SAÚDE E INTEGRIDADE DO ECOSSISTEMA E O PAPEL DOS INSETOS AQUÁTICOS

MOULTON, T.P.

Abstract

Resumo: Em anos recentes, os termos "saúde" e "integridade" tem sido aplicados a ecossistemas para conduzir a julgamentos normativos sobre o seu estado e funcionamento. Isto tem sido criticado baseando-se no fato de que a metáfora de saúde está errada, pois ecossistemas não são organismos, não compreendem estruturas consistentes de um indivíduo ao outro, não se desenvolvem de maneiras previsíveis e não contém mecanismos homeostáticos. Além disto, existem perigos em usar saúde de ecossistema como objetivo operacional para manejo porque as tomadas de decisão se desviam da real compreensão dos processos. Apesar destas críticas, muitos ecólogos concordariam em manter os termos saúde e integridade e usá-los de uma maneira cautelosa, não implicando propriedades exclusivas de organismos. Sob este uso, saúde se refere ao estado e funcionamento desejáveis (que normalmente, mas não exclusivamente, implicam no estado intocado do ecossistema). Integridade está relacionada ao grau de similaridade dos componentes (espécies) do ecossistema em questão, face ao ecossistema intocado. Insetos aquáticos têm sido usados extensivamente no monitoramento da saúde e integridade de ecossistemas aquáticos, alcançando, também, um papel na legislação ambiental de certos estados e países. São usados em Protocolos de Avaliação Rápida, avaliação usando índices ("métricos" e "multimétricos") e métodos multivariados.

Palavras chave: biomonitoramento, bioindicadores, teoria de ecossistema.

Abstract:
 "Ecosystem health and integrity and the role of aquatic insects"

In recent years the terms "health" and "integrity" have been applied to ecosystems to convey normative judgements about their state and functioning. This has been criticized on the basis that the health metaphor is invalid since ecosystems are not organisms, they do not have consistent structures from one individual to the next, they do not develop in a predictable manner and they do not have homoeostatic mechanisms. Moreover there are dangers in pursuing ecosystem health as an operational management goal, since it diverts decision makers from a true understanding of the inherent processes. Despite these criticisms many ecologists would agree to maintain the terms health and integrity and use them with caution in a manner that does not imply organismal properties. Under this usage, health refers to the desirable state and functioning (which is normally, although not exclusively, related to the pristine state of the ecosystem). Integrity relates to the degree to which the ecosystem's components (species) are similar to the pristine state.
Aquatic insects have been used extensively for the monitoring of aquatic ecosystem health and integrity, achieving, as well, a role in the environmental legislation of certain states and countries. They are used in Rapid Assessment Protocols, in evaluation using indices (metrics and multimetrics) and in multivariate methods.

Key-words: biomonitoring, bioindicators, ecosystem theory.

Introdução

"Saúde" é um conceito óbvio, intrínseco e compreensível para os leigos. Por muitos anos o conceito de "saúde" tem sido aplicado a florestas, pastagens, lagos, rios etc. "Integridade" também parece ser uma propriedade óbvia da Natureza. Mais recentemente, à medida que fomos conceituando estas entidades como ecossistemas, começamos a usar os termos "saúde do ecossistema" e "integridade do ecossistema". De fato, a legislação ambiental norte-americana especificamente cita a saúde e a integridade do ecossistema (por exemplo, a Lei Federal de Controle de Poluição da Água de 1972-1972 US Federal Water Pollution Control Act, o Acordo de Qualidade da Água dos Grandes Lagos de 1978-1978 Great Lakes Water Quality Agreement, e a Lei dos Parques Nacionais do Canadá, alterada em 1988 - Canadian National Parks Act, citada em STEEDMAN, 1994 e SCRIMGEOUR \& WICKLUM, 1996). Além disso, existe pelo menos uma revista científica dedicada a este assunto - Journal of Aquatic Ecosystem Health (Kluwer Academic Publishers, Holanda).

Insetos aquáticos têm sido usados extensivamente no monitoramento da saúde e integridade de ecossistemas aquáticos, alcançando, também, um papel na legislação ambiental de certos estados e países.

Minha intenção aqui é rever os conceitos de saúde e integridade do ecossistema em termos ecológicos e evolutivos. Discuto a questão do uso dos insetos aquáticos no monitoramento de impactos, mas deixo o tratamento detalhado deste assunto para os vários livros e artigos recentes (e.g. COSTANZA et al., 1992; JOHNSON et al., 1993; ROSENBERG \& RESH, 1993; NORRIS et al., 1995; DAVIS \& SIMON, 1995).

Ao usar "saúde" para ecossistemas, temos que reconhecer que o termo vem de um uso específico para humanos e outros organismos. A definição de saúde da Organização Mundial da Saúde é: "estado de completo bem-estar físico, mental e social e não apenas a ausência de enfermidade". Ao contrário, doença, compreende: "alterações das funções orgânicas, físicas e mentais, além dos limites estabelecidos dentro da faixa de normalidade". Em outras palavras, "saúde" é a condição de normalidade que é mantida face a perturbações ou estresses (SELYE, 1973). Pondo isto no contexto evolucionário, o organismo, sendo uma unidade replicável e integral, é adaptado a manter o seu "bemestar" dentro da faixa de experiências e ambientes encontrados ao longo da sua história evolucionária por mecanismos de comportamento, imunologia etc. Para descobrir como e quanto podemos aplicar o conceito (ou metáfora) de saúde a ecossistemas, temos que examinar como esses sistemas atuam em termos de integridade e homeostase.

História: O conceito de ecossistema e problemas com a definição de saúde e integridade

Este século, e particularmente a sua segunda metade, viu o surgimento do termo "ecossistema", que é talvez o conceito mais importante para a conservação e
gestão dos recursos ambientais. Desde a formulação da teoria de ecossistema (a qual ainda é, naturalmente, continuamente investigada) houve muitas tentativas para descobrir as propriedades intrínsecas dos sistemas ecológicos. Ou, em outras palavras, as regras de como os ecossistemas são estruturados e como funcionam.

