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Abstract: Aquatic ecosystems are under different anthropogenic pressures, such as climate change, 
eutrophication, chemical pollution, overfishing, and introducing exotic species. Human activities 
have accelerated biogeochemical cycles forcing organisms and ecosystems to adapt. Most ecological 
stoichiometry studies are focused on carbon, nitrogen, phosphorus, and their relative proportions. Still, 
the possibilities for investigations using other elements to better understand the impacts of human 
pressures on aquatic ecosystems are vast. Therefore, here we explore how different anthropogenic 
activities influence ecosystem balance in terms of nutrient composition and stoichiometry. We conclude 
that human interventions have affected the functioning of aquatic ecosystems in terms of energy flow 
due to stoichiometric imbalances. We also conclude that the interplay between macro and micronutrient 
stoichiometry might raise important axioms to predict and understand human impacts on the functioning 
of aquatic ecosystems.

Keywords: biogeochemical cycles; elements; nutrient stoichiometry; pollution.

INTRODUCTION

Ecological stoichiometry (ES) focuses on 
ecosystem functioning targeting nutrients 
ratios and how they mediate the relationships 
between consumers (biological requirements) 
and resources (availability) (Sterner & Elser 2002). 
Alfred Redfield was one of the first researchers 

to make the connection among organisms, 
the quality and ratios of resources, and the 
ecosystem functioning (Redfield 1934, 1958). 
This was achieved by establishing the classic 
and conservative “Redfield ratio”, which is the 
relative abundance of carbon (C) to nitrogen (N) 
and to phosphorus (P) (i.e., C: N: P of 106: 16: 1 
in planktonic organisms of the ocean) (Redfield 
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1934, 1958). One of the key points from Redfield’s 
work was to highlight that planktonic organisms 
are essentially able to manipulate the marine 
environment to reflect their biomass composition 
(Redfield 1934, 1958). The relative uniformity of 
biomass composition that Redfield highlighted 
and the long residence time of water in the ocean 
leads to a feedback mechanism whereby the 
carbon and nutrient pools reflect the elemental 
composition of the plankton (Redfield 1934, 
1958). However, these feedbacks work much less 
efficiently in freshwater systems that can have 
residence times on the order of weeks to decades 
rather than hundreds of years to millennia (They 
et al. 2017). Consequently, these systems can have 
greater stoichiometric imbalances, especially 
when short residence time is coupled with 
ecological stressors (Welti et al. 2017). Imbalances 
in C: P and N: P ratios can occur among different 
trophic levels or among organisms and the 
environment (Sterner et al. 1998, Sterner & 
Elser 2002), which has significant ecological 
consequences for population dynamics, nutrient 
cycling and, finally, for ecosystem metabolism 
(Elser & Urabe 1999, Sterner & Elser 2002).

One of the axioms of the ES is to examine 
relationships between the chemical composition 
of organisms and their resources (Sterner & Elser 
2002). For instance, homeostatic organisms have 
the ability to keep their chemical composition 
relatively uniform, despite changes in the 
environment or resource, while non-homeostatic 
organisms have their chemical composition 
varying with the resource composition (Kooijman 
1995). It is also common to observe different 
degrees of homeostasis among organisms 
(Godwin & Cotner 2015). 

Anthropogenic activities have accelerated 
biogeochemical cycles and increased aquatic 
pollution worldwide (Quadra et al. 2019). 
Pollution can be understood as a manifestation 
of a stoichiometric imbalance. For instance, 
the nutrient concentrations and ratios of N: 
P, C: N, and C: P have been changing due to 
eutrophication, driven primarily by agriculture, 
untreated sewage, and human population 
growth, with important implications for aquatic 
metabolism and biological interactions (Dodds & 
Cole 2007, Welti et al. 2017). 

