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Abstract: Beta diversity, the spatial or temporal variation in community structure, is a central theme 
in community ecology. In this study, we evaluated the explanatory power of environmental and spatial 
variables in predicting fish beta diversity. Using data from Cerrado streams, we first partitioned fish 
beta diversity into three components using both presence-absence (total, turnover, and nestedness) and 
abundance data (total, balanced changes in abundance, and abundance gradients). Then, we evaluated 
the individual influences of environmental and spatial variables on each of these components. Our results 
showed that environmental and spatial variables explained significant fractions of variation in fish beta 
diversity. However, most of the variation in total beta diversity and its components remained unexplained. 
Considering presence-absence data, significant fractions were obtained only for total beta diversity. For 
this type of data, spatial variables were more important than environmental variables. Abundance-based 
analyses showed that both total beta diversity and its components (balanced changes in abundance 
and abundance gradients) were explained by environmental and spatial variables. With abundance 
data, environmental and spatial variables were similarly related to total beta diversity and balanced 
changes in abundance, while spatial variables were the sole predictors of the abundance gradients. 
Despite methodological and theoretical advances in beta diversity studies, we still need to seek relevant 
environmental, spatial, temporal, and biological data that explain beta diversity patterns in streams.
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INTRODUCTION

Beta diversity – the spatial or temporal variation 
in species composition (Whittaker 1972, 
Whittaker et al. 1974) – has become a central 
theme in community ecology (Anderson et al. 
2011, Antão et al. 2019). The increased interest of 
ecologists in quantifying and searching for beta 
diversity correlates relies on the fact that it is a key 

concept, both in theoretical and applied contexts 
(Legendre et al. 2005, Tuomisto & Ruokolainen 
2006, Socolar et al. 2016). From a theoretical 
perspective and mainly after the development of 
the metacommunity concept (Leibold et al. 2004), 
most of the research on beta diversity has focused 
on the relative importance of environmental 
variation and dispersal in generating beta diversity 
(Zbinden & Matthews 2017, López-Delgado et al. 
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2020). All else being equal, a strong relationship 
between beta diversity and environmental 
distances (i.e., environmental differences between 
sites) would favor the hypothesis of species sorting 
(Leibold et al. 2004) or an environmental control 
model (Gilbert & Lechowicz 2004, Legendre et al. 
2005). On the other hand, if geographic distance 
is the main predictor of beta diversity, then a 
stronger role of dispersal limitation in generating 
species composition variation can be assumed 
(Myers et al. 2013).

From a methodological perspective, different 
studies have also been carried out to investigate 
the best way to measure beta diversity for different 
applications (Wilson & Shmida 1985, Koleff et al. 
2003, Anderson 2006, Baselga et al. 2007, Tuomisto 
2010a, 2010b, Anderson et al. 2011, Chase et al. 2011, 
Ricotta 2017). These studies have been proven 
to be of paramount importance to enhance our 
understanding of the mechanisms underlying 
beta diversity variation. For example, a given 
value of beta diversity (e.g., using the Sørensen 
coefficient) results from two phenomena: 
turnover and nestedness (Harrison et al. 1992, 
Baselga et al. 2007, Baselga 2010). Nestedness is the 
sole component of beta diversity when the species 
compositions of a pair of sites (e.g., L1 and L2) differ 
due to species losses only (e.g., L1 with species 
A, B, C, D, and L2 with species A, B, C). On the 
other hand, beta diversity is entirely attributable 
to turnover when sites do not share species (L1: 
A, B, C, D and, L2: E, F, G, H). With advances 
in methods, beta diversity and its components 
can be estimated from species abundances (i.e., 
total, balanced-variation in abundance, and 
abundance-gradients using the Bray–Curtis or 
Ruzicka indices; see Baselga 2017, Jiang et al. 2019, 
Zbinden et al. 2022). For beta diversity measures 
with abundance data, the total beta represents 
all observed variation between communities. 
The balanced-variation component (analogous 
to turnover when using presence-absence data) 
considers how the abundances of species are 
distributed across sites. The abundance-gradients 
component (analogous to nestedness when using 
presence-absence data) considers the systematic 
gains or losses of individuals across sites 
(Baselga 2013, 2017). Recognizing and searching 
for correlates of these components provides, 
therefore, important insights into mechanisms 

generating beta diversity (Baselga 2010, Leprieur 
et al. 2011, Baselga & Orme 2012, Hill et al. 2017).

Despite the increasing number of studies and 
methodological advances, beta diversity remains 
unexplored in many regions and for different 
biological groups. Given the importance of beta 
diversity to inform biodiversity conservation 
(Socolar et al. 2016), under the key principle of 
complementarity (Bush et al. 2016), this gap 
of knowledge is troublesome, especially in the 
most biodiverse and threatened regions of the 
planet. The aquatic systems from the Brazilian 
savannas (“Cerrado”) are emblematic in this 
regard. In a nutshell, the main threats to the 
aquatic environments of the Cerrado biome are 
the conversion of natural areas of watersheds 
into agricultural areas, urban areas, and the 
construction of dams (Garcia & Ballester 2016).  
There are approximately 1,200 fish species in 
Cerrado (Klink & Machado 2005, ICMBio 2021), 
which corresponds to 15% of the total fish species 
richness in the Neotropics. The level of fish 
endemism is unknown, but thought to be high 
based on those levels for amphibians and reptiles 
(28 and 17%, respectively; Klink & Machado 
2005). Thus, studies in the Cerrado are needed 
not only to minimize the geographical bias in 
beta diversity research, as most of the studies on 
fish beta diversity were developed in temperate 
regions, but also to inform specific conservation 
policies for the region (Patrick et al. 2021).

Here, we tested whether components of fish 
beta diversity (total, nestedness, and turnover for 
presence-absence data; total, balanced-variation, 
and abundance-gradients for abundance data) 
in Cerrado streams were more correlated with 
spatial or environmental variables. Space plays an 
important role in structuring communities and 
is often associated with fish dispersal processes 
between streams (Erős 2017, Carvalho et al. 2020). 
In dendritic networks, fish dispersal occurs mainly 
through aquatic routes that have several limiters 
in addition to physical distance, such as dams, 
waterfalls, and water flow which can promote 
differentiation between aquatic communities 
(Altermatt 2013, Tonkin et al. 2018). Watercourse 
distance is an important predictor to assess 
connectivity between fish communities (Landeiro 
et al. 2011, Schmera et al. 2017). Environmental 
characteristics, such as pH, dissolved oxygen 
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concentration, and streambed substrate types 
(i.e., gravel, sand, or clay), may determine which 
species can establish in the streams depending 
on their specific ecological requirements (Teresa 
& Casatti 2012, Troia & Gido 2015, Lampert et al. 
2018). These predictors are commonly associated 
with an environmental filtering mechanism that 
selects a set of fish species capable of establishing 
in streams (Teresa et al. 2016, Cunha et al. 2019). 
Considering previous research in streams from 
different regions around the world (e.g., Eros et 
al. 2014, Zbinden & Matthews 2017, Dala-Corte et 
al. 2019, López‐Delgado et al. 2020, Zbinden et al. 
2022) and the high environmental heterogeneity 
in these systems, which would foster the role of 
species sorting mechanisms, we predicted that 
environmental variables would be more important 
than spatial variables to explain beta diversity 
patterns in the studied stream fish communities.

MATERIAL AND METHODS

Study area

We sampled 35 first to fourth–order streams in the 
Upper Araguaia River basin (Figure 1), located in 
the Mato Grosso state within the Cerrado, Brazil. 
The climate of this region is defined by two seasons 
(dry and rainy) and corresponds to the Aw type 
according to Köppen’s classification (Kottek et al. 
2006). In this region, annual mean precipitation 
and annual mean temperature range from 1,200 
to 1,800 mm and from 22o C to 25o C, respectively 
(Alvares et al. 2013).