Integridade estrutural dos ecossistemas

No início do século, CLEMENTS (1936) propôs comunidades estruturadas e integrais, com estágios repetidos de desenvolvimento (sucessão). Esta visão foi questionada por GLEASON (1926) na época, e posteriormente $\operatorname{WHITTAKER}(1967,1975)$ e outros com sucesso refutaram o modelo de Clements. O paradigma que prevalece atualmente é o de comunidades compostas de espécies com distribuições mais ou menos independentes e sem normas rígidas de desenvolvimento. Interações neutras e de inibição têm sido descobertas como sendo tão comuns (se não mais comuns do que) quanto a facilitação durante a sucessão (CONNELL \& SLATYER, 1977).

Desenvolvimento funcional dos ecossistemas

A teoria da integração funcional e desenvolvimento dos ecossistemas foi proposta pioneiramente por E. T. Odum (ODUM, 1969). Sua teoria da "Estratégia de Desenvolvimento do Ecossistema" foi criticada por ecólogos evolutivos que não consideram o ecossistema como sendo uma unidade evolutiva que possa ter uma "estratégia". De fato, o próprio Odum modificou sua posição em publicações posteriores (ODUM, 1971). Vários ecólogos aceitariam, de um modo geral, os fenômenos descritos na teoria (relação Produção/Respiração tendendo a zero, ciclos de nutrientes mais fechados etc.) mas os atribuem a meras conseqüências do desenvolvimento das espécies individuais, mais do que a uma "estratégia" no nível de organização do ecossistema.

MARGALEF (1968) também esforçou-se em definir os mecanismos básicos da organização e dinâmica dos ecossistemas. Quase 30 anos depois, podemos dizer que suas teorias ainda estão sendo testadas, e que, por exemplo, o valor de sua "Sucessão Ecológica e Exploração pelo Homem" (MARGALEF, 1968, cap. 2) é mais heurística do que prática. Mais extremas são as alegações da integração do sistema em um nível global advogadas por LOVELOCK (1988) em cuja "Hipótese Gaia", todo o planeta Terra é considerado como um superorganismo com capacidade de auto-manutenção. Esta "hipótese" é difícil, se não impossível, de ser testada.

Um problema fundamental para a teoria dos ecossistemas é que os ecossistemas, ao contrário de vários outros sistemas, não são (aparentemente) construídos para uma função específica por componentes integrados e replicáveis. Eles não são superorganismos. Eles não são autoreplicáveis e não tem memória ou código de construção que seja passado para outras gerações. Em um nível orgânico de organização, o indivíduo tem um propósito: processar energia e matéria de forma a crescer, sobreviver e reproduzir. As instruções para
isso são codificadas em ácidos nucléicos e as informações são passadas para as sucessivas gerações. No nível de população, as espécies compartilham um pool de informações genéticas e na arena ecológica este código se desenvolve através da seleção natural. Um organismo individual tem mecanismos para se ajustar ao ambiente durante seu tempo de vida, e continuamente repara os danos originários de causas internas, patogênicas e externas. Em um certo nível de dano, um organismo pode ser definido como "doente", e pode recuperar sua "saúde" ou "integridade" através de mecanismos homeostáticos. Ou pode morrer. Ao longo da evolução, os indivíduos de uma espécie se adaptam ao ambiente. Ou a espécie pode se extinguir.

Um ecossistema não possui, até onde nos foi possível descobrir em 60 ou mais anos de intensiva investigação científica, os atributos de um indivíduo. Como sistema, não tem um objetivo, salvo o da combinação de suas espécies biológicas individuais. Não possui um código de construção. Não possui um mecanismo de controle de sistema de nível para regular sua homeostase. A integridade do sistema não pode ser passada para as gerações futuras. Todos os supostos atributos sistêmicos de um ecossistema devem ser gerados a partir dos sistemas genéticos individuais de seus componentes biológicos. E aqui reside o mistério da ecologia e do ecossistema de comunidade: Como isto acontece?

Conseqüências para a saúde e integridade do ecossistema

As opiniões se dividem quanto às conseqüências do argumento acima em relação a integridade e saúde do ecossistema. Em um extremo, autores como CALOW (1992) e WICKLUM \& DAVIES (1995) concluem que a metáfora da saúde é inválida uma vez que os ecossistemas não são organismos, não possuem uma estrutura consistente de um indivíduo para o seguinte, não se desenvolvem de uma maneira previsível e não tem mecanismos homoestáticos. Além disso, CALOW (1992) aponta perigos em observar a saúde do ecossistema como uma meta da administração operacional, uma vez que as tomadas de decisão se desviam da real compreensão dos processos inerentes (ver também os comentários de SHRADER-FRECHETTE, 1994). Por outro lado, existem autores que defendem uma transferência aproximadamente literal do modelo de saúde do organismo (por exemplo, FERGUSON, 1994, KNIGHT \& SWANEY, 1981), observando propriedades de auto-ajuste e equilíbrio, mantidos por caminhos de retroalimentação. Outros autores começam com um preâmbulo negando os "superorganismos", contudo atribuem propriedades de auto-organização no nível dos ecossistemas (por exemplo, RAPPORT, 1995). STEEDMAN (1994) afirma que a saúde do ecossistema é um conceito que carrega metas normativas e socialmente derivadas, bem como critérios estritamente biológicos.

Resolução do conflito

Precisamos do conceito "saúde do ecossistema" como uma expressão que contenha a idéia de um estado desejável de um ecossistema, mas utilizando-a, corremos
o risco de materializar algo que não é mais do que um conceito. Ou pior, podemos enganar os legisladores e o público ou ainda a nós mesmos de que ali está uma quantificável entidade com um significado biológico objetivo. O simples fato de que "saúde do ecossistema" seja um termo com uma analogia óbvia com a saúde orgânica deixa sua interpretação livre para qualquer abuso. NORTON (1991) mostra a controvérsia em torno do assunto. Entretanto, tenho a impressão de que a maior parte da opinião científica inclina-se a manter o termo e usá-lo com cuidado.

Por outro lado, "integridade" sofre menos com falsas analogias, mas é difícil de quantificar e de tornar operacional (WOODLEY et al., 1993). Num extremo, integridade implica uma falsa organização da comunidade ou nível de ecossistema. Particularmente problemática é a nossa falta de discernimento entre integridade e função do ecossistema.

