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ABSTRACT
Isolation and climate change has lead to an Antarctic marine biota rich in endemic taxa. But evidence 

exists for the occurrence of several shared marine species between the Southern Ocean and other basins. This 
manuscript reviews on the echinoderm taxa known from the Antarctic and South America, and evaluates some 
evidences for the connectivity between these continents. Metadata from several studies and data from the 
Brazilian continental margin were used for the analyses. A total of 602 echinoderm species have been recorded 
so far at both regions, 101 of those (~17%) are shared between Antarctica and South America, and from these 
around 47% are typically deep-sea ones. A high species richness was found at the Antarctica Peninsula, South 
Shetland Is. and South Georgia, possibly resultant from highest sampling effort at these regions. Distinct 
geological history and the tectonic activities play an important role in regulating the benthic faunal assemblage of 
these regions. An overlap was found between the echinoderm fauna from the South American cone, and mainly 
the regions around the Antarctic Peninsula. The echinoderm fauna from the Brazilian margin distinguished 
from those at the tip of the continent, although a few shared taxa occurred. A species assemblage turnover was 
identified from the Uruguayan margin. Also, the whole Magellanic region showed more affinities with the 
Argentinean Atlantic margin and the Falkland/Malvinas Is. than the southern Pacific Chilean margin. South 
Georgia and South Sandwich Is., as transitions regions between the South American and Antarctic regions, 
shared species with both continents. The considerably low ratio between the number of shared and total species 
records from the Antarctic regions revealed that most species are most likely endemic to the Southern Ocean. 
But future explorations of the South American and Antarctic deep sea margins and basins could reveal a higher 
number of shared echinoderm species than that reported here. All these comparisons should be backed up by 
taxonomic calibration and use of molecular tools in order to distinguish cryptic species and evaluate genetic 
populations’ structure, as these would lead to a better understanding of observed biogeographical patterns. 
Keywords:  Zoogeography; echinodermata; biodiversity; polar front; Southern Ocean.

RESUMO
EQUINODERMOS COMO INDICADORES DA CONECTIVIDADE ANTÁRTICA ~ AMÉRICA 

DO SUL. O isolamento e mudanças climáticas levaram a uma biota marinha antártica rica em táxons 
endêmicos. Entretanto existem evidências de ocorrência de várias espécies marinhas compartilhadas entre 
o Oceano Austral e outras bacias oceânicas. Este manuscrito revê os táxons de equinodermos conhecidos 
para a Antártica e América do Sul e avalia algumas evidências para a conectividade entre estes continentes. 
Metadados de vários estudos e dados da margem continental brasileira foram utilizados para as análises. Um 
total de 602 espécies de equinodermos foi registrado até o presente para as duas regiões, 101 das quais (~17%) 
são compartilhadas entre Antártica e América do Sul e, destas, aproximadamente 47% são tipicamente de 
oceano profundo. Uma elevada riqueza de espécies foi encontrada na Península Antártica, Ilhas Shetland do 
Sul e Geórgia do Sul, possivelmente resultante do maior esforço amostral nessas regiões. A distinta história 
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geológica e atividades tectônicas desempenham um papel importante na  regulação das associações faunísticas 
bentônicas dessas regiões. Foi encontrada uma considerável sobreposição entre a fauna de equinodermos 
do cone Sul Americano e, especialmente, as regiões no entorno da Península Antártica. Os equinodermos 
da margem profunda brasileira distinguiram-se daqueles encontrados na extremidade do continente, 
embora tenham ocorrido algumas espécies compartilhadas. Uma transição das associações de espécies 
foi encontrada na margem uruguaia. Além disso, a região magelânica apresentou mais afinidades com a 
margem Atlântica argentina e com as Ilhas Falkland/Malvinas do que com a margem chilena no Pacífico. 
As Ilhas Geórgia do Sul e Sandwich do Sul apresentaram-se como regiões de transição entre as regiões Sul 
Americanas e Antárticas, possuindo espécies compartilhadas com os dois continentes. A taxa relativamente 
baixa entre o número de espécies compartilhadas e o número total de espécies registradas para as regiões 
na Antártica mostraram que a maioria das espécies é provavelmente endêmica do Oceano Austral. Mas, 
futuras explorações das margens profundas tanto da América do Sul quanto da Antártica e suas bacias 
oceânicas podem revelar um número maior de espécies compartilhadas que as registradas aqui. Todas estas 
comparações devem ser apoiadas por calibração taxonômica e uso de ferramentas moleculares para que se 
possa distinguir adequadamente espécies crípticas e avaliar a estrutura genética das populações, já que essas 
informações podem levar a uma melhor compreensão dos padrões biogeográficos observados. 
Palavras-chave: Zoogeografia; echinodermata; biodiversidade; frente polar; Oceano Austral.

RESUMEN
EQUINODERMOS COMO EVIDENCIA  DE LA CONECTIVIDAD ANTÁRTIDA~ 

SUDAMERICA .  El aislamiento y el cambio climático han llevado a una biota marina Antártica rica en 
taxones endémicos. Sin embargo, hay evidencia de la ocurrencia de varias especies compartidas entre el 
Océano Antártico y otras cuencas oceánicas. El presente manuscrito revisa los taxones de equinodermos 
conocidos en la Antártida y Sudamérica y evalúa algunas evidencias de la conectividad entre estos 
continentes. Para los análisis fueron usados metadatos de varios estudios y datos del margen continental 
brasileño. Un total de 602 especies de equinodermos han sido registradas hasta ahora en ambas regiones, 
de las cuales 101 (~17%) son compartidas por ambas regiones. De éstas, 47% son especies típicas de mares 
profundos. Se encontró una alta riqueza de especies en la Península Antártica, en las islas Shetland del Sur 
y Georgia del Sur, posiblemente debido a un mayor esfuerzo de muestreo en estas regiones. Una historia 
geológica particular y la actividad tectónica juegan un rol importante en la regulación del ensamblaje de la 
fauna bentónica de estas regiones. Se encontró una superposición en la fauna de equinodermos del Cono 
Sur y de las regiones alrededor de la Península Antártica. La fauna de equinodermos del margen brasileño 
se distinguió de aquella del extremo sur del continente, aunque se encontraron algunos taxones compartidos. 
Se identificó un recambio de la composición de especies desde el margen uruguayo. Por otro lado, la región 
Magallánica mostró más afinidad con el margen atlántico argentino y las islas Malvinas/Falkland, que con el 
margen pacífico chileno. Las islas Georgia del Sur y Sandwich del Sur, como transiciones entre Sudamérica 
y la Antártida, compartieron especies con ambos continentes. La proporción considerablemente baja de 
especies compartidas sobre registros totales de especies de las regiones antárticas reveló que la mayoría 
de las especies es endémica del Océano Antártico. Sin embargo, la exploración futura de los márgenes 
y cuencas del mar profundo de Sudamérica y la Antártida puede revelar un mayor número de especies 
compartidas de equinodermos que el reportado. Todas estas comparaciones deberían ser soportadas por 
una revisión taxonómica y el uso de herramientas moleculares para distinguir especies crípticas y evaluar 
la estructura genética de las poblaciones, ya que esto llevaría a un mejor entendimiento de los patrones 
biogeográficos observados.
Palabras clave: Zoogeografía; echinodermata; biodiversidad; frente polar; Océano Antártico.
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INTRODUCTION

Comparisons between Antarctica and other 
fragments of Gondwana, the study of climate change, 
and anthropogenic influences to the Antarctic 
environment have been critical for understanding 
the evolution and present biological community 
structures in Antarctica, and their connexions with 
the biota outside the Polar Front (Clarke et al. 2005, 
Clarke 2008). The ultimate separation of Antarctica 
from South America happened during the Oligocene, 
and was responsible for the Antarctic isolation, 
formation of the Southern Ocean and Antarctic 
Circumpolar Current (ACC), northward flow of the 
Atlantic Antarctic Bottom Water, and numerous 
geological features observed along the northern end 
of the Antarctic Peninsula (e.g. an active spreading 
centre in the Bransfield Strait, ridge trench collision 
and gas hydrates on modern sediments) (Turner et al. 
2009). Over an evolutionary time, the combination of 
isolation and climate change has lead to an Antarctic 
biota rich in endemic taxa (Clarke 2003, 2008, 
Clarke & Johnston 2003). But evidence exists for the 
occurrence of several shared marine species between 
the Southern Ocean and other basins, especially 
the Magellanic region through the Drake Passage 
and Scotia Arc (Clarke 2003, Brandt et al. 2007a, 
b). Their evolution and historical biogeography are 
closely related to major tectonic and climatic changes 
(González-Wevar et al. 2010).

The development of the ACC is possibly the most 
influential stage in the progressive geographic isolation 
of the Antarctica within oceanic surroundings, 
forming a continuous hydrographic barrier more 
than 2000 km from the Antarctic continent (Barker 
& Thomas 2004). This oceanographic barrier, known 
as Polar Front, is characterized by abrupt temperature 
and salinity variations between the Southern Ocean 
and surroundings waters masses, and is usually 
considered to represent a limitation for the dispersal 
of surface marine organisms, especially planktonic 
larvae (Clarke et al. 2005, Turner et al. 2009). But 
it is still unclear the exact effect of the ACC in the 
distribution of certain invertebrate fauna, as some 
extinctions occurred millions of years after the 
establishment of the ACC (Thatje et al. 2005, Kim 
& Thurber 2009). For instance, whether the last 
occurrence of crabs and lobster was truly at the lower 

Miocene, or their absence in younger deposits could 
be an artifact of non-fossilization or non-preservation 
(Thomson 2004). Also, Zygochlamys bivalve species 
existed in Antarctic waters until much later, and 
disappeared only 3 or 4 mya (Jonkers 2003). 

The continental shelf and especially the nearshore 
benthos is directly subject to natural impacts in 
the Antarctic region related to this seasonal ice 
formation, which may vary in extent and thickness, 
and ice melt (Stark et al. 2005, Smith et al. 2006). But 
the Antarctic continental shelf is large and generally 
deep (500–1000m), being strongly influenced by 
the seasonal sea-ice cover and primary production, 
factors which may favour strong benthopelagic 
coupling (Smith et al. 2006). This special physical 
feature of the Antarctic continental shelf combined 
with the isothermic water column might have led to 
the extended eurybathy documented for several taxa 
(Brandt et al. 2007a,b). The seasonal temporal and 
spatial variations from sea ice, local disturbances 
from iceberg scours and anchor ice, and glacially 
transported sediments contribute to the patchiness 
of benthic habitats and communities in the Antarctic 
regions (Stark et al. 2005, Smith et al. 2008, Siciński 
et al. 2010). 

Some Antarctic benthic organisms are 
physiologically adapted to these natural changes, 
but others have shown very limited physiological 
ability to support slight environmental variations 
such as temperature (Peck et al. 2006). Also, 
where human activities are more intense, such as 
near research stations (e.g., sewage, dumps) and 
more intense scientific activities using trawling, 
fishing, dredging, a highest stress may be found 
on benthic communities (Stark et al. 2003). The 
rate at which these variations occur, and the time 
that it is necessary for phenotypic population to 
vary, are critical factors related to gradual changes 
and evolutionary processes (Clarke 2003). Several 
studies have provided useful information on the 
Antarctic Peninsula shelf, under-ice and deep basins 
benthic communities (e.g., Brandt et al. 2004, 
Brandt et al. 2007a, b, Gutt 2007, Gutt et al. 2007, 
Smith et al. 2008). A more stable benthic community 
with several sessile and sedentary organisms may be 
established away from the ice scour effect zones in 
the deep shelf and continental margin below 400m 
(Teixidó et al. 2007). 
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Biogeographical studies attempt to explain 
patterns of distribution and provide useful tools for 
the identification of species origins based in their 
phylogenetic relationships (Brandt et al. 2004). 
These are fundamental when taking into account: 
the rapid warming of the Antarctic Peninsula region 
with significant glaciers in retreat; its oceanographic 
relevance in relation to South America; water mass 
formation and circulation towards the Pacific and 
Atlantic (Turner et al. 2009); the potential role as 
biodiversity pump towards these oceans (Clarke 
2003, Brandt et al. 2007a, Clarke 2008, Griffiths et al. 
2009). Furthermore, as Antarctic benthic communities 
show high levels of endemism, gigantism, slow 
growth, longevity, late maturity, adaptive radiations 
that generated considerable biodiversity in some 
taxa (Clarke & Johnston 2003), studies on these 
communities are relevant for understanding the effect 
of global changes in the marine environment. 

Even though most patterns of distribution 
of marine benthic invertebrates are commonly 
explained by vicariant speciation caused by plate 
tectonics, molecular studies have evidenced that 
long distance dispersion is a plausible explanation 
for biogeographical patterns in the Southern Ocean 
(González-Wevar et al. 2010). Possibly this is a 
consequence meso-scale processes (within tens to 
hundreds of kilometers) at the ACC, which has a very 
complex structure, is highly variable and dynamic 
with eddies over a wide range of scales, and could 
form an important mechanism for transport of 
organisms across the Polar Front (Clarke et al. 2005). 
According to these authors eddies of cool water 
surrounding a parcel of warmer water (warm-core 
rings) might transport sub-Antarctic plankton into 
Antarctica, and eddies of warmer water surrounding 
a parcel of colder water (cold-core rings) might carry 
Antarctic plankton into warmer waters to the north. 

The first studies related to the sub-Antarctic and 
Antarctic regions biogeography (e.g. Ekman 1953, 
Hedgpeth 1969, Dell 1972) were either based on 
faunistic and/or oceanographic features. These 
authors concluded that differences between regions, 
especially East and West, were possibly a result from 
the lack of biodiversity data from East Antarctica. 
The growing knowledge on Antarctic biodiversity 
in recent years, particularly related to benthic 
organisms, has allowed the establishment of more 

accurate biogeographical patterns, including their 
relationship with those from South America. For 
instance, using large data sets, Linse et al. (2006) and 
Griffiths et al. (2009) showed that Antarctic mollusks 
and bryozoans have greater affinity with the southern 
South American continent than those from New 
Zealand regions. Häussermann & Fösterra (2005), 
Montiel et al. (2005) and Rodriguez et al. (2007) 
showed that Antarctic and South America (and here 
mainly the Magellanic region) have a high number 
of shared anemone and polychaete species. Gutt et 
al. (2003) pointed out the necessity of comparative 
studies on in the deep sea between the Antarctica 
and South America, as also in the continental 
shelves and islands which serve as stepping-stones 
for the dispersion of shallow fauna (Scotia Arc) to 
understand the dispersion capability and the effect of 
isolation of populations on their evolution. Currently, 
greater multidisciplinary emphasis has been given to 
understanding how the distribution of species was 
shaped by geological, oceanographic and biological 
events since the separation of Antarctica from South 
America. 

Echinoderms are generally conspicuous within 
Antarctic benthic communities, and they usually 
occur in fairly high densities and biomass in the 
deep sea (Gage & Tyler 1991, Brandt et al. 2007a, 
b). In fact, echinoderms are well represented within 
existing Antarctic datasets, such as in the Scientific 
Committee on Antarctic Research Marine Biodiversity 
Information Network (SCAR-MarBIN), with high 
numbers of georeferenced records (Griffiths 2010). 
Despite the fact that their species richness is highest 
on the shelf, they show a rich diversity along the 
slope and on the deep-sea abyssal plains (Brandt et al. 
2007b). Below 3000m all the main deep sea regions 
are directly connected, and as a result there should 
not be any barrier to the dispersal and establishment 
of populations to and from the Southern Ocean 
(Brandt et al. 2007a). Generally though, the Southern 
Ocean benthic shelf faunal composition differs from 
that of its deep sea as the first is zoogeographically 
isolated through the ACC, and conversely, the deep-
sea fauna can freely migrate in and out of the Polar 
Front (Brandt et al. 2007a). The distribution of water 
masses in the world oceans will have a strong effect on 
benthic geographical distribution, allowing potential 
dispersal and endemism, and also affecting zonation 
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on bathyal depths along deep sea ocean margins 
(Tyler & Zibrowius 1992). Clarke (2003) noted 
that at the generic level there are many similarities 
between different deep-sea regions in particularly 
to holothuroids, ophiuroids, some echinoids and 
pennatulids.             

The southern South American and Antarctic 
continental shelves echinoderm fauna are fairly well 
studied, and a literature survey plus additional data 
from the Brazilian deep sea margin provided the 
basis for testing hypothesis related to biogeographical 
patterns and their potential connectivity. Despite 
the fact that both regions have several echinoderm 
species, at least in shallower waters, mainly on the 
continental shelves, these would be mostly distinct 
taking into account physical barriers such as the 
Polar Front. Conversely, highest proportion of shared 
species between both continents would be found 
in deepest waters, possibly as a result from their 
dispersal over time using deep water masses as their 
‘highways’. Basically, whilst reviewing the available 
echinoderm biodiversity data, the main objective of 
this manuscript has been to substantiate the existence 
of faunistic overlap, and search for further evidence 
of the connectivity between the two continents.

MATERIALS AND METHODS

SPECIES RECORDS
 
The South American and Antarctic echinoderm 

species list used in this study was gathered from 
the available literature (Appendix 1) and ‘Scientific 
Committee on  Antarctic  Research  Marine 
Biodiversity Information Network’, SCAR-MarBIN 
(de  Broyer et al. 2010). This was then checked against 
major world databases such as World Ophiuroidea 
(Stöhr & O’Hara 2007), World Asteroidea (Mah 
2009), World Echinoidea (Kroh & Mooi 2010) 
Databases, and complemented with the Antarctic and 
Subantarctic Marine Invertebrates of the NMNH/ 
Smithsonian Institution Databases (Lemaitre et al. 
2009). 

The SCAR-MarBIN has more than 800 
echinoderm species records including geographical 
information (GIS). Species from the five echinoderm 
classes (Asteroidea, Ophiuroidea, Echinoidea, 
Holothuroidea and Crinoidea) were included in this 

study. All valid species records, from the geographical 
regions considered, found in the checked data were 
used regardless of depth distribution. OBIS (Ocean 
Biogeographic Information Systems) database 
comprises a powerful tool to identify biodiversity 
hotspots and large-scale ecological patterns. It 
includes more than 27 million species records 
from major oceanographic programs and museum 
collections of the world (OBIS, 2011). We crossed 
the species list gathered with the echinoderms records 
from OBIS in order to complement data from the 
South American margin and subantarctic regions. 
Distribution related to each species were accessed, 
and basic geographical information included in a 
presence/absence data matrix with additional records 
from the literature and regions further north in South 
America (ex. Brazilian margin). Species richness is 
provided as a total number of species recorded for 
each region. A species record in the presence/absence 
matrix for any of the study regions was done only 
once independently on the number of records found 
in the literature, SCAR-MarBIN or OBIS. 

REGIONS

In order to create an echinoderm list data 
matrix the following South American geographic 
limits were used: 1) Chilean continental margin 
at the Pacific Ocean (northernmost limit 27° S); 2) 
Magellanic region (here including the Chilean and 
Argentinian margin); 3) West Atlantic northernmost 
limit at Campos Basin off the Brazilian margin (22° 
S); 4) Uruguayan margin; 5) Argentinean margin; 
6) Falkland/Malvinas Is.. The following Antarctic 
regions (south of the Polar Front) were included in this 
study: 1) South Georgia (as in Clarke et al. 2007 and 
Griffiths et al. 2009); 2) South Orkney Is.; 3) South 
Sandwich Is.; 4) South Shetland Is.; 5) Antarctic 
Peninsula; 6) Weddell Sea; 7) Bellingshausen Sea. 
These 13 regions (Figure 1) were defined mostly based 
(but modified) on previous (e.g. Hedgpeth 1969) and 
more recent works by Linse et al. (2006) and Clarke 
et al. (2007) on mollusks, and by Griffiths et al. 
(2009) on mollusks and bryozoans. The Magelllan 
Strait and Tierra del Fuego were considered as 
Magellanic region (here we are interested in the 
connectivity between this region and the Antarctic 
continent), and Bellingshausen Sea E and W were 
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considered just as Bellingshausen Sea region. Here, 
the northernmost limits in South America were 
extended compared to those used in all previous 

studies above-mentioned. The geographic position 
of each record was counted if they occurred into 
these predefined regions. 

Figure 1. The 13 study regions in Antarctica and South America continents. Black dotted line represents the mean position of the Polar Front

DATA TREATMENT

The data was analyzed without taking depth into 
consideration as this information is scattered, not 
always provided in on line world databases, and 
would cause restrictions to the data matrix. However, 
the matrix is far from (> 95%) composed of species 
records from shallow waters and from the continental 
margin. The vast majority of the Antarctic sampling 
effort comes from depths less than 500 m (Griffiths 
2010), and contrasts with the area of the deep sea that 
cover 27.9 million Km2 (Clarke & Johnston 2003). 

The continental shelf and slope cover together an area 
of 6.94 million Km2 of the Southern Ocean sea floor 
(Clarke & Johnston 2003). All shared species between 
South America and Antarctica were identified and 
counted. A species was considered shared when 
recorded at least once in both South American region 
and in an Antarctic region. The same matrix was then 
used to verify each South American region common 
species to those found in each Antarctic region, and 
vice-versa. This was done to find out which region 
from each continent had the most number of shared 
species.
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groups and n observation units (replicates) per group 
in the simplest situation of a one-way test (Anderson 
2005).

RESULTS

SPECIES RICHNESS
 
A total of 602 species of echinoderms were 

recorded in this study: 185 ophiuroids (brittle stars 
and basket stars), 176 asteroids (sea stars), 138 
holothuroids (sea cucumbers), 82 echinoids (sea 
urchins) and 21 crinoids (sea lilies and comatulids). 

The South Shetland Is. and Antarctic Peninsula 
were the regions with the highest numbers of species, 
213 and 211 respectively (Figure 2). 

The Weddell Sea and the Brazilian margin had the 
second highest species richness values. It is relevant 
to note the fairly high echinoderm species richness 
recorded for the South Orkney Is. (n=154) and South 
Georgia (n=121), especially taking into account its 
size. Its number of species was higher than most 
extensive areas such as the Chilean and Argentinean 
coasts (Figure 2). Considering the Antarctic regions 
studied here, a low number of species was found in 
the Bellingshausen Sea.

A proportion of shared species (%) was estimated 
as a ratio between the number of shared species over 
the total number of species in each region. This was 
done because, for instance, in two specific regions of 
South America the same number of shared species 
with Antarctica may have been recorded, but this 
value could in fact represent different proportions in 
relation to the total number of species recorded in 
each of those regions. 

The presence/absence matrix was used to generate 
a similarity matrix (Bray-Curtis) between regions. 
The regions faunistic similarity was verified using 
a nMDS (non multidimensional scaling) analysis of 
proximity and a cluster analysis (Group Linkage) 
using PRIMER 6. The hypothesis that the echinoderm 
assemblages inside and outside the Polar Front 
are different was tested using the PERMANOVA 
analyses (Anderson 2005). The Bellingshausen 
Sea was excluded from this analysis due to low 
species richness and due a historic scarceness of 
data. We considered north and south the Polar Front 
as a two level factor with six replicates regions. 
PERMANOVA is used for testing the simultaneous 
response of one or more variables to one or more 
factors on the basis of any distance measure using 
permutation methods, in which the matrix includes a 

Figure 2. Number of echinoderm species recorded at each region of the Antarctica and South America continent. Empty bars represent Antarctic 
regions and black bars represent the South American regions.
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SHARED SPECIES 
 
About 17% (n=102) of the total number of species 

studied were shared between South America and 
Antarctica. And from these, there were 40 asteroids, 

22 ophiuroids, 21 holothuroids, 16 echinoids, and only 
two crinoid species. Amongst these shared species, 
47% occur at depths greater than 800 m, and these 
are represented by the 18 asteroid, 10 ophiuroid, 10 
holothuroid, 8 echinoid, and 2 crinoid species (Table I).

Table I.   List of shared echinoderm species between South America and Antarctica, including the regions of occurrence for each species. (SB) Southern 
Brazil; (URU) Uruguay; (SC) Sothern Chile; (AR) Argentina; (F/MI) Falkland Is.; (MR) Magellanic Region; (SSI) South Shetland Is.; (WS) Weddell 
Sea; (AP) Antarctic Peninsula; (BS) Bellingshausen Sea; (SOI) South Orkney Is.; (SG) South Georgia; (SSandI) South Sandwich Is. (*) species that 

occur at depths deepest than 800 m (Source Appendix I).

Echinoids > 800 m Regions

Family Arbacidae

  Arbacia dufresnii (Blainville, 1825) SC, AR, F/MI, MR, SSI

Family Cidaridae

  Austrocidaris spinulosa Mortensen, 1910 AR, F/MI, MR, SG

Family Ctenocidaridae

  Aporocidaris milleri (A.Agassiz, 1898) * SC, SSI, WS, AP, SOI, SG, SSandI

Family Echinidae

  Sterechinus agassizi Mortensen, 1910 * AR, F/MI, MR, SG

  Sterechinus diadema Studer, 1876 AR, SSI

  Sterechinus neumayeri (Meissner, 1900) * MR, SSI, WS, AP, BS, SOI, SG

Family Paleopneustina (incertae sedis)

  Delopatagus brucei * MR, SSI, WS, AP

Family Prenasteridae

  Tripylus excavatus Philippi, 1845 SC, AR, MR, SG

  Tripylus reductus (Koehler, 1912) AR, MR, SSI, AP, SOI

Family Schizasteridae

  Abatus agassizii Mortensen, 1910 MR, SSI, WS, SG

  Abatus cavernosus (Philippi, 1845) * AR, MR, SSI, AP, BS,SOI, SG

  Abatus curvidens Mortensen, 1836 F/MI, MR, SSI, AP, SOI, SG

  Abatus philippii Loven, 1871 * AR, SSI, WS, AP, BS, SG

  Brisaster moseleyi (A. Agassiz, 1881) * SC, F/MI, MR, SOI

  Tripylaster philippii (Gray, 1851) SC, AR, F/MI, MR, SG

Family Temnopleuridae

  Pseudechinus magellanicus (Philippi, 1857) URU, SC, AR, F/MI, MR, AP
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Asteroids > 800 m Regions

Family Asteriidae

  Anasterias antarctica (Lütken, 1857) MR, SSI, AP

  Anasterias pedicellaris Koehler, 1923 URU, AR, F/MI, MR, AP, SOI

  Cosmasterias lurida (Philippi, 1858) SC, AR, MR, SSI, AP, SOI

  Diplasterias brandti (Bell, 1881) * SB, AR, F/MI, MR, SSI, AP, SOI, SG

  Diplasterias meridionalis (Perrier, 1875) MR, SSI

  Diplasterias octoradiata (Studer, 1885) * F/MI, SG

  Diplopteraster verrucosus (Sladen, 1882) SC, AR, F/MI, MR, AP, SOI

  Lysasterias perrieri (Studer, 1885) MR, SSI, AP, SOI, SSandI

  Psalidaster mordax Fisher 1940 * AR, F/MI, MR, AP, SOI, SSandI

  Smilasterias scalprifera (Sladen, 1889) * F/MI, SSI, AP, SOI, SSandI

Family Astropectinidae

  Bathybiaster loripes Sladen, 1889 * SB, URU, AR, F/MI, MR, SSI, AP, SOI, SG, 
SSandI

  Mimastrella cognata (Sladen, 1889) MR, SSI

Family Benthopectinidae

  Cheiraster (Luidiaster) planeta (Sladen, 1889) MR, SSI, SOI

  Cheiraster (Luidiaster) gerlachei (Ludwig, 1903) * F/MI, MR, SSI, WS, AP, SOI

Family Brisingidae

  Odinella nutrix Fisher, 1940 MR, SSI, SOI, SG

Family Ctenodiscidae

  Ctenodiscus australis Lütken, 1871 * SB, URU, AR, F/MI, MR, AP, SOI

  Ctenodiscus procurator Sladen, 1889 * SC, AR, MR, SSI, AP

Family Echinasteridae

  Henricia obesa (Sladen, 1889) URU, SC, AR, F/MI, MR, WS, AP

  Henricia studeri Perrier, 1891 F/MI, MG, AP, SOI

Family Ganeriidae

  Cycethra verrucosa (Philippi, 1857) URU, SC, AR, F/MI, MR, SSI, WS, AP, SOI, SG

  Cycethra verrucosa verrucosa (Philippi, 1857) URU, AR, SSI, AP, SOI, SG

  Ganeria falklandica Gray, 1847 URU, SC, AR, MR, SSI, SOI

Family Goniasteridae

  Ceramaster patagonicus (Sladen, 1889) * SB, AR, F/MI, MR, SSI, AP, SOI

Continuation of Table 1
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  Ceramaster grenadensis (Perrier, 1881) F/MI, MR, SOI

  Cladaster analogus Fisher, 1940 URU, AR, MR, SSI, SO, SG

  Hippasteria falklandica Fisher, 1940 AR, F/MI, SSI, SOI

  Pseudarchaster discus Sladen, 1889 * F/MI, MR, SSI, AP, SOI, SG, SSandI

Family Korethrasteridae

  Peribolaster folliculatus Sladen, 1889 * SC, MR, F/MI, SSI

Family Labiateridae

  Labidiaster radiosus Lütken, 1871 AR, F/MI, MR, SSI, SG

Family Odontasteridae

  Acodontaster elongatus (Sladen, 1889) AR, F/MI, MR, SSI, AP, SOI, SG, SSandI

  Odontaster meridionalis (E.A. Smith, 1876) * MR, SSI, AP, SOI

  Odontaster penicillatus (Philippi, 1870) * SC, AR, F/MI, MR, SSI, AP, SOI

Family Pedicellasteridae

  Anteliaster australis Fisher, 1940 F/MI, MR, SSandI

Family Poranidae

  Porania (Porania) antarctica E.A. Smith, 1876 * SC, AR, F/MI, MR, SSI, WS, AP, SOI, SG, SSandI

  Porania (Porania) antarctica magellanica Studer, 1876 MR, AP, SG

Family Pterasteridae

  Pteraster affinisSmith, 1876 * MR, SSI, WS, AP

  Pteraster stellifer Sladen, 1882 * F/MI, MR, SSI, WS, AP, SG

Family Porcellanasteridae

  Eremicaster vicinus Ludwig, 1907 * SC, SSI, SOI, SG, SSandI

Family Solasteridae

  Lophaster stellans Sladen, 1889 SC, F/MI, MR, SSI, WS

  Solaster regularis Sladen, 1889 * URU, AR, F/MI, MR, SSI, AP, SOI

Ophiuroids > 800 m Regions

Family Amphiuridae

  Amphioplus perigrinator (Koehler, 1912) * F/MI, SSI, WS, AP, SOI, SG, SSandI

  Amphiura belgicae Koehler, 1900 * AR, F/MI, SSI, WS, AP, SOI, SG, SSandI

Continuation of Table 1
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  Amphiura eugeniae Ljungman, 1867 URU, AR, MR, WS, SSandI

  Amphiura joubini Koehler, 1912 * SB, URU, AR, SSI, WS, AP, BS, SOI, SG, SSandI

  Amphiura protecta Hertz, 1926 F/MI, MR, SSI, WS, AP, BS, SG, SSandI

Family Gorgonocephalidae

  Astrochlamys bