GRUPOS FUNCIONAIS FITOPLANCTÔNICOS EVIDENCIAM DIFERENÇAS AMBIENTAIS EM UMA PLANÍCIE DE INUNDAÇÃO TEMPERADA

Authors

  • Felipe Morais Zanon Universidade Estadual de Maringá
  • Patrícia Iatskiu
  • Michael Joseph Lemke
  • Luiz Felipe Machado Velho
  • Luzia Cleide Rodrigues

DOI:

https://doi.org/10.4257/oeco.2021.2503.02

Keywords:

Freshwater environments, functional Groups, planktonic algae, seasonality

Abstract

Planícies de inundação possuem alta biodiversidade e proporcionam muitos serviços ecossistêmicos, que são mantidos pelos pulsos de inundação. O fitoplâncton é essencial para o funcionamento desses ecossistemas, atuando na produtividade primária e nos ciclos biogeoquímicos. Foi avaliado o fitoplâncton em um sistema rio-lago de inundação (planície de inundação do rio Illinois-EUA), durante um ciclo hidrológico e comparado a abordagem taxonômica (espécies) e funcional (grupos funcionais baseados na morfologia - GFBM). Como esperado, maior riqueza foi verificada no rio e maior biovolume no lago, com dominância de diferentes GFBMs em cada ambiente. Além disso, a sazonalidade e altos níveis de água na primavera dirigiram a variação temporal dos atributos fitoplanctônicos (riqueza e biovolume) do sistema rio-lago. O GFBM IV (i. e. sem traços especializados), V (i. e. fitoflagelados) e VI (i. e. diatomáceas) foram mais importantes para a riqueza e biovolume nos dois ambientes. Foi evidenciado o papel fundamental das características hidrodinâmicas, com maiores valores de biovolume no lago. O uso da abordagem funcional (GFBMs) apresentou maior explicação da relação fitoplâncton-ambiente. A mistura constante da coluna de água e alta turbidez selecionou espécies com traços (e. g. pequeno tamanho, presença de sílica) adaptados a essas condições.


PHYTOPLANKTON FUNCTIONAL GROUPS EVIDENCE ENVIRONMENTAL DIFFERENCES IN A TEMPERATE FLOODPLAIN. Floodplain environments have high biodiversity and provide many ecosystem services maintained by the flood pulses. The phytoplankton is essential to the functioning of these ecosystems, acting upon primary productivity and biogeochemical cycles. We evaluated phytoplankton in a river-lake flood system (Illinois River floodplain-USA) during a hydrological cycle and compared the taxonomic (species) and functional (morphologic-based functional groups – MBFG) approaches. As expected, greater species richness was registered in the river and higher biovolume in the lake, as well as the predominance of different MBFGs in each environment. Furthermore, seasonality drove richness and biovolume temporal variation due to the higher water levels during spring. The MBFG IV (i. e. without specialized traits), V (phytoflagellates) and VI (diatoms) were more important for richness and biovolume in both environments. We reinforce the fundamental role of the hydrodynamics characteristics, with higher phytoplankton biovolume values in the lake. Using MBFG resulted in a better explanation to the phytoplankton-environment relationship. Constant water column mixture and high turbidity selected species with traits (e.g. small size, presence of silica) specifically adapted to these conditions.

References

Agostinho, A. A., Bonecker, C. C., & Gomes, L. C. 2009. Effects of water quantity on connectivity: The case of the upper Paraná River floodplain. Ecohydrology and Hydrobiology, 9(1), 99–113. DOI: 10.2478/v10104-009-0040-x

Bergamin, H., Reis, B. F., & Zagatto, E. A. G. 1978. A new device for improving sensitivity and stabilization in flow injection analysis. Analytica Chimica Acta, 97(2), 427–431. DOI: 10.1016/S0003-2670(01)93455-5

Blanchet, F. G., Legendre, P., & Borcard, D. 2008. Forward Selection of Explanatory Variables. Ecology, 89(9), 2623–2632. DOI: 10.1890/07-0986.1

Bortolini, J. C., & Bueno, N. C. 2017. Temporal dynamics of phytoplankton using the morphology-based functional approach in a subtropical river. Revista Brasileira de Botanica, 40(3), 741–748. DOI: 10.1007/s40415-017-0385-0

Bortolini, J. C., Moresco, G. A., de Paula, A. C. M., Jati, S., Rodrigues, L. C., Paula, A. C. M. de, Jati, S., & Rodrigues, L. C. 2016. Functional approach based on morphology as a model of phytoplankton variability in a subtropical floodplain lake: a long-term study. Hydrobiologia, 767(1), 151–163. DOI: 10.1007/s10750-015-2490-z

Bortolini, J. C., Pineda, A., Rodrigues, L. C., Jati, S., & Velho, L. F. M. 2017. Environmental and spatial processes influencing phytoplankton biomass along a reservoirs-river-floodplain lakes gradient: A metacommunity approach. Freshwater Biology, 62(10), 1756–1767. DOI: 10.1111/fwb.12986