POLLS (1994) cita KARR \& DUDLEY (1981) deste modo: "Integridade biológica tem sido definida como a habilidade de um ecossistema em se sustentar e manter uma comunidade de organismos balanceada, integrada e adaptada, tendo uma composição de espécies comparável ao da região ou hábitat natural". Esta definição tem vários problemas e é difícil de ser aplicada: (i) "Equilíbrio" é um conceito controverso na ecologia de comunidade/ecossistema (e até de população) (PIMM, 1991, cap.1); como avaliar prospectivamente que um ecossistema tenha esta qualidade é virtualmente impossível. No contexto da dinâmica de ecossistema em rios, POWER (1995) defende a manutenção de uma perturbação desequilibrada das enchentes de primavera de forma a manter a qualidade da comunidade bentônica dos rios na California. (ii) "Integrada" é uma outra qualidade ou quantidade difícil. Isto provavelmente significa que as espécies de uma comunidade "natural" têm coevoluído umas com as outras e com o ambiente. Mas como mensurar isso ou a ausência disso desafia o conhecimento atual. (iii) "Adaptativo" é também difícil. Por definição, todos os organismos são adaptados. Se em qualquer situação particular eles não apresentam um comportamento adaptativo, são eliminados. É difícil imaginar uma falta de adaptabilidade durando muito tempo. (iv) "... tendo uma composição de espécies comparável àquela da região ou do hábitat natural" parece-me completar a tautologia; "integridade" pode bem ser definida como uma similaridade à situação "natural" (não modificada antropologicamente).

Muitos autores concordam na separação prática dos conceitos "saúde"e "integridade". Saúde refere-se ao desejado estado de sistemas modificado pelo homem; integridade refere-se ao grau em que um ecossistema ou comunidade varia do original, em condições não impactadas (KARR, 1991; STEEDMAN, 1994; SCRIMGEOUR \& WICKLUM, 1996). Implícita nesta separação está a noção de que sistemas podem ser "saudáveis" (=desejável) e não necessariamente "íntegros" (=similar à sua condição original). Uma corrente de água represada e manejada para a pesca de trutas em uma região onde a truta não é uma espécie nativa poderia ser um exemplo disso (presumivelmente esta corrente de água poderia ter uma comunidade de "organismos balanceada, integrada e adaptativa",
apesar de não "natural"). O dogma atual sugere, porém, que o contrário não é verdadeiro: um ecossistema possuindo "integridade" não pode ser "não saudável". Contudo, uma pequena reflexão nesta questão revela um paradoxo: muitos sistemas naturais foram, especialmente no passado, vistos como indesejados, e na estrita aplicação da definição, deste modo "não saudáveis". Por exemplo, as florestas originais da Austrália, costa leste dos Estados Unidos e litoral do Brasil foram vistas como menos desejáveis do que terras para agricultura e pastagem. Mais além, revertendo à analogia orgânica, porque um ecossistema natural não pode ficar "doente", tal como um organismo pode sofrer uma patogenia no curso natural da sua vida?

Aplicando o conceito de saúde: quais são os termômetros?

Se utilizarmos a interpretação literal da metáfora da saúde e a aceitarmos provisoriamente como um conceito heurístico, somos imediatamente confrontados com a questão de como identificar saúde. Existe uma analogia funcional à saúde humana na qual podemos medir a temperatura do corpo, glicose do sangue ou a química da urina como indicadores ou sintomas de uma doença? Precisamos saber como o componente que estamos medindo interage com o sistema, isto é, através de qual componente (temperatura, química do sangue etc.) está sendo afetado e as consequiências disto para o seu funcionamento? Ou é suficiente ter um indicador que sinalize mal funcionamento do sistema? Certamente muitos (talvez a maioria) dos indicadores médicos foram descobertos empiricamente; a alta da temperatura do corpo é muito obviamente associada a muitas doenças, urina doce é associada com a doença que veio a ser conhecida como diabetes. Os mecanismos bioquímicos e fisiológicos por trás destas alterações foram descobertos apenas muitos anos depois que as relações sintomáticas fossem descobertas. O mesmo parece ser o caso na ecologia; um exemplo de um sistema simplificado é ilustrativo:

Filtração por percolação para tratamento de esgoto

Em seu livro de ecologia aplicada, BEEBY (1993) apresenta o interessante caso de filtração por percolação para tratamento de esgoto. O objetivo do tratamento primário do esgoto é reduzir o peso do carbono reativo e consequientemente a demanda biológica do rejeito líquido. Um sistema simples para isso, a filtração por percolação de água, foi desenvolvido no começo deste século. Consistia em um leito de cascalho no qual era gotejado o rejeito líquido. Uma comunidade de fungos, bactérias e actinomicetos saprófitos se desenvolvia no cascalho e processava o líquido que entrava através da respiração e incorporação do carbono orgânico, transformando os compostos de nitrogênio etc. Um filme destes microorganismos cresce sobre o cascalho e de tempos em tempos se solta à medida que sua capacidade de adesão é ultrapassada. O sucesso do processo é verificado pela química do líquido que sai, o qual deve ter tanto quanto possível uma DBO e uma taxa de sólidos suspensos baixa. O principal controle do processo é a taxa na qual o rejeito é adicionado. A técnica foi desenvolvida empiricamente
e somente após muitos anos de desenvolvimento e operação é que a bem sucedida microbiologia do sistema foi compreendida.

Durante a fase empírica, tornou-se óbvio aos praticantes que a "boa" ou "má" operação do sistema (a julgar pela DBO) era associada a certas condições do leito de cascalho. Um bom índice/indicador da função apropriada do sistema era a quantidade de filamentos brancos de bactéria actinomiceto. É interessante que certos Ephemeroptera e outros componentes da fauna são associados a diferentes estados do sistema e também podem ser usados como indicadores.