Fish sampling

We sampled stream fish communities once during 
two dry hydrological periods (August - September 
2014; and June - August 2015). Fishes were sampled 
with hand nets (3.0 m length and 1.5 m height, 
with a mesh size of 5.0 mm between knots), 
sieves, and dip nets over 50 m in each stream. 
We blocked the 50 m stream reaches with nets 
(5.0 mm between knots) to avoid fish escaping 
the area. Sampling effort was standardized (i.e., 
four collectors per one hour per 50-meter reach). 
Our sampling effort proved to be adequate 

Figure 1. Location of sampled streams in the Upper Araguaia River basin, Brazil.
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(Figure S1), where we sampled about 93% of the 
expected fish species richness for the streams (see 
Supplementary Material). We anesthetized the 
fishes with benzocaine diluted in water following 
preconized animal care protocol (CFMV 2012) 
and fixed specimens in formaldehyde (10%). 
After 72 hours, the specimens were transferred 
to containers with alcohol 70%. The sampled 
fish was stored in the Laboratório de Ecologia e 
Conservação de Ecossistemas Aquáticos at the 
Universidade Federal de Mato Grosso, Campus 
Araguaia, Pontal do Araguaia, Mato Grosso. We 
identified the specimens to the lowest possible 
taxonomic level using a set of systematic keys 
and specific literature (Buckup et al. 2007, Venere 
& Garutti 2011, Fricke et al. 2019, Froese & Pauly 
2019). Sampling permission was granted by the 
Instituto da Biodiversidade e Conservação Chico 
Mendes (ICMBio; permission number 45316-1).

Environmental and spatial variables

We measured environmental variables within  
10 m sections in each stream reach. First, we 
measured the percentage of vegetation structures 
at the stream banks (i.e., shrubs, grasses, thin 
roots, and large roots), surface water velocity, 
channel width (distance between banks in 
meters), channel depth (meters), percentage of 
substrate types (sand, leaf, rock, pebble, gravel, 
slab, and clay/silt), frequency of trunks, and litter 
banks (Cummins 1962, Teresa & Casatti 2012). 
We measured surface water velocity (m.s-1) using 
the floating-object method, which consists of 
dividing the distance traveled by a floating object 
by the corresponding time taken (Teresa & Casatti 
2012). We determined the streams’ orders using 
the method of Strahler (1957). Finally, we used 
a water probe (Horiba model U-50) to measure 
conductivity, dissolved oxygen, pH, temperature, 
and turbidity (for more details, see Lima et al. 
2021). To create our spatial variables, we calculated 
the watercourse distances among streams using 
QNEAT3 (Qgis Network Analysis Toolbox) in QGIS 
(QGIS Development Team 2018, Raffler 2018).

Statistical analysis

We divided the environmental variables into three 
sets (limnological, within stream, and stream 
bank variables). Limnological variables were 
represented by conductivity, dissolved oxygen, 

pH, temperature, and turbidity. Within stream 
variables included flow, width, depth, order, and 
substrate types. Finally, stream bank variables 
were represented by litter banks, roots, trunks, 
and stream bank vegetation. We then performed 
three principal component analyses (PCA) using 
each set of variables and selected the first two 
axes of each to represent the environmental 
predictors. The choice of the PCA axes followed an 
arbitrary decision to avoid overfitting given our 
small sample size. The first two axes explained 
66%, 44%, and 57.7% of the total variance of the 
sets mentioned above, respectively (see Figure 
S2). Environmental variables were previously log-
transformed (except pH) and standardized. We 
performed PCA using the prcomp function of the 
R stats package (R Core Team 2023).

We transformed the watercourse distance 
matrix into orthogonal axes using a Principal 
Coordinates of Neighborhood Matrix analysis 
(PCNM; Dray et al. 2006, Landeiro et al. 2011). 
Based on a geographic distance matrix, PCNM 
allows to represent different patterns of spatial 
relationships between sampling sites in 
orthogonal axes. We selected eigenvectors (i.e., 
axes scores) for the analyses described below 
using a forward selection approach (Blanchet et 
al. 2008, Borcard et al. 2018). The PCNM analysis 
was performed using the pcnm function and the 
forward selection analysis was carried out using 
the ordiR2step function implemented in the vegan 
R package (Oksanen et al. 2022).

We tested the effects of environmental and 
spatial variables on beta diversity of stream fish 
communities considering both abundance and 
presence-absence data. First, we calculated 
the total dissimilarity (Bray-Curtis) between 
pairs of streams. Following Baselga (2017), the 
resultant pairwise dissimilarity matrix was 
then partitioned into “balanced-variation and 
abundance-gradients components”. These 
matrices (total dissimilarity, balanced variation 
in abundance, and abundance gradients) were 
calculated using the function beta.pair.abund. 
Similarly, using the presence-absence dataset as 
input to the beta.pair function, we calculated three 
pairwise dissimilarity matrices: total (Sørensen), 
turnover (Simpson), and the nestedness-resultant 
component (see also Baselga 2010, Baselga & 
Orme 2012). Abundance data were previously 
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log-transformed after adding a constant of 1. All 
functions mentioned are in the betapart package 
(Baselga et al. 2023).

