THE CONNECTIONS BETWEEN RIPARIAN VEGETATION AND WATER QUALITY IN THE ATLANTIC FOREST

Lucas Abbadi Ebling^{1*} & Andre Andrian Padial^{1,2}

 ¹Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Botânica, Programa de Pós-graduação em Ecologia e Conservação, Laboratório de Análise e Síntese em Biodiversidade, Av. Cel. Francisco H. dos Santos, 100, CEP 81530-000, Curitiba, PR, Brasil
² Universidade Estadual de Maringá, Núcleo de Pesquisa em Limnologia, Ictiologia e Aquicultura, Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brasil.
E-mails: lucasbio201@gmail.com (*Corresponding author); aapadial@ufpr.br

Supplementary Material

Table 1S. Articles used in this review, see methods for selection criteria. * MG= Minas Gerais; RJ= Rio de Janeiro; RS= Rio Grande do Sul; SP= São Paulo; SC= Santa Catarina; PR= Paraná.

CodAuthors	Year Title	Land use and land cover in riparian zone	Brazilian state	n Environmental variable	sAquatic ecosystem	Biological group	pDOI
1Piazza et al.	2018Influence of hydroclimatic variations of solute concentration dynamic in nested subtropical catchments with heterogeneous landscapes	onNative forest, csagriculture,		Rainfall, temperature, chloride (Cl), nitrate, phosphate, sulfate, sodium, ammonium, potassium, magnesium, calcium and total (TC), organic (TOC), inorganic (IC) carbon	River	Absent	https://doi.org/10.1 016/j.scitotenv.201 8.03.394
2Ferreira et al.	2019Can forests buffer negative impacts of land-use and climate changes on water ecosystem services? The case of a Brazilian megalopolis	Forest, agriculture and urban	SP	Absent	Water basin	Absent	https://doi.org/10.1 016/j.scitotenv.201 9.05.065
3Machado- Silva et al	2022Forest cover controls the nitrogen and carbon stable isotopes of rivers	Forest cover	RJ	Conductivity, pH, dissolved oxygen, temperature, turbidity, amonia, nitrite, nitrate, total phosphorus and nitrogen	Streams	Periphyton, algae, macroinvertebra te (general) and fish	https://doi.org/10.1 016/j.scitotenv.202 1.152784
4Fritzsons & Mantovani	2021Protection of riparian forests and water quality in a basin in the Atlantic Forest biome	Natural forests, forestry, agriculture, pasture, mining and buildings	PR	Turbidity, color, pH, electrical conductivity, alkalinity, and nitrate and chloride concentrations	River	Absent	10.5380/rf.v51 i2. 62957
5Da Silva et al.	2018Leaching of carbon from native and non- native leaf litter of subtropical riparian forests	Decomposition experiment	RS	Dissolved organic and inorganic carbon	Streams	Absent	10.4081/jlimnol.20 18.1662
6Andriotti et al	2022Exploring the impacts of non-native leaf litter on invertebrate community and leaf decomposition in a Atlantic Forest stream	Decomposition experiment	SC	Electric conductivity, water temperature, pH, dissolved oxygen concentration, water velocity,	Streams	Macroinvertebra te (general)	a <u>https://doi.org/10.1</u> <u>590/S2179-</u> <u>975X7121</u>
7Hepp et al.	2016Influence of land-use on structural an functional macroinvertebrate compositio communities associated on detritus i Subtropical Atlantic Forest streams	nagriculture,	RS	Water temperature, dissolved oxygen, pH, conductivity, turbidity and total dissolved	Streams	Macroinvertebra te (general)	a <u>http://dx.doi.org/10.</u> <u>1590/S2179-</u> <u>975X0616</u>