Embora a filtragem por leito de cascalho seja um sistema muito mais simples do que, por exemplo, uma bacia de floresta, a analogia de usar organismos indicadores para sinalizar funções do ecossistema é provavelmente válida. Também a prática de colocar componentes numa "caixa-preta" e tratar o ecossistema como um sistema de controle de entrada-saída é provavelmente válida, ao menos como um primeiro passo para o manejo. Isto é, naturalmente, o que fazemos na prática. Mas talvez esta lição deva ser aprendida por aqueles que insistem em que o nosso entendimento dos ecossistemas só pode ser atingido pela abordagem bottom-up (de baixo para cima) acumulando conhecimentos detalhados dos componentes. A alternativa top-down (de cima para baixo) de modelar o sistema provou ser viável em muitos casos e representa o mais rápido e mais prático caminho para o manejo do ecossistema. Organismos indicadores podem ter um importante papel neste processo, e aparentemente os insetos aquáticos têm um papel especial nos sistemas de água doce.

Este argumento não seria completo sem mencionar que em muitos casos as tentativas de modelar sistemas de produção natural (especialmente estoques de peixes) falharam (ver LUDWIG et al., 1993, e a subseqüente edição de Ecological Applications, vol. 3(4), 1993). Isto nos deve tornar cautelosos sem, no entanto, nos fazer abandonar a abordagem.

A questão do estudo top-down do ecossistema também pode ser contrastada com uma abordagem toxicológica envolvendo análise química e organismos de testes. Obviamente ganha-se controle e velocidade na reação em testes de toxicidade, mas perde-se contato com a realidade e aplicabilidade ao ambiente. Existe uma grande e contínua controvérsia nesta questão, assim como muitas tentativas de reconciliação (e.g. MUNKITTICK \& MCCARTY, 1995). Parte desta questão aparenta envolver a aplicabilidade da abordagem a este problema particular, como atestado por BRINKHURST, 1993, p. 446: "Eu recentemente abandonei minha oposição à abordagem toxicológica em favor de uma abordagem conjunta na qual tanto os toxicologistas como os ecólogos de campo conservem suas vantagens individuais pela recusa de se mover em direção a áreas cinzentas ou comprometedoras... Vejo uma boa razão para administrar emissões de fonte pontual através de simples testes toxicológicos do efluente, resguardados por um monitoramento em campo cuidadosamente projetado para assegurar que os níveis permitidos de descarga estejam tendo seus efeitos desejados."

A abordagem empírica para avaliar a saúde e o estresse do ecossistema

Existe um vasto campo de observação e análise de estresse e danos de ecossistemas que nos proporciona um conhecimento empírico de como os ecossistemas reagem. Este conhecimento deve nos proporcionar os meios para avaliar os danos aos ecossistemas (saúde). RAPPORT et al. (1985) fornecem uma síntese. Eles comentam: "Ecossistemas são... um nível supra-organísmico de organização, mas não são superorganismos, uma vez que cada nível em uma hierarquia tem tanto propriedades únicas encontradas somente naquele nível, como propriedades paralelas a outros níveis". Desta maneira, ecossistemas não são organismos, mas existem propriedades análogas que podem ou não funcionar da mesma maneira nos dois níveis [organismo e ecossistema] (KNIGHT \& SWANEY, 1981). Como os ecossistemas, tal e qual os organismos, são cibernéticos (mas não necessariamente pelo mesmo mecanismo), têm o potencial para mitigar vários estressores impostos pelo exterior." A referência a KNIGHT \& SWANEY (1981) é a resposta destes autores a um artigo de ENGELBERG \& BOYARSKY (1979) intitulado "A natureza não cibernética dos ecossistemas". RAPPORT et al. (1985) não se resumiram a provar a base da analogia organicista, mas prosseguem comparando as reações dos ecossistemas ao estresse com a fisiologia do estresse dos mamíferos, utilizando a estrutura de SELYE (1973). Embora este exercício claramente comece a partir da fisiologia do estresse dos mamíferos como uma analogia, os mecanismos de reação ao estresse terminam também por ser análogos. Em particular, a questão de "mecanismos de adaptação" (coping mechanisms) implica mecanismos no nível de ecossistemas: "Enquanto ecólogos ainda debatem a questão (MCNAUGHTON \& COUGHENOUR, 1981), fica claro que os ecossistemas possuem mecanismos cibernéticos que operam para conter o impacto dos estressores, pelo menos em algum grau. Estes mecanismos podem ser de natureza química ou biológica e, em certas instâncias, envolvem a desativação do próprio estressor." RAPPORT et al. (1985) não fornecem exemplos deste fenômeno nem do mecanismo por trás dele. No entanto, o artigo fornece um ponto de partida para avaliar as respostas dos ecossistemas.

Saúde e integridade estrutural ou funcional?

No seu tratamento de respostas do ecossistema ao estresse, RAPPORT et al. (1985) discutem tanto as mudanças na estrutura da comunidade biológica (diversidade das espécies, retrogressão, distribuição de tamanho) quanto as funções do ecossistema (ciclo de nutrição, produtividade). Poderíamos perguntar qual destas respostas é a mais sensível ao estresse (i.e. mudança com perda de "saúde"). SCRIMGEOUR \& WICKLUM (1996) sugerem que o desaparecimento de espécies sensíveis precedem mudanças nas variáveis funcionais. REICE \& WOHLENBERG (1993) são bastante categóricos: "[Igualmente], produtividade primária e secundária são surpreendentemente estáveis sob todas as condições, com exceção daquelas mais extremas de degradação ambiental. Por outro lado, as populações de macroinvertebrados e a comuni-
dade bentônicos apresentam uma sensibilidade muito maior a vários tipos de perturbação". Apesar destas afirmações, existe uma atração intrínseca para medir aspectos funcionais do ecossistema, devido a eles parecerem ser mais importantes para todo o sistema do que as mudanças nas espécies sensíveis. DUDGEON (1991) mantém esta visão e apresenta um experimento no qual a decomposição da serapilheira aparentemente diminuiu devido a perturbações abióticas enquanto a estrutura da comunidade de macroinvertebrados permaneceu constante.

Uma variável funcional muito sensível parece ser a perda de nutrientes em sistemas terrestres; florestas perturbadas (por exemplo, por corte) perdem os nutrientes e outros íons, que aparecem nas águas correntes emergentes (LIKENS et al., 1978).