To assess the relative contributions of the 
environmental and spatial variables in explaining 
total beta diversity and its components, we 
used a (partial) Distance-based Redundancy 
Analysis (db-pRDA) (Legendre & Anderson 
1999, Blanchet et al. 2014). In analyses involving 
turnover, nestedness, and abundance-gradients 
components, it was not possible to proceed with 
forward selection analysis to choose the PCNM 
eigenvectors, so we used the first two resultant 
eigenvectors (Arantes et al. 2018, Súarez et al. 
2019). For that, we used the varpart and dbrda 
functions implemented in the vegan R package 
(Oksanen et al. 2022). The statistical significance 
of pure fractions was tested with an analysis of 

variance (ANOVA) with 999 permutations (Peres-
Neto et al. 2006).

RESULTS

The environmental characteristics of the 
streams were highly variable considering their 
limnological, within stream, and stream bank 
variables (Table 1; Figure S1). The watercourse 
distance between sampling sites ranged from 
2.59 to 1,164.17 km (449.33 km ± 490.86). We 
sampled 9,246 fishes distributed in 109 species, 27 
families, and six orders (Table S1). Characiformes 
(51 species), Siluriformes (38), and Cichliformes 
(11) were the richest orders. Characidae (31), 
Loricariidae (20), and Cichlidae (11) were the  
richest families. Species richness per stream 
ranged from 1 to 48 (Table S2). Characidae (6,484 

Mean Standard deviation Minimum Maximum

Limnological
Conductivity (mS*cm-1) 0.097 0.178 0.002 0.760
Dissolved oxygen (mg*L-1) 7.203 1.905 3.930 10.880
pH 6.366 0.715 5.220 8.140
Water temperature (ºC) 23.210 2.035 17.330 27.000
Turbidity (NTU) 1.930 1.303 0.090 5.100

Within Stream
Channel depth (m) 0.262 0.127 0.071 0.566
Surface water velocity (m*s-1) 0.199 0.137 0.017 0.493
Channel width (m) 4.388 2.033 1.510 10.608
Strahler order 2.714 0.926 1.000 4.000
Sand (%) 47.362 28.172 0.000 100.000
Gravel (%) 17.694 20.987 0.000 71.944
Pebbles (%) 7.769 13.057 0.000 49.167
Rock (%) 4.395 8.921 0.000 32.167
Leaf (%) 7.123 9.840 0.000 42.500
Clay/Silt (%) 6.338 11.635 0.000 58.333

Stream bank
Thin roots (%) 31.934 24.207 0.000 80.000
Big roots (%) 3.329 4.816 0.000 18.333
Grasses (%) 0.667 2.029 0.000 8.333
Shrubs (%) 1.810 4.598 0.000 16.667
Trunks (%) 0.471 0.293 0.000 1.000
Litter bank (%) 0.276 0.302 0.000 0.833

Table 1. Mean, standard deviation, minimum, and maximum values of limnological, within stream, and 
stream bank variables collected from 35 streams in Upper Araguaia River basin.
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Table 2. Variance partitioning results (Adjusted R² values) showing the influences of environmental and 
spatial predictors on beta diversity metrics based on the occurrence (Sørensen distances) and abundance 
(Bray-Curtis distances) matrices of stream fish communities. Occurrence (βsor – Total; βsim – Turnover; 
βsne – nestedness). Abundance: (βbray – Total; βbal – balanced abundances; βgra – unidirectional 
abundance gradients). * P < 0.05, ** P < 0.005, *** P < 0.001. Negative fractions were set to zero (see Legendre 
2008).

Response Environmental Shared Spatial Residuals

Occurrence

βsør 0.093*** 0.019 0.182*** 0.707

βsim 0.084 0 0.003 0.914

βsne 0 0.076 0.164 0.789

Abundance

βbray 0.048* 0.054 0.041* 0.857

βbal 0.110* 0.030 0.142*** 0.718

βgra 0 0 0.298** 0.854

individuals), Loricariidae (452), and Callichthyidae 
(415) were the most abundant families in the 
streams.

Variance partitioning analysis showed that 
the fractions explained by environmental and 
spatial variables varied with the numerical 
resolution of the data (presence-absence and 
abundance data). The variation in total beta 
diversity (βsør) for presence-absence data 
was significantly explained by environmental 
and spatial predictors. However, the variation 
explained by spatial variables was higher than 
that explained by environmental variables. Both 
sets of variables were not significantly correlated 
with turnover (βsim) and nestedness (βsne) (Table 
2). For abundance data, we found that both spatial 
and environmental variables were significantly 
correlated with total beta diversity and with the 
balanced variation component, whereas only the 
spatial variables were significantly correlated 
with the abundance gradient component of total 
beta diversity (Table 2).

DISCUSSION

Contrary to our initial expectations,  
environmental variables were not consistently the 
best predictors of fish beta diversity in our sample 
of streams (for similar results, see Benone et al. 

2018). Instead, for presence-absence data, total 
beta diversity was mainly explained by spatial 
variables. Considering our results and those found 
in the literature (Cetra et al. 2017, Schmera et al. 
2017, López-Delgado et al. 2019, López‐Delgado 
et al. 2020, Schmidt et al. 2022) one can then  
conclude that there is a high degree of contingency 
regarding the set of environmental and spatial 
predictors that best predict fish beta diversity in 
streams. In general, when spatial variables are 
important in variation partitioning analysis, the 
effects of both dispersal and spatially structured 
environmental variables may be inferred to 
explain the results (Datry et al. 2016, Soininen 
2016, Vitorino Júnior et al. 2016, Zbinden et al. 
2022).

In theory, the compositional dissimilarity 
between local communities would increase 
with spatial distance due to dispersal limitation 
(Soininen et al. 2007, Erős 2017). Although we 
cannot rule out the effects of spatially structured 
environmental variables (which were not included 
in our analyses), we favor the role of dispersal 
limitation while interpreting the effect of spatial 
fraction. First, the average body size of the fishes 
in the studied communities is small (Table S1), 
suggesting that dispersal events mainly occur 
over short distances (Magalhães et al. 2002). 
Second, watercourses are the main dispersal 
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routes for fish, which may substantially increase 
the dispersal costs even between two streams 
that are close to each other considering a simple 
Euclidean distance (Schmera et al. 2017, Zbinden 
et al. 2022). Third, dispersal costs over stream 
networks may be further increased by efficient 
barriers (e.g., waterfalls and riffles), which in turn, 
contribute to the compositional dissimilarity 
between communities (Jackson et al. 2001, Datry 
et al. 2016, Herrera-Pérez et al. 2019).

Environmental variables were also significant 
predictors of fish beta diversity in our sample of 
streams. Thus, according to different perspectives 
or concepts (e.g., environmental control model, 
environmental filtering, species sorting), this 
result indicates that environmental variation 
contributes to the dissimilarity between fish 
communities (Poff 1997, Cunha et al. 2019, Taylor 
& Warren 2001, Connell & Sousa 1983, Labbe & 
Fausch 2000). For example, the occurrence of 
Gymnotiformes species (i.e., Gymnotus carapo, 
Eigenmannia trilineata, Apteronotus albifrons) is 
associated with the presence of roots that increase 
the complexity of marginal habitats of streams 
(Casatti et al. 2012). On the other hand, species like 
Brycon falcatus occur in streams with preserved 
riparian vegetation given their use of fruits as 
main food sources (de Matos et al. 2016).

It is noteworthy that the components of the 
total beta diversity were significantly related 
to environmental and spatial variables with 
the use of abundance data only. It may then be 
argued that some of the local environmental 
variables we measured (i.e., stream volume, 
number of microhabitats) may be more strongly 
related to the variation in fish abundance than 
occurrence (Barila et al. 1981, Fernandes et al. 
2013). Similarly, other environmental variables 
are also determinants of the structure of local 
populations (e.g., local water flow), where it 
would be expected that only large-bodied 
individuals occupy fast-flowing streams because 
of their higher swimming ability (Schlosser 1982, 
Teresa et al. 2016). Considering that the spatial 
structure of streams is organized in a dendritic 
hierarchical system (Rahel 1990, Altermatt 2013), 
these environmental characteristics in different  
positions in the drainage would contribute 
to an increase in the spatial variation of local 
fish abundance. Indeed, spatial variables were 

the main correlates of abundance-based beta 
diversity components. In general, our results 
highlight the importance of using abundance 
data for estimating the relative importance 
of spatial and environmental variables on the 
structure of stream fish communities at regional 
scales (Soininen 2014, 2016). However, the choice 
of a numerical resolution is dependent on the 
questions posed by each study.

The abundance-based beta diversity and its 
components were more affected by environmental 
and spatial variables than measurements with 
presence-absence only. Thus, even with low 
changes in species composition, it is possible to 
find high variation in species abundances between 
different communities along environmental and 
spatial gradients (Liu et al. 2022). On the other 
hand, it is necessary for a given species that 
occurs in one community to be absent in another 
community to generate variations with presence-
absence data (Wilson & Shmida 1984). We also 
observed that the components of beta diversity 
respond differently to environmental and spatial 
predictors, as found in other studies (e.g., López‐
Delgado et al. 2020, Zbinden et al. 2022). Our 
results indicate that the component associated 
with the balanced variation in abundance was 
similarly influenced by environmental and 
spatial predictors, while the abundance-gradient 
component was exclusively influenced by spatial 
predictors. It is important to highlight that the 
environmental and spatial significance found in 
the total beta diversity will not always be observed 
in the components, as observed with the presence-
absence data.

In general, less than 30% of the variation in beta 
diversity was explained, which is consistent with 
other studies in streams (Roa-Fuentes & Casatti 
2017, Schmera et al. 2017, López-Delgado et al. 2019) 
and other systems (for a review Soininen 2014, 
2016). In addition to the difficulty in measuring 
relevant environmental variables, high amounts 
of rare species in the response matrices also 
contribute to the low explanatory power (Heino et 
al. 2015). We believe that discussing the low values 
of the coefficients of determination in variation 
partitioning models is important to increase our 
knowledge about the mechanisms that structure 
ecological communities. Heino et al. (2015) 
suggest that we should invest time in gathering 
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behavioral and physiological data to better 
understand the structuring of local communities, 
since occurrence can be determined by intrinsic 
attributes of species. Similarly, Fukami (2015)
Germany and Castillo-Escrivà et al. (2017) 
suggest that the use of historical data can help to 
understand the patterns of current communities. 
Indeed, Oliveira et al. (2020) observed that 
past data on local environment and local fish 
communities better predict the structure of 
current communities, supporting the importance 
of priority effects or resistance to disturbances 
throughout time. Other studies have also shown 
that the structure of drainage networks (e.g., 
connectivity, slope, and isolation; Erős 2017, Dala-
Corte et al. 2017, Carvajal-Quintero et al. 2019, 
Herrera-Pérez et al. 2019) and variables associated 
with multiscale landscapes (Allan 2004, Soininen 
et al. 2015, Roa-Fuentes & Casatti 2017) are relevant 
in explaining community variation in streams.

While studies are making progress in 
developing methods for measuring and estimating 
beta diversity (Tuomisto & Ruokolainen 2006, 
Baselga 2010, 2017, Anderson et al. 2011, Legendre 
2019, Brown et al. 2017), we still need to improve 
the information about the potential factors (i.e., 
environmental, spatial, temporal, and biological) 
that can account for the variation in local 
community structure. Finally, we believe that 
measuring more relevant variables, despite the 
increase in funding that this task would require, 
would help in the elaboration of more efficient 
conservation strategies for the biodiversity of fish 
from tropical streams.
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SUPPLEMENTARY MATERIAL

Figure S1. (a) Incidence‐based species 
accumulation curves (i.e., species richness), (b) 
Sample completeness curves based on the number 
of sampling sites (c) coverage‐based sampling 
curves based on species richness.

Table S1. Fish abundance, mean total length (TL), 
mean standard length (SL) and weight (W), and 
the taxonomic identification collected in streams 
in the Upper Araguaia River basin.

Table S2. List of individual abundances and 
species richness.

Figure S2. Ordination of environmental variables 
groups with principal components analysis (PCA) 
of streams (n = 35 sites). A: limnological variables; 
B:  within stream variables; C: stream bank 
variables.
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