CodAuthors	Year Title	Land use and land cover in riparian zone	Brazilia state	n Environmental variables	sAquatic ecosystem	Biological grou	pDOI
8Alvarenga et al.	2017Hydrologic impacts due to the changes in riparian buffer in a headwater watershed		MG	solids, alkalinity, total organic carbon and total nitrogen Rainfall	Headwater watershed	Absent	https://doi.org/10.1 590/010477602017 23012205
9Hepp et al.	2023Agriculture affects functional diversity of aquatic insects in Subtropical Atlantic Forest streams	Native arboreal vegetation, agriculture and pasture	RS	Water temperature, turbidity, electrical conductivity, nitrite and total phosphorus concentrations, dissolved organic carbon and total dissolved nitrogen pH, dissolved oxygen, and total dissolved solids	Streams	Macroinvertebra te (EPT)	a <u>https://doi.org/10.1</u> <u>590/S2179-</u> <u>975X2323</u>
10Breda et al.	2020Alpha and beta diversities of Trichoptera (Insecta) assemblages in natural and rural subtropical streams	Agriculture	RS	Water temperature, electrical conductivity, turbidity and dissolved oxygen, total phosphorus and nitrite, total dissolved nitrogen and dissolved organic carbon	Streams	Macroinvertebra te (Trichoptera)	a <u>https://doi.org/10.1</u> <u>590/S2179-</u> <u>975X3219</u>
11Paula & Fonseca- Gessner	2010Macroinvertebrates in low-order streams in two fragments of Atlantic Forest in different states of conservation, in the State of São Paulo (Brazil)	n	SP	Temperature, electrical conductivity, dissolved oxygen, oxygen saturation, hydrogen ior potential, dissolved solids, depth of the water column and breadth of the channel, mean speed of the current,		Macroinvertebrate (general)	a <u>https://doi.org/10.1</u> <u>590/S1519-</u> <u>6984201000040002</u> <u>1</u>
12Piffer et al.	2021Native forest cover safeguards stream water quality under a changing climate	Native forest, agriculture, pasture,	SP	Precipitation, dissolved oxygen (mg/L), a measure of water	Streams	Number of thermotolerant fecal coliforms	https://doi.org/10.1 002/eap.2414

CodAuthors	Year Title	Land use and land cover in riparian zone	Brazilia state	n Environmental variables	sAquatic ecosystem	Biological grou	pDOI
		silviculture and urban		aeration and photosynthetic activity; total nitrogen (mg/L); total phosphorus (mg/L); turbid- ity (NTUs), a metric that captures soil runoff fine organic matter inputs, and in-stream production; total dissolved solids (mg/L)		(units/mL)	
13Braun et al.	2018Responses of riffle beetle assemblages to deforestation in a semi-deciduous Atlantic Forest remnant	0	RS	Water temperature (WT °C), electric conductivity (EC; μS/cm), dissolved oxygen (DO; mg/L), and turbidity	;Streams	Macroinvertebra te (Elmidae)	a <u>http://dx.doi.org/10.</u> <u>1590/0001-</u> <u>3765201820160853</u>
14Braun et al.	2018Effects of riparian vegetation width and substrate type on riffle beetle community structure	Agriculture	RS	Altitude, stream width, pH, water temperature, turbid- ity, electrical conductivity, an dissolved oxygen	Streams	Macroinvertebr te (Elmidae)	a <u>https://doi.org/10.1</u> <u>111/ens.12283</u>
15Robinet et al.	2018Impacts of forest conversion and agriculture practices on water pathways in Southern Brazil	Agriculture	RS	Oxygen isotopic signature	Water pathways	Absent	https://doi.org/10.1 002/hyp.13155
16Siegloch et al.	2014Effect of land use on mayfly assemblages structure in Neotropical headwater streams		SP	lectrical conductivity, dissolved oxygen concentration, pH, temperature and velocity water, depth and width of streams	Streams	te	a <u>http://dx.doi.org/10.</u> <u>1590/0001-</u> 1 <u>3765201420130516</u>
17Fernandes et al.	2015Diagnóstico ambiental da faixa ciliar e qualidade de água de duas microbaciis utilizadas para abastecimento humano	Forest cover and pasture	IRJ	Cádmio, cobre, chumbo, manganês e zinco	Watershed	Coliformes totais e termotolerantes	
18Fontana et al.	2022Hovenia dulcis Thunb. (Rhamnaceae) invasion in the riparian zone alters the	Invasive species	RS	Water temperature, electrical conductivity,	Streams	Macroinvertebra te (general)	a <u>https://doi.org/10.1</u> 007/s10201-021-