Voltando agora à questão de descobrir um bom "termômetro" para a saúde dos ecossistemas, vemos que as respostas destes aos danos e ao estresse podem ser muito sutis e difíceis de atingir, e que considerável pesquisa é necessária para entender estes mecanismos. O valor de um bom termômetro é que ele possa registrar rapidamente que alguma coisa está errada, para que seja possível tomar uma atitude para remediar, mesmo que não se conheça os mecanismos. Como veremos na próxima seção, os organismos bentônicos possuem muitas propriedades que os tornam úteis para este propósito (Tabela 1.)

A prática de usar insetos aquáticos para monitorar a saúde e a integridade dos sistemas aquáticos

Tem havido um grande interesse na utilização de organismos bentônicos e particularmente insetos aquáticos na quantificação da saúde e da integridade dos ecossistemas. Nos últimos cinco anos foram escritos vários livros sobre o assunto e diversas revisões entre muitos artigos específicos. Entretanto, o interesse no bentos de água doce para monitoramento não é recente e, especialmente na Europa, tem sido uma venerável tradição. CAIRNS \& PRATT (1993) traçaram suas origens e identificaram diferenças entre as várias tradições. O sistema "Saprobien" (índice de saprobidade) foi inventado por KOLKWITZ \& MARSSON, 1908, 1909 (citado em CAIRNS \& PRATT, 1993). Ele tem uma aplicação específica na detecção da poluição por rejeito orgânico. O sistema tem sido exaustivamente revisado e expandido.

Este esquema e o uso geral de organismos indicadores para caracterizar a qualidade da água não foi, em geral, aceito na América do Norte. De acordo com CAIRNS \& PRATT (1993), isto se deveu a três motivos: (i) as espécies utilizadas na Europa não se aplicavam à América do Norte, (ii) os problemas americanos tinham mais a ver com toxicidade do que com enriquecimento orgânico, e (iii) biólogos bentônicos norte-americanos eram resistentes a este conceito. Assim, por muitos anos o controle de qualidade da água na América do Norte baseou-se principalmente em critérios químicos, com alguma ênfase sendo dada a ensaios biológicos laboratoriais utilizando organismos de testes.

Tabela 1. Vantagens e dificuldades a serem consideradas para usar macroinvertebrados bentônicos para biomonitoramento, (tirado de RESH, 1995, e ROSENBERG \& RESH, 1993)

Vantagens	Dificuldades a serem consideradas
1 Sendo ubíquitos, são afetados por perturbações em todos os tipos de águas e habitats	I Amostragem quantitativa requer muitas amostras, o que pode ser caro
2. Grande námero de espécies oferece un espectro de respostas a perturbaçòes	2. Fatores alén da qualidade da água podem afetar distribuição e abundância dos organismos
3. O comportamento sedentário de muitas espécies permite análise espacial dos efeitos de perturbação	3. Variação sazonal pode complicar interpretação ou comparação 4. Hábito de derivar (drift) de algumas espécies
4. Os seus longos ciclos de vida permiteli análise temporal das perturbações regulares ou intermitentes	pode negar as vantagens ganhas das espécies sedentárias 5. Talvez demais métodos de análise são disponí-
5. Amostragem e análise qualitativas são bem desenvolvidas e podem ser feitas com equipamentos simples e baratos	veis 6. Certos grupos não são bem conhecidos taxonomicamente (especialmente no Brasil)
6. Taxonomia de muitos grupos é bem conhecida e chaves de identificação estão disponíveis	7. Macroinvertebrados bentônicos não são sensíveis a algumas perturbações, por ex. patógenos
7. Muitos métodos de análise de dados tem sido desenvolvidos para comunidades de macroinvertebrados	humanos e pequenas quantidades de certos poluentes
8. Respostas de muitas espécies comuns à poluição têm sido estabelecidas	
9. Macroinvertebrados são adequados a estudos experimentais de perturbação	
10. Medidas bioquímicas e fisiológicas das respostas de organismos individuais a perturbação estão sendo desenvolvidas	

A situação modificou-se nos últimos anos com o reconhecimento de que o clássico monitoramento dos aspectos físicos e químicos junto com testes biológicos exsitu são insuficientes para caracterizar as respostas do ecossistema à poluição. Parece lógico que se o ecossistema é o objeto em referência, suas respostas devem ser analisadas de uma maneira holística (NAIMAN et al., 1992; REICE \& WOHLENBERG, 1993), ou pelo menos referir-se a organismos indicadores in situ. Existe alguma evidência para sugerir que cientistas e administradores estão retomando a idéia inicial e, reconhecendo que estudos completos de ecossistema são caros e consomem muito tempo, estão retornando à abordagem de organismos indicadores tais como o "Protocolo de Avaliação Rápida" (Rapid Assessment Protocols - RAP) e outros do tipo. RESH \& JACKSON (1993) dão um amplo tratamento do assunto.

Protocolos de Avaliação Rápida - vinho velho em novas garrafas

Protocolos de Avaliação Rápida ("RAP") são a abordagem moderna para o tradicional uso de indicadores biológicos para medir a saúde e a qualidade ambientais. Eles são encarados como uma alternativa custo-eficiente ou pelo menos complementar para a avaliação da qualidade da água. A metodologia varia; 30 protocolos "RAP" foram
inspecionados por RESH \& JACKSON (1993), muitos dos quais vieram de agências governamentais da América do Norte e Europa, mais do que da literatura científica. Amostras são normalmente retiradas por métodos não-quantitativos - puçás ou outras redes (kick nets, D-nets ou sweep nets). Em alguns protocolos, um número fixo de organismos é amostrado (tipicamente 50 a 300). A maioria dos protocolos pede a identificação de morfoespécies de famílias conhecidas; alguns limitam-se somente à identificação no nível de família, outros consideram somente certos taxa (e.g. Ephemeroptera, Plecoptera e Trichoptera). A maioria dos protocolos inclui alguma medição baseada em tolerâncias ambientais estabelecidas de organismos, tais como "índice biótico" ou "número de espécies tolerantes". Índices de diversidade e similaridade foram apenas usados em 25% dos casos examinados por Resh \& Jackson.