Bortolini, J. C., Rodrigues, L. C., Jati, S., & Train, S. 2014. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnologica Brasiliensia, 26(1), 98–108. DOI: 10.1590/S2179-975X2014000100011

Brasil, J., & Huszar, V. L. M. 2011. O papel dos traços funcionais na ecologia do fitoplâncton continental. Oecologia Australis, 15(4), 799–834. DOI: 10.4257/oeco.2011.1504.04

Descy, J. P., Darchambeau, F., Lambert, T., Stoyneva-Gaertner, M. P., Bouillon, S., & Borges, A. V. 2017. Phytoplankton dynamics in the Congo River. Freshwater Biology, 62, 87–101. DOI: 10.1111/fwb.12851

Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., & Zohary, T. 1999. Biovolume Calculation for Pelagic and Benthic Microalgae. Journal of Phycology, 35(2), 403–424. DOI: 10.1046/j.1529-8817.1999.3520403.x

Iatskiu, P., Bovo-Scomparin, V. M., Segovia, B. T., Velho, L. F. M., Lemke, M. J., & Rodrigues, L. C. 2018. Variability in mean size of phytoplankton in two floodplain lakes of different climatic regions. Hydrobiologia, 823(1), 135–151. DOI: 10.1007/s10750-018-3702-0

Jones, R. I. 2000. Mixotrophy in plantonic protists: an overview. Freshwater Biology, 45(2), 219–226. DOI: 10.1046/j.1365-2427.2000.00672.x

Junk, W. J., Bayley, P. B., & Sparks, R. E. 1989. The flood pulse concept in River. In: D. P. Dodge (Ed.), Canadian Special Publication of Fisheries and Aquatic Sciences. Vol. 106, pp. 110–127.

Koroleff, K. J. H. 1976. Determination of ammonia. In: E. Grasshoff & E. Kremling (Eds.), Methods of seawater analysis. pp. 126–133. Verlag Chemie, Weinheim.

Kruk, C., Devercelli, M., & Huszar, V. L. 2020. Reynolds Functional Groups : a trait-based pathway from patterns to predictions. Hydrobiologia. DOI: 10.1007/s10750-020-04340-9

Kruk, C., Huszar, V. L. M., Peeters, E. T. H. M., Bonilla, S., Costa, L., Lurling, M., Reynolds, C. S., & Scheffer, M. 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology, 55(3), 614–627. DOI: 10.1111/j.1365-2427.2009.02298.x

Kruk, C., & Segura, A. M. 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia, 698, 191–202. DOI: 10.1007/s10750-012-1072-6

Lansac-Tôha, F. M., Heino, J., Quirino, B. A., Moresco, G. A., Zapata, O. E. P., Meira, B. R., Rodrigues, L. C., Jati, S., Lansac-Tôha, F. A., & Velho, L. F. M. 2019. Differently dispersing organism groups show contrasting beta diversity patterns in a dammed subtropical river basin. Science of The Total Environment, 691, 1271–1281. DOI: 10.1016/j.scitotenv.2019.07.236

Lemke, M. J., Hagy, H. M., Dungey, K., Casper, A. F., Lemke, A. M., VanMiddlesworth, T. D., & Kent, A. 2017a. Echoes of a flood pulse: short-term effects of record flooding of the Illinois River on floodplain lakes under ecological restoration. Hydrobiologia, 804(1), 151–175. DOI: 10.1007/s10750-017-3220-5

Lemke, M. J., Walk, J. W., Lemke, A. M., Sparks, R. E., & Blodgett, K. D. 2017b. Introduction: The ecology of a river floodplain and the Emiquon preserve. Hydrobiologia, 804(1), 1–17. DOI: 10.1007/s10750-017-3335-8

Litchman, E., & Klausmeier, C. A. 2008. Trait-Based Community Ecology of Phytoplankton. Annual Review of Ecology, Evolution, and Systematics, 39(1), 615–639. DOI: 10.1146/annurev.ecolsys.39.110707.173549

Lund, J. W. G., Kipling, C., & Le Cren, E. D. E. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11(2), 980–985. DOI: 10.1007/BF00007865

Mackereth, F. Y. H., Heron, J., & Talling, J. F. 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association (Ed.), 36, 1–120.

Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta, 1(4), 493–509.

Moresco, G. A., Bortolini, J. C., Rodrigues, L. C., Jati, S., & Machado Velho, L. F. 2020. A functional deconstructive approach to mixotrophic phytoplankton responds better to local, regional and biogeographic predictors than species. Austral Ecology, 45(2), 249–263. DOI: 10.1111/aec.12852

Naselli-Flores, L. 2000. Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia, 50, 1–11. DOI: 10.1023/A:1003907124528

Naselli-flores, L., Zohary, T., & Padisák, J. 2020. Life in suspension and its impact on phytoplankton morphology : an homage to Colin S . Reynolds. Hydrobiologia. DOI: 10.1007/s10750-020-04217-x

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. 2018. Vegan: Community Ecology Package. Version 2.5-3.