CodAuthors	Year	Title	Land use and land cover in riparian zone	Brazilia state	an Environmental variables	sAquatic ecosystem	Biological group	DOI
		dynamics and decomposition of organic matter in subtropical streams, but not of associated invertebrate assemblages			pH, dissolved oxygen total dissolved solids and turbidity were measured in situ with a Horiba® multiparameter analyzer; Dissolved organic carbon and total dissolved nitrogen	3		<u>00695-7</u>
19Gonçalves et al.	201	8Trophic structure of coastal freshwater stream fishes from an Atlantic rainforest: evidence of the importance of protected and forest-covered areas to fish diet	Forest cover	SP	Absent	Streams		a <u>https://doi.org/10.1</u> 007/s10641-018- 0749-8
20Esteves et al.	200	8Trophic structure of a fish community along environmental gradients of a subtropical river (Paraitinga River, Upper Tietê River Basin, Brazil)	Primary forest, pasture and urban	SP	pH, temperature (C), conductivity (lS cm- l), total dissoved solids (mg l-1), turbidity (NTU) and dissolved oxygen (mg l- 1)	River	Fish	https://doi.org/10.1 007/s10750-007- 9172-4
21Santos et al.	202	3Assessment of Water Ecosystem Integrity (WEI) in a Transitional Brazilian Cerrado- Atlantic Forest Interface		SP d	Water odor, flow characteristics	Streams and river	Filamentous algae and Macrophyte	https://doi.org/10.3 390/w15040775
22De Paula et al.	. 201	8Multi-scale assessment of forest cover in an agricultural landscape of Southeastern Brazil: Implications for management and conservation of stream habitat and water quality	Forest cover	SP	pH, total alkalinity, ammoniacal nitrogen, total phos- phorus, total potassium, total calcium, total magnesium, conductivity, total acidity, hardness, carbon dioxide, total suspended sediments, color and turbidity.	Streams	Absent	https://doi.org/10.1 016/j.ecolind.2017. 11.061

CodAuthors	Year Title	Land use and land cover in riparian zone	Brazilia state	n Environmental variable	sAquatic ecosystem	Biological grou	ıpDOI
23Silva-Araújo et al.	2020Effects of riparian deforestation invertebrate community and leaf processing in Atlantic forest stre	on benthicCanopy cover	RJ	Water temperature, depth, discharge, width water current velocity, pH, minimum daily O2 saturation, canopy cover, and ammonium (NH4 +) and soluble reactive phosphate (SRP) concentration.		Macroinverteb te (general)	ra <u>https://doi.org/10.1</u> 016/j.pecon.2020.0 9.004
24Siegloch et al	2016Effects of small changes in ripar complexity on aquatic insect bio in Brazilian subtropical streams		SC	water velocity; width and depth of streams (cm), determined using a measuring tape; electrical conductivity (mS cm1); dissolved oxygen concentration; pH and water temperature,		Macroinverteb	ra <u>http://dx.doi.org/10.</u> <u>1071/MF15162</u>

Table 2S. Most frequently used words in the keywords of the articles reviewed, see methods for selection criteria.

Vords	Frequency
Forest	11
Water	7
Cover	6
Land	6
Riparian	6
Environmental	6
Vegetation	5
Aquatic	4
Soil	4
Food	3

Words	Frequency
Area	3
Integrity	3 2 2 2
River	2
Subtropical	2
Atlantic	2
Scenario	2
Quality	2
Use	2
Restoration	2
Ecology	2
Assessment	2
Permanent	2
Preservation	2
Invertebrates	2
Watershed	2
Biological	2
Richness	2
Stream	$\overline{2}$
Landscape	2
Managment	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Zones	2
Conservation	2
Insects	2
Species	-2.
Leaf	2
Macroinvertebrate	2
Agiculture	1
Catchment	1
El	1
Niño	1
Modelling	1
Quantity	1
São	1
Paulo	1
Deforestation	1
Webs	1
	1
Cycle Global	-
	1
Warming	1
Mediation	1

Words	Frequency
Active	1
Isotope	1
Carbon	1
Stocks	1
Health	1
Functions	1
Mixed	1
Ombrophilus	1
Rain	1
Colonisation	1
Headwater	1
Brazilian	1
Act	1
Traits	1
Dissimilarity	1
Taxonomic	1
Agriculture	1
Impact	1
Conversation	1
Recovery	1
Monitoring	1
Low	1
Order	1
Changes	1
Precipitation	1
Provision	1
Ecosystem	1
Services	1
Coleoptera	1
Converted	1
Elmidae	1
Buffer	1
Biology	1
Shredders	1
Critical	1
Tracers	1
Pathways	1
Dam	1
Tailings	1
Ether	1

Words	Frequency
Amine	1
Sodium	1
Stress	1
	1
High Ph	1
	1
Phytoremediation	-
Ephemeroptera	1
Non-native	1
Invasion	1
Litter	1
Decomposition	1
Organic	1
Matter	1
Dynamic	1
Terrestrial-aquatic	1
Linkage	1
Preference	1
Habits	1
Niche	1
Overlap	1
Remote	1
Sensing	1
Protocol	1
Plecoptera	1
Trichoptera	1
Indicator	1
Processing	1
Bioindicator	1
Community	1
Metric	1
Secondary	1
Degradation	1