Most ecological stoichiometry studies are 

currently related to C, N, and P, but organisms 
typically require more than 20 elements, and much 
less is known about these other elements such as 
zinc (Zn), iron (Fe), and copper (Cu) (Jeyasingh 
et al. 2017). Very similar to N and P, a low relative 
abundance of trace elements may also represent 
changes in ecosystem function. For example, in 
the Southern Ocean, where N and P are found 
in excess in relation to the needs of plankton, Fe 
limits primary production (Behrenfeld & Kolber 
1999). Unlike N and P, trace elements are much less 
prevalent in biomass, and excess concentrations 
may be toxic. For instance, several marine 
cyanobacteria species had reduced reproduction 
due to high Cu and cadmium (Cd) concentrations 
(Brand et al. 1986; and for a more recent review 
see Sunda 2012). Thus, trace elements toxicity 
is a reflection of a stoichiometric imbalance 
(Bradshaw et al. 2012). The excess of N and P in 
aquatic ecosystems usually boost microbial 
community growth rate and respiration (Del 
Giorgio & Cole 1998), while high concentrations 
of trace elements may result in toxicity (Kolarova 
& Napiórkowski 2021). Recently, anthropogenic 
activities have been increasing the concentration 
of several trace elements in surface waters, 
bringing up consequences for ecosystem services, 
such as carbon sequestration, nutrient recycling, 
self-purification, and supporting biodiversity 
(Gerbersdorf et al. 2011, Chen et al. 2015, Schuler 
& Relyea 2018).

Even though it was recently shown that ES is 
a powerful tool to look at ecosystem functioning 
(Welti et al. 2017), there are not many studies 
addressing the effects of human interventions 
on aquatic ecosystems referring to ES theories. 
Therefore, our objective is to discuss how human 
activities may trigger stoichiometric changes 
in aquatic ecosystems using the following 
anthropogenic pressures as case studies: climate 
change, cultural eutrophication, aquaculture, 
invasive species, and overfishing. Furthermore, 
considering that anthropogenic interventions 
potentially affect organism growth rates 
and nutritional composition, we discussed 
consequences for energy flow and energy 
pyramids in aquatic ecosystems and how ES can 
help predict environmental changes caused by 
anthropogenic influences.
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CLIMATIC EVENTS AND 
STOICHIOMETRY

In the last century, the intense human fossil 
fuel burning has been causing the atmospheric 
accumulation of greenhouse gases, such as 
carbon dioxide (CO2) and methane (CH4), leading 
to changes in the planetary climatic patterns. 
Climate models have systematically shown 
temperature increase as a major climatic response 
in the Brazilian territory and biomes (Marengo 
et al. 2010, 2020) with great consequences to 
hydrology (Brito et al. 2018) and biogeochemical 
cycling in inland waters (Roland et al. 2012). For 
instance, temperature increase may change 
organisms’ growth rates and affect their chemical 
composition (i.e., stoichiometric imbalance) and, 
consequently, can affect ecosystem functions as 
primary production or decomposition (Cotner 
2019).

Climate change is affecting ecosystem 
stoichiometry and ecological processes in several 
ways. Recently, it has been shown that increased N, 
P, and CO2 availability may ‘dilute’ micronutrients 
in crops with important implications for human 
health (Medek et al. 2017; Myers et al. 2014). 
Increasing CO2, as well as N and P (from cultural 
eutrophication, another global environmental 
issue discussed below) concentrations, may 
have a similar effect in aquatic ecosystems 
(Cotner 2019), a phenomenon referred to as 
‘environmental obesity’; i.e., higher proportions 
of C fixed by primary producers (i.e., higher 
C:nutrient ratios) due to the higher atmospheric 
CO2 concentrations with consequences to nutrient 
recycling and energy flow through the aquatic 
food web (Van Der Walls et al. 2010; Cotner 2019). 
Moreover, increasing temperatures can directly 
affect aquatic metabolism (Brown et al. 2004) by 
altering growth rates. For instance, increasing 
temperatures resulted in increased bacterial 
biomass and higher C: P and N: P ratios (Phillips 
et al. 2017). Therefore, higher temperatures may 
lead to P deficit in organism biomass resulting 
in energy flow changes due to stoichiometric 
imbalance between resources and predators, 
such as zooplankton grazing high C: P biomass 
phytoplankton (as in the plankton paradox 
energy; Sterner et al. 1998). Moreover, increasing 
temperature and N and P availability may affect 

heterotrophic bacteria respiration (Scofield et al. 
2015, Berggren et al. 2010), increasing CO2 and 
nitrous oxide (N2O) emissions from freshwaters 
(Marotta et al. 2014, Liengaard et al. 2013).