Protocolos "RAP" são gerados utilizando-se locais de impactos conhecidos comparado-os com locais não impactados. O status dos locais desconhecidos é diretamente extrapolado. Muito freqüentemente o mecanismo de mudança é conhecido - normalmente porque as espécies envolvidas são sensíveis aos impactos potenciais.

O termo "protocolo" inclui o hábitat adequado, desenho de amostragem e métodos de coleta, taxa utilizados, nível de análise taxonômica e as medidas de análise usadas para determinar o grau de impacto numa comunidade bentônica. As medidas podem ser divididas em cinco categorias: riqueza, enumeração, diversidade e similaridade de comunidade, índices bióticos e medidas de grupos de alimentação funcionais (RESH \& JACKSON, 1993).

RESH \& JACKSON (1993) testaram o desempenho de várias medidas em duas situações de impacto nas águas correntes costeiras do norte da California. Descobriram que as seguintes medidas consistentemente identificaram impactos: medidas de riqueza, índice de Margalef, índice Biótico de Família e a relação entre raspadores e o número total de indivíduos. Outros índices comunitários que não o de Margalef e todas as análises de enumeração e de grupos funcionais não representaram as condições de impacto assim como as de não-impacto. Eles concluíram que múltiplas medições devem ser usadas em vez de se basearem em uma única medida e, logicamente, as medidas identificadas como mais adequadas devem ser as preferidas.

Eles também identificaram diferenças sazonais nos mesmos locais para diferentes medidas e recomendaram que este fator seja incorporado nos planos de amostragem. Obviamente seus resultados são pertinentes a certos impactos em certas regiões e a extrapolação destes resultados precisa ser feita com cautela.

Abordagens métrica e multivariável

Por algum tempo houve uma controvérsia sobre os méritos relativos da abordagem métrica e multivariável. A abordagem métrica foi descrita acima e requer calcular um índice ou índices ("multimétrico") dos dados biológicos. Os oponentes a esta aborda-
gem tem duas origens: alguns ecólogos de rios com um profundo conhecimento da biota questionam se uma análise direta da biota revela resultados mais claramente, e que o cálculo de um índice ou abordagem métrica ofusca a biologia subjacente. Por outro lado e independentemente, alguns autores criticam a perda de informação sobre a variabilidade natural que é inerente à amostragem bem planejada e à análise estatística (RESH \& JACKSON, 1993; NORRIS \& GEORGES, 1986, 1993). NORRIS \& GEORGES (1993) afirmam que "Índices algumas vezes são aplicados na suposição que os seus cálculos de alguma forma substituem a necessidade dos testes de hipótese ... ou o cálculo estatístico...". A abordagem multivariável (ou abordagens, já que existem várias técnicas diferentes à disposição) leva em conta a variabilidade inerente dos dados amostrados e geralmente faz correlações (formal, estatística) com os dados físico-químicos colhidos nos locais da amostra (NORRIS \& GEORGES, 1986, 1993; WRIGHT et al. 1984, WRIGHT, 1995)

Talvez o mais ambicioso programa de monitoramento de água doce utilizando invertebrados bentônicos em qualquer país seja o do Reino Unido sob os auspícios do Centro de Ecologia e Hidrologia (WRIGHT et al., 1984, WRIGHT, 1995). O programa é chamado "Sistema de Classificação e Previsão de Invertebrados em Rios" (em inglês, RIVPACS). Baseia-se numa abordagem multivariável de classificar locais e rios por parâmetros físico-químicos e sobrepor (estatisticamente) os dados biológicos. Mais de 400 locais são usados como referência. A degradação ambiental é julgada através da comparação da comunidade bentônica com aquela esperada com base nos locais de referência.

Poderia se esperar que a abordagem multivariável fosse indicada para regiões ou países nos quais a fauna bentônica não seja bem conhecida, uma vez que não se baseia em organismos indicadores e grupos de alimentação funcional, embora a quantidade de dados necessários seja desencorajadora e Wright (com. pes.) advirta da intensidade do esforço necessário.

Os programas norte-americanos parecem favorecer a abordagem métrica. BARBOUR et al. (1996) relata um programa intensivo de grande escala para avaliar os rios da Flórida, usando uma abordagem métrica. FORE et al. (1996) relata também no programa no estado de Oregon. Este último especificamente testou métodos de multivariáveis e decidiu que eles se apresentaram inferiores aos multimétricos: "Nós sugerimos que as análises estatísticas multivariáveis são mais apropriadas para análise exploratória quando o investigador tenha um conhecimento limitado de um sistema ecológico e queira gerar hipóteses testáveis. Nós demonstramos que informação suficiente acerca da histőria da vida dos invertebrados de rio está disponível para sustentar testes mais diretos de como os invertebrados respondem à perturbação humana. Os componentes de um bom índice multimétrico são baseados em hipóteses testadas e deste modo fornecem uma avaliação científica sã de um local de rio. Sustentamos que um mêtodo que incorpore informações biológicas é mais adequado para monitoramento do que um baseado em algoritmos estatísticos."

E assim a controvérsia continua.

Recomendações para o Brasil

O uso de insetos bentônicos no monitoramento ambiental está em sua infância no Brasil. Ele tem grande potencial e certamente não há falta de problemas ambientais para os quais possa ser aplicado. SIVARAMAKIRSHNAN et al. (1996) mostram uma interessante e otimista revisão dos métodos "RAP" aplicados no Rio Kaveri na Índia. RESH (1995) é bastante direto em sua defesa do potencial da abordagem para os países em desenvolvimento e recentement e industrializados: "Talvez o mais importante, o uso dos macroinvertebrados bentônicos e os procedimentos de avaliação rápida possam fornecer informações acuradas nas pesquisas de efeitos da poluição numa fração do custo e do conhecimento técnico requerido ao usar outras abordagens de avaliação (e.g. química da água)."

Pode ser argumentado que o conhecimento da fauna aquática do Brasil não é suficiente como uma base para a monitoramento ambiental. Este argumento pode ser contestado pelos exemplos nos quais uma discriminação taxonômica no nível de família foi suficiente para caracterizar impactos (por exemplo, RESH \& MCELRAVY, 1993). Certamente que a biologia de vários grupos não é bem conhecida e temos que ter precaução ao extrapolá-la, por exemplo, da lista de grupos funcionais e grupos de alimentação da América do Norte feita por CUMMINS \& KLUG (1979).

As contribuições para este volume testemunham a atividade da pesquisa em insetos aquáticos no Brasil. Certos projetos têm estudado diretamente os efeitos de impactos ambientais em bentos (CALLISTO \& ESTEVES, 1995, 1996).

Provavelmente está na hora, no Brasil, dos ecólogos bentônicos, ecólogos de rios, entomologistas aquáticos etc, venham a cooperar com as autoridades municipais, estaduais e federais, e iniciar programas integrados de pesquisa e aplicação. As questões da qualidade da água, impactos ambientais e conservação são urgentes, e não dispomos de muitos anos para executar pesquisas básicas antes de aplicá-las para estes fins. Na verdade, é desnecessário separar as fases "básica" e "aplicada" desta investigação; a taxonomia, a biologia e a ecologia "básicas" podem ser pesquisadas simultânea e integradamente com as necessidades "aplicadas".

Agradecimentos

Agradeço a Vince Resh e Avital Gasith pelas estimulantes idéias e hospitalidade na Universidade de Califórnia em Berkeley. Agradeço M. do Rosário de A. Braga por seus conselhos e tradução. Dois revisores anônimos melhoraram o texto. Esta pesquisa foi patrocinada por uma bolsa de Produtividade em Pesquisa do Conselho Nacional de Pesquisa, Brasil, e pelo Programa PróCiência da Universidade Estadual do Rio de Janeiro.

Referências

BARBOUR, M. T., GERRITSEN, J.,GRIFFITH, G.E., FRYDENBORG, R., McCARRON, E., WHITE, J. S. \& M. L. BASTIAN 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 15(2): 185-211.

BEEBY, A. 1993. Applying Ecology. Chapman \& Hall, London, 441 p.
BRINKHURST, R. O. 1993. Future directions in freshwater biomonitoring using benthic macroinvertebrates. In: Rosenberg, D. M. \& V. H. Resh (eds.). Freshwater biomonitoring and benthic macroinvertebrates. Chapman \& Hall, New York. p. 442-460.

CAIRNS, J. \& J. R. PRATT 1993. A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg, D. M. \& V. H. Resh (eds.). Freshwater biomonitoring and benthic macroinvertebrates. Chapman \& Hall, New York. p. 10-27.

CALLISTO, M. F. P. \& F. A. ESTEVES. 1995. Distribuição da comunidade de macroinvertebrados bentônicos em um lago amazônico impactado por rejeito de bauxita - Lago Batata (Pará, Brasil). In: Esteves, F. A. (ed.). Oecologia Brasiliensis (vol. 1). Programa de Pós-Graduação em Ecologia, IB, UFRJ, Rio de Janeiro. p. 281291.

CALLISTO, M. F. P. \& F. A. ESTEVES. 1996. Macroinvertebrados bentônicos em dois lagos amazônicos: Lago Batata (um ecossistema impactado por rejeito de bauxita) e Lago Mussurí (Brasil). Acta Limnologica Brasiliensis, 8: 137-47.

CALOW, P. 1992. Can ecosystems be healthy'? Critical consideration of concepts. Journal of Ecosystem Health, 1: 1-5.

CLEMENTS, F. E. 1936. Nature and structure of the climax. Journal of Ecology, 24: 252-84.
CONNELL, J. H. \& R. O. SLATYER 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 111: 1119-1144.

COSTANZA, R., NORTON, B. G. \& B. D. HASKELL (eds.) 1992. Ecosystern health: new goals for environmental management. Island Press, Washington D. C., 269 p.

CUMMINS, K. W. \& M. J. KLUG. 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10: 147-72.

DAVIS, W. S. \& T. P. SIMON (eds) 1995. Biological assessment and criteria: tools for water resource planning and decision making. Lewis Publishers, Boca Raton, 415 p .

DUDGEON, D. 1991. An experimental study of abiotic effects on community structure and function in a tropical stream. Archiv für Hydrobiologie, 122(4): 403-420.

ENGELBERG, J. \& L. L. BOYARSKY 1979. The noncybernetic nature of ecosystems. American Naturalist, 14(3): 317-324.

FERGUSON, B. K. 1994. The concept of landscape health. Journal of Environmental Management, 40: 129-137.

FORE, L. S., KARR, J. R. \& R. W. WISSEMAN 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. Journal of the North American Benthological Society, 15(2): 212-231.

GLEASON, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53: 7-26.

JOHNSON,R. K., WIEDERHOLM, T. \& D. M. ROSENBERG 1993. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In: Rosenberg, D. M. \& V. H. Resh (eds.). Freshwater biomonitoring and benthic macroinvertebrates. Chapman \& Hall, New York, p. 40-154.

KARR, J. R. 1991. Biological integrity: a long-neglected aspect of water resource management. Ecological Applications, 1: 66-84.

KARR, J. R. \& D. R. DUDLEY 1981. Ecological perspective on water quality goals. Environmental Management, 5: 55-68.

KNIGHT, R. L. \& D. P. SWANEY 1981. In defense of ecosystems. American Naturalist, 117(6): 991-992.

KOLKWITZ, R. \& M. MARSSON 1908. Ökologie der pflanzlichen Saprobien. Berichte Der Deutschen Botanischen Gesellschaft, 26A: 505-19.

KOLKWITZ, R. \& M. MARSSON 1909. Ökologie der teirischen Saprobien. Beirtröge zur Lehre von des biologischen Gewasserbeurteilung. Internationale Revue der gasamten Hydrobiologie und Hydrographie, 2: 126-52.

LIKENS, G. E., BORMAN, F. H., PIERCE, R. S. \& W. A. REINERS 1978. Recovery of a deforested ecosystem. Science, 199: 492-96.

LOVELOCK, J. 1988. The ages of Gaia. Oxford University Press, Oxford, 252 p.
LUDWIG, D., HILBORN, R. \& C. WALTERS 1993. Uncertainty, resource exploitation, and conservation: lessons from history. Science, 260: 17, 36.

MARGALEF, R. 1968. Perspecives in ecological theory. University of Chicago Press, Chicago, 111p.

McNAUGHTON, S. J. \& M. B. COUGHENOUR 1981. The cybernetic nature of ecosystems. American Naturalist, 117: 985-90.

MUNKITTICK, K. R. \& McCARTY 1995. An integrated approach to aquatic ecosystem health: top-down, bottom-up or middle-out?. Journal of Aquatic Ecosystem Health, 4:77-90.

NAIMAN, R. J., BLEECHIE, T. J., BENDA, L. E., BERG, D. R., BISSON, P. A., MACDONALD, L. H., O’CONNOR, M. D., OLSON, P. L. \& E. A. STEEL 1992. Fundamental elements of ecologically healthy watersheds in the Pacific Northwest Coastal. In: NAIMAN, R. J.(ed.). Watershed management. Springer-Verlag, New York, p. 127-188.

NORRIS, R. H. \& A. GEORGES 1986. Design and analysis for assessment of water quality. In: DE DECKKER, P. \& W. D. WILLIAMS (eds.).Limnology in Australia. CSIRO/Dr W. Junk, Melbourne, Australia, p. 555-572.

NORRIS, R. H. \& A. GEORGES. 1993. Analysis and interpretation of benthic macroinvertebrate surveys. In: Rosenberg, D. M. \& V. H. Resh (eds). Freshwater biomonitoring and benthic macroinvertebrates. Chapman \& Hall, New York, p. 234-286.

NORRIS, R. H., HART, B. T. \& M. FINLAYSON (eds) 1995. Use of biota to assess water quality. An international conference. Blackwell Science, Carlton South, 227 p.

NORTON, B. G. 1991. Ecological Health and sustainable resource management. In: Costanza,R.(ed.). Ecological economics: the science and management of sustainability. Columbia University Press, New York. p. 102-117.

ODUM, E. P. 1969. The strategy of ecosystem development. Science, 164: 262-70.
ODUM, E. P. 1971. Fundamentals of ecology (3 ed.). W. B. Saunders, Philadelphia, 574 p .
PIMM, S. L. 1991. The Balance of Nature?. University of Chicago Press, Chicago, 434 p.

POLLS, I. 1994. How people in the regulated community view biological integrity. Journal of the North American Benthological Society, 13(4): 598-604.

POWER, M. E. I995. Floods, food chains and ecosystem processes in rivers. In: Jones, C. G. \& J. H. Lawton (eds). Linking species and ecosystems. Chapman \& Hall, New York, p. 52-60.

RAPPORT, D. J. 1995. Ecosystem services and management options as blanket indicators of ecosystem health. Journal of Aquatic Ecosystem Health, 4: 97-105.

RAPPORT, D. J., REGIER, H. A. \& T. C. HUTCHINSON 1985. Ecosystem behavior under stress. American Naturalist, 125(5): 617-40.

REICE, S. R. \& M. WOHLENBERG 1993. Monitoring freshwater benthic macroinvertebrates and benthic processes: measures for assessment of ecosystem health. In: ROSENBERG, D. M. \& V. H. RESH (eds). Freshwater biomonitoring and benthic macroinvertebrates. Chapman \& Hall, New York, p. 287-305.

RESH, V. H. 1995. Freshwater benthic macroinvertebrates and rapid assessment procedures for water quality monitoring in developing and newly industrialized countries. In: DAVIS, W. S. \& T. P. SIMON (eds). Biological assessment and criteria: tools for water resource planning and decision making. Lewis Publishers, Boca Raton, Florida, p. 167-177.

RESH, V. H. \& J. K. JACKSON 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: Rosenberg, D. M. \& V. H. Resh (eds). Freshwater biomonitoring and benthic macroinvertebrates. Chapman \& Hall, New York. p. 195-233.

RESH, V. H. \& E. P. McELRAVY 1993. Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In: ROSENBERG, D. M. \& V. H. RESH (eds.) Freshwater biomonitoring and benthic macroinvertebrates. Chapman \& Hall, New York. p. 159-194.

ROSENBERG, D. M. \& V. H. RESH (eds.) 1993. Freshwater biomonitoring and benthic macroinvertebrates. Chapman \& Hall, New York, 488 p.

SCRIMGEOUR, G. J. \& D. WICKLUM. 1996. Aquatic ecosystem health and integrity: problems and potential solutions. Journal of the North American Benthological Society, 15(2): 254-261.

SELYE, H. 1973. The evolution of the stress concept. American Scientist, 61: 692-699.

SHRADER-FRECHETTE, K. S. 1994. Ecosystem health: a new paradigm for ecological assessment?. Trends in Ecology and Evolution, 9(12): 456-57.

SIVARAMAKRISHNAN, K. G., HANNAFORD, M. J. \& V. H. RESH 1996. Biological assessment of the Kaveri River Catchment, South India, using benthic macroinvertebrates: applicability of water quality monitoring approaches developed in other countries. International Journal of Ecology and Environmental Sciences, 22: 113-32.

STEEDMAN, R. J. 1994. Ecosystem health as a management goal. Journal of the North American Benthological Society, 13(4): 606-10.

WHITTAKER, R. H. 1967. Gradient analysis in vegetation. Biological Reviews, 42: 20764.

WHITTAKER, R. H. 1975. Communities and ecosystems (2 ed.). MacMillan, New York, 385 p.

WICKLUM, D. \& R. W. DAVIES 1995. Ecosystem health and integrity'. Canadian Journal of Botany, 73: 997-1000.

WRIGHT, J. F. 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology, 20: 181-197.

WRIGHT, J. F., MOSS, D., ARMITAGE, P. D. \& M. T. FURSE 1984. A preliminary classification of running water sites in Great Britain based on macroinvertebrate species and prediction of community type using environmental data. Freshwater Biology, 14: 22I-256.

WOODLEY, S., KAY, J. \& G. FRANCIS (eds) 1993. Ecological integrity and the management of ecosystems. St. Lucie Press, Delray Beach, 220 p.

Endereço:

MOULTON, T.P.
Setor de Ecologia, DBAV, IBRAG, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, CEP 20550-011, Rio de Janeiro, RJ.

