreased the competitive advantage 
of nitrogen fixers and allowed small algae to have a 
higher representation in biomass.

RDAs also revealed that the factors driving the 
phytoplankton variation changed between the 
phases of the park. For instance, before the park, 
the electric conductivity, dissolved oxygen, and 
water temperature influenced the phytoplankton 
patterns, and there was a low difference between 
the river and the lake, especially when we 
considered the distribution of the species. After 
the park, differences between the river and the lake 

increased and were especially related to a gradient 
of nutrient and transparency (higher in the river). 
In this sense, the installation of the park probably 
had a low effect on the increase of nutrient 
concentration in the river, which probably was 
caused by the land use of the Ivinhema sub-basin. 
In this sense, the dynamic of aquatic ecosystems 
(e.g. changes in nutrient concentrations) must 
be considered within a landscape context, as the 
usage of the basin could influence the ecological 
processes at each environment.

Despite the effective recovery and the 
preservation of the vegetation in the area of the 
park (Figure 2), the surrounding area of the park has 
different land uses ranging from “natural gradient” 
to “intensively managed” (Hobbs et al. 2006). In this 
sense, changes in the phytoplankton community 
may be related not only to the installation of the 
park, but also to the land use around the river 
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Table 2. Summary of PERMANOVA examining the effect the park’s installation (before vs. after) on the 
composition and biomass of species and functional groups (Reynolds et al. 2002). Analysis considered the 
regional and local variation (Ivinhema River and Patos Lake).

Pseudo-F r2 p-value Pseudo-F r2 p-value

Biomass Richness

Species Species
Regional 4.4 0.076 0.001 Regional 4.55 0.079 0.001

River 3.24 0.039 0.001 River 3.91 0.047 0.001
Lake 3.25 0.039 0.001 Lake 4.41 0.052 0.001
RFG RFG

Regional 7.19 0.119 0.001 Regional 8.18 0.133 0.001
River 3.93 0.047 0.001 River 2.57 0.031 0.005
Lake 2.22 0.027 0.004 Lake 4.45 0.052 0.001

Table 3. GAM (with poisson error structure) result showing the influence of time on the 
diversity of species and functional groups. Asterisk (*) denote a significant effect (p < 
0.05) of time. Values of q are related to different diversity measures: q = 0, richness; q = 1, 
typical species; q = 2, more abundant species. Estimated degrees of freedom, edf; square 
R adjusted, R-sq(adj).

edf Chi.sq p-value R-sq.(adj)
Species
Regional

q = 0 11.52 185 < 2e-16* 0.261
q = 1 8.36 92.68 3.2e-15* 0.245
q = 2 7.67 35.12 3.02e-05* 0.194

Patos Lake
q = 0 13.22 183.20 < 2e-16* 0.25
q = 1 7.89 76.87 2.72e-12* 0.187
q = 2 7.25 27.95 0.00043* 0.115

Ivinhema River
q = 0 4.80 30.84 3.37e-05* 0.049
q = 1 1 2.61 0.106 0.003
q = 2 1 0.21 0.648 -0.011

Functional groups
Regional

q = 0 1 2.30 0.129 0.047
q = 1 1 2.44 0.118 0.019
q = 2 1 2.07 0.15 0.016

Patos Lake
q = 0 1 3.61 0.075 0.056
q = 1 1 2.38 0.123 0.023
q = 2 1 2.61 0.106 0.030

Ivinhema River
q = 0 2.17 6.54 0.108 0.041
q = 1 1 0 0.992 -0.013
q = 2 1 0.09 0.768 -0.011
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basin, thus evidencing the importance of regional 
environmental management that considers aspects 
of the watershed. On the other hand, the decrease 
in the nutrient concentration in the lake could be a 
response to the low influence of the Paraná River, 
which, due to the damming, has lost influence on 
the adjacent environments (Simões et al. 2012, 
Rodrigues et al. 2015).

Compensatory actions are necessary to protect 
and restore dam-affected aquatic ecosystems. 
Moreover, monitoring programs of long duration 
are useful tools to understand the temporal 
dynamics of biological communities and the way 
compensatory actions influence the diversity 
patterns. Here, we showed that the installation 
of the park had a positive effect on the aquatic 
community, mainly related to the decrease of 
cyanobacteria dominance and to the increase of 
phytoplankton functional groups. However, our 
results also suggested that dynamics occurring 
in a broad spatial scale seemed to influence key 
factors for the phytoplankton community, as 
transparency and nutrient concentration. Thus, 
although we showed that a compensatory measure 
had a positive effect on biodiversity, we believe that 
the establishment of protection zones must also 
consider and integrate the management of the river 
basin where the areas to be protected are located, 
as a way to ensure the best result of protection 
actions on the aquatic biodiversity.
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