As an indirect consequence of climate change, 
hydrological and rainfall patterns will also be 
altered, and these changes were predicted to 
drastically affect ecological processes such 
as nutrient cycling, energy flow, and spatial 
ecological gradients in inland waters (Roland et al. 
2012). The reduction of the annual precipitation in 
the Brazilian semi-arid, for example, has caused 
drastic changes in water volume and resuspension 
of sediments, reducing light availability to primary 
producers but also increasing P concentrations 
in the water column during droughts (Costa et 
al. 2019). On the one hand, these frequent and 
prolonged droughts can shift the phytoplankton 
community to the dominance of mixotrophic 
organisms and affect the trophic chain energy 
flow (Costa et al. 2019). On the other hand, it can 
also affect seston and bacterial stoichiometry 
by increasing water residence time in aquatic 
ecosystems (They et al. 2017). With prolonged water 
residence time, bacterial and seston increased 
their nutritional quality by reducing C: P ratios, 
affecting nutrient cycling, such as the increase in 
C mineralization rates (They et al. 2017).

CULTURAL EUTROPHICATION

The load of nutrient-rich anthropic effluents, 
such as those from domestic, agriculture, 
and aquaculture activities, have resulted in 
higher concentrations of N and P in freshwater 
ecosystems (Glibert 2012, Quadra et al. 2019). 
How water resources rich in N and P affect the 
stoichiometry of organisms is still unknown and 
deserves more attention in future work (Sardans 
et al. 2012, Sitters et al. 2015). When N and P occur 
in high concentrations and out of stoichiometric 
balance with other nutrients, they favor the rapid 
proliferation of fast-growing microorganisms. The 
Growth Rate Hypothesis connects the nutritional 
needs of organisms to elementary disproportion 
represented in nucleic acids, which are central for 
growth (Elser et al. 2000). Fast-growing organisms 
require large amounts of N and mainly P, resulting 
in low N: P, C: N and C: P ratios, which supports the 
high protein synthesis rates necessary for rapid 
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growth (Elser et al. 1996, 2000, Sterner & Elser 2002). 
Fast-growing organisms are usually connected to 
ecological imbalances such as harmful algae that 
have the ability to cause severe damage to the 
ecosystems functioning and biodiversity (Glibert 
& Burkholder 2011).

Sewage effluents can be a key source of N and 
P to aquatic ecosystems (Jarvie et al. 2006, Xu et 
al. 2008, McCrackin et al. 2013), increasing growth 
rates of both autotrophs and heterotrophs and 
selecting fast-growing P-rich species (according 
to the growth rate hypothesis; Smith et al. 1999, 
Sterner & Elser 2002, Smith & Schindler 2009, Welti 
et al. 2017). At the beginning of the eutrophication 
process, the primary producers grow quickly 
and facilitate the growth of the higher trophic 
levels; however, changes in the biological and/
or physicochemical conditions, such as higher 
relative accumulation of P than N, can alter 
ecosystem behavior (Vinçon-Leite & Casenave 
2019). For instance, the dominance of non-edible 
cyanobacteria, such as Cylindrospermopsis 
raciborskii, could shift zooplankton community 
composition and, perhaps, drastically affect 
the energy flow through the aquatic food web 
in eutrophic ecosystems (Neumann-Leitão 
et al. 2018, Rangel et al. 2020). Additionally, 
increased availability of N and P can stimulate 
both autotrophic and heterotrophic metabolism 
affecting CO2 formation and consumption rates 
in freshwaters, such as in humic and clearwater 
coastal tropical lagoons (Peixoto et al. 2013), 
which may represent positive feedback to climate 
changes in those ecosystems (Scofield et al. 2015).