Padial, A. A., Ceschin, F., Declerck, S. A. J., De Meester, L., Bonecker, C. C., Lansac-Tôha, F. A., Rodrigues, L., Rodrigues, L. C., Train, S., Velho, L. F. M., & Bini, L. M. 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. Plos One, 9(10), 1–8. DOI: 10.1371/journal.pone.0111227

Pineda, A., Caroline, A., Paula, M. De, Iatskiu, P., Arnhold, G., Souza, Y. R., Andrea, L., Corredor, O., Zanon, F. M., Zanco, B. F., Jati, S., Bortolini, J. C., & Rodrigues, L. C. 2020. A protection area in a subtropical floodplain influenced the phytoplankton taxonomic and functional diversity. Oecologia Australis, 24(2), 505–523. DOI: 10.4257/eco.2020.2402.19

Pineda, A., Moresco, G. A., Caroline, A., Paula, M. De, Nogueira, L. M., Iatskiu, P., Souza, Y. R. De, Reis, L. M., & Rodrigues, L. C. 2017. Rivers affect the biovolume and functional traits of phytoplankton in floodplain lakes. Acta Limnologica Brasiliensia, 29, e113. DOI: 10.1590/S2179-975X7317

Pineda, A., Peláez, Ó., Dias, J. D., Segovia, B. T., Bonecker, C. C., Velho, L. F. M., & Rodrigues, L. C. 2019. The El Niño Southern Oscillation (ENSO) is the main source of variation for the gamma diversity of plankton communities in subtropical shallow lakes. Aquatic Sciences, 81(3), 49. DOI: 10.1007/s00027-019-0646-z

R Development Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Viena, Austria.

Reynolds, C. S. 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology, 3(3), 141–159. DOI: 10.1111/j.1600-0587.1980.tb00721.x

Reynolds, C. S. 2006. The Ecology of phytoplankton. M. Usher D. Saunders R. Peet & A. Dobson (Eds.),Ecology. New York, USA: Cambridge University Press: p. 535. DOI: 10.1017/CBO9780511542145

Reynolds, C. S., Elliott, J. A., & Frassl, M. A. 2014. Predictive utility of trait-separated phytoplankton groups: A robust approach to modeling population dynamics. Journal of Great Lakes Research, 40(3), 143–150. DOI: 10.1016/j.jglr.2014.02.005

Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24(5), 417–428. DOI: 10.1093/plankt/24.5.417

Salmaso, N., & Padisak, J. 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes ( Lake Garda , Italy and Lake Stechlin, Germany). Hydrobiologia, 578(1), 97–112. DOI: 10.1007/s10750-006-0437-0

Schwaderer, A. S., Yoshiyama, K., De Tezanos Pinto, P., Swenson, N. G., Klausmeier, C. A., & Litchman, E. 2011. Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnology and Oceanography, 56(2), 589–598. DOI: 10.4319/lo.2011.56.2.0589

Sommer, U., Gliwicz, Z. M., Lampert, W. I., & Duncan, A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Fur Hydrobiologie, 106, 433–471. DOI: 10.1111/j.1469-185X.1969.tb01218.x

StatSoft. 2005. Statistica: Data analysis software system. Version 7.1. USA.

Sun, J., & Liu, D. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11), 1331–1346. DOI: 10.1093/plankt/fbg096

Thomaz, S. M., Bini, L. M., & Bozelli, R. L. 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, 579(1), 1–13. DOI: 10.1007/s10750-006-0285-y

Train, S., & Rodrigues, L. C. 1998. Temporal fluctuations of the phytoplankton community of the Baia River, in the upper Parana River floodplain, Mato Grosso do Sul, Brazil. Hydrobiologia, 361(1), 125–134. DOI: 10.1023/A:1003118200157

Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Der Internationalen Vereinigung Für Theoretische Und Angewandte Limnologie, 9(1), 1–38.

Van der Gucht, K., Cottenie, K., Muylaert, K., Vloemans, N., Cousin, S., Declerck, S., Jeppesen, E., Conde-Porcuna, J.-M., Schwenk, K., Zwart, G., Degans, H., Vyverman, W., & De Meester, L. 2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20404–20409. DOI: 10.1073/pnas.0707200104

Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. 2007. Let the concept of trait be functional! Oikos, 116(5), 882–892. DOI: 10.1111/j.2007.0030-1299.15559.x

Wetzel, R. G. 1975. Limnology. 3 ed. Philadelphia: WB Saunders Company: p. 743.

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.

Woodward, G., Perkins, D. M., & Brown, L. E. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1549), 2093–2106. DOI: 10.1098/rstb.2010.0055.

Published

2021-09-15