An under-appreciated aspect of eutrophication 
is the effect of N and P imbalances on other 
biogeochemical cycles. Noteworthy, relieving 
N and P limitations could potentially increase 
recycling rates of all elements, including non-
limiting ones. Unlike Redfield’s ocean C:N:P rate, 
where the microbiota regulates elemental cycling 
due to internal processing and long residence 
times, externally supplied N and P may disrupt the 
close coupling between these elements and others, 
such as C, Fe, and Zn. Presumably, this would 
lead to increased retention of these elements, but 
it is likely complicated by temporal and spatial 
complexities (Yang et al. 2020). For example, 
increased demand for micronutrients with N 
and P enrichment could potentially be offset by 

changes in the water column or sediment redox 
potential (Cotner et al.1990, Burgin et al. 2011), 
which may happen due to extreme droughts or 
precipitation, acidification, quality and quantity 
of organic matter shifts, effluents inputs to aquatic 
ecosystems, among others (Riedel et al. 2013). 
Nonetheless, changes in nutrient availability are 
likely to affect ecosystem processes that become 
more or less favorable with N and P addition. For 
example, N and P addition facilitate algal growth 
(Cotner & Wetzel 1992) but negatively affects 
nitrification and denitrification depending on 
Fe and Mn availability (Browning et al. 2021). 
While ecologists examined competition between 
organisms with similar metabolic strategies such 
as photo-synthesizers or aerobic heterotrophs, 
studies addressing how micronutrient limitation 
affects metabolism and processes with ecosystem-
scale implications, such as competition between 
N-fixers and denitrifies for Fe, are still needed. 
The implications of these dynamics are important 
not only for a given freshwater system but also for 
downstream environments such as the ocean 
(Maranger et al. 2018).

Noteworthy, anthropogenic effluents are 
a complex mixture that contributes not only 
to N and P addition but also trace elements to 
the environment (Quadra et al. 2019). Hence, 
it could be expected that these other elements 
would interact with high N and P concentrations 
and could also express other important, but 
still unrevealed, features in ES. For instance, 
Karimi & Folt (2006) showed that the variation 
of C: N: P ratios were lower among benthic 
macroinvertebrates, while non-essential metals 
(lead (Pb), mercury (Hg), and cadmium (Cd)) 
presented a higher variation among the same 
groups (Karimi & Folt 2006). Furthermore, 
it was found that the green algae presented 
similarities in their composition of Fe, Cu, and 
Zn, while the red algae presented similarities 
in their composition of Cd, cobalt (Co), and 
manganese (Mn) (Quigg et al. 2003). The authors 
attributed these differences to environmental 
pressures on photosynthetic devices once trace 
elements may substitute each other depending on 
environmental concentrations. Furthermore, it 
has been demonstrated that different evolutionary 
mechanisms may have selected macronutrients 
and trace elements stoichiometry in marine 
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eucaryotic phytoplankton since the Proterozoic 
era (Quigg et al. 2003).

Thus, including micronutrients stoichiometry, 
such as trace elements, in the ES approaches may 
bring new insights into the role of organisms in 
ecosystem functioning. For example, Fe plays a 
key role in photosynthesis and phytoplankton 
growth and has the potential to increase N2 
fixation by phytoplankton (Martin & Fitzwater 
1988, Martin et al. 1990a, 1990b, 1991, Mills et al. 
2004, Somes et al. 2010). Moreover, Fe availability 
affects bacterial growth efficiency (Tortell et al. 
1996). Other trace elements are also crucial for 
ecosystem functioning; e.g., in the absence of 
oxygen (O2), microorganisms tend to use nickel 
(Ni) in the production of urease to obtain N (Price & 
Morel 1991). When Cu is limited, N2O accumulates 
due to denitrifying microorganisms’ growth 
reduction. Many enzymes that participate in the 
phytoplankton respiration process (Mechanism of 
Carbon Concentration) need Zn, and other groups 
need Co or Cd (Lane & Morel 2000). Therefore, it is 
possible to observe the fundamental role of trace 
elements in regulating C and N cycles and in the 
production of gases in aquatic ecosystems (Granger 
&Ward 2003). We reinforce that the other elements 
(other than C, N, and P) may improve ES ability to 
predict ecosystem functioning (Jeyasingh et al. 
2017). It could be possible to draw new functional 
axioms as the growth rate hypothesis and better 
predict how human activities can affect aquatic 
ecosystem functioning by combining trace 
elements with the well-known macronutrient 
stoichiometry.

STOICHIOMETRY AND AQUACULTURE

Aquaculture is growing worldwide because it 
enables the production of high-quality animal 
protein for society (FAO, 2020). However, it 
usually discharges organic matter and nutrient-
rich effluents in aquatic ecosystems without 
previous treatment, contributing to cultural 
eutrophication (Páez-Osuna 2001, Gesteira & 
Paiva 2003, Boyd 2003). The Biofloc technology 
(BFT) was developed based on stoichiometric 
manipulations of cultivation water to improve 
shrimp production and reduce the need for water 
exchange (Emerenciano et al. 2013). Basically, 
C-rich fertilization strategies (e.g., by addition 

of molasses, sugar, or vegetable bran), stimulate 
autotrophic and heterotrophic microbial 
communities to form biological aggregates 
(bioflocs) that oxidize (for less toxic compounds 
for animals, such as nitrate) and assimilate 
(converting into microbial biomass) the ammonia 
produced by the feed addition and by the animal’s 
excretion, providing adequate water quality 
(Avnimelech 2012, Romano et al. 2018, Samocha, 
2019). High nutrient availability and temperature 
can affect microbial growth rates in shrimp ponds 
that use the BFT, increasing P concentration and 
reducing C: P and N: P ratios (Pimentel et al. 2020). 
Thus, besides BFT has become an important 
alternative food source to shrimp growth, it 
has also become an environmentally friendly 
alternative for reducing nutrient-rich water 
disposal (Emerenciano et al. 2013, Rajkumar et 
al. 2016, Samocha 2019). Therefore, ES knowledge 
has been opening large avenues to improve the 
operation of intensive shrimp farming systems 
and minimize or avoid eutrophication.

INVASIVE SPECIES

Invasive species are considered a huge threat 
to biodiversity, affecting not only biological 
communities but also the economy and human 
health (Gallardo et al. 2016, Pimentel et al. 2001, 
Walsh et al. 2016). The introduction of new species 
has the potential to alter biogeochemical cycles 
and affect stoichiometry (Cucherousset & Olden 
2011). For example, Nile tilapia (e.g., Oreochromis 
niloticus) was introduced globally in inland waters 
for aquaculture purposes (Vicente & Fonseca-
Alves 2013), which may significantly affect energy 
flow through the trophic chain. Although tilapias’ 
role in trophic interactions is not straightforward 
due to their omnivorous habit, their excretion 
may have important consequences to N and 
P stoichiometry (Attayde et al. 2007). A study 
showed that phytoplankton P limitation was 
reduced in a lake with an invasive omnivorous fish 
species (Astyanax bimaculatus), showing higher 
chlorophyll-a concentrations than neighboring 
environments without the invasive fish. The P 
limitation of the phytoplankton was alleviated due 
to the high P content present in the fish excretion 
(Nobre et al. 2019). Another study performed in 
a tropical reservoir also showed that Nile tilapia 



192 | Ecological stoichiometry and impacts on aquatic ecosystems

Oecol. Aust. 26(2):187–198, 2022

increased N and P availability via excretion and 
promoted algae growth (Figueredo & Giani 2005). 
After a massive fish kill of two invasive tilapia 
species from a Brazilian reservoir, researchers 
found an improvement in water quality, with a 
decreased chlorophyll-a and P concentrations 
(Starling et al. 2002).

OVERFISHING

Whether for consumption or ornamental 
purposes, overfishing is a big threat to aquatic 
ecosystems (Arthington et al. 2016). Fishing is 
undoubtedly important at different scales, but the 
natural stocks are not being able to reestablish, 
and overfishing together with other stressors 
threatening freshwater and marine ecosystems 
(Jackson et al. 2001, Möllmann & Diekmann 2012).
Overfishing influences the stoichiometry of 
aquatic ecosystems when it acts synergistically 
with other stressors such as eutrophication or 
changes in water temperature (Moy & Christie 
2012). Zaneveld et al. (2016) showed that 
overfishing in nutrient-polluted environments 
might alter the stoichiometry of reef regions in the 
ocean, increasing coral-algal competition and, 
consequently, reducing coral recruitment, growth, 
and survival, through several mechanisms, 
including coral microbiome disruption. As 
mentioned in previous sections, the misbalance in 
N and P may lead to algae growth and dominance of 
some phytoplankton species. Moreover, removing 
predatory phytoplankton species can also boost 
this algal growth. Overfishing oysters to the level 
of extinction in the ecosystem is an example of how 
eliminating organisms that exercise top-down 
control can affect the stoichiometric balance of 
the environment (Ibrahim et al. 2018). Bivalve 
populations that feed on phytoplankton limit 
the blooms, preventing eutrophication (Officer 
et al. 1982). A classic example of how overfishing 
can impact inland waters is the Laurentian Great 
Lakes (North America), which has experienced 
nutritional imbalances and invasion of non-native 
species since the beginning of overfishing records 
(Smith 1968). It is expected that the biodiversity 
decreases even more over time, as well as the 
size of the organisms and chemical composition, 
in which both can influence the energy flow 
throughout trophic levels.

CONCEPTUAL MODELS: ENERGY 
PYRAMIDS IN AQUATIC ECOSYSTEMS

Charles Elton elaborated the trophic pyramid 
in 1927 to describe the trophic efficiency and 
energy loss at each trophic interaction, afterward 
demonstrated in 1942 by Raymond Lindeman in 
the “Trophic-dynamic aspect of ecology” paper 
(see Elton 2001, Lindeman 1942). Lindeman 
has also discussed different trophic efficiencies 
among different environments. In fact, freshwater 
ecosystems have higher trophic efficiency than 
most terrestrial ecosystems, with lower energy 
loss through trophic levels. This higher efficiency 
is achieved due to differences in the stoichiometric 
balance of C to nutrient ratio between primary 
producers and herbivores, with terrestrial primary 
producers showing higher C: nutrient ratios in 
biomass than aquatic primary producers (Del 
Giorgio et al. 1998, Sterner et al. 1998, Sterner & 
Elser 2002). Furthermore, the life cycle of aquatic 
organisms is generally shorter, making nutrient 
cycling faster. In this way, the classical theoretical 
energy pyramid of a given freshwater ecosystem 
that undergoes different anthropogenic pressures 
may be altered with consequences to the energy 
flow, matter cycling, and functioning (see 
Dudgeon et al. 2006). For instance, as mentioned 
before, at the beginning of the eutrophication 
process, the primary producers overgrow and, 
consequently, the following trophic levels also 
grow since the amount of energy available is 
larger. The introduction of new species also affects 
the ecosystem pyramid. For example, introducing 
a top predator fish in the third trophic level would 
increase the consumption of the second trophic 
level and allow the growth of the first trophic level. 
When overfishing occurs on the third, the second 
trophic level may gain in biomass, accumulating 
energy and increasing consumption of the first 
trophic level. 

CONCLUSION

Human interventions may lead to stoichiometric 
imbalances in aquatic ecosystems with 
implications for ecosystems functioning. 
Ecological stoichiometric alterations are also 
related or reflected in energy flow and trophic 
alterations. Multielement stoichiometry approach, 
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beyond C, N, and P, is important because while 
C, N, and P are probably with the most increased 
availability (Falkowski et al. 2000), it is likely to 
be driving major changes in the cycling of other 
elements. The intensification of unrestrained 
human activities such as the increase in land use 
and occupation in an unsustainable manner and 
the discharge of not-properly treated effluents (from 
industrial, agricultural, and urban areas) can lead 
to environmental imbalances at elementary levels, 
changing natural biogeochemical processes. This 
may have consequences not only to global climate 
but also impacts aquatic ecosystem functioning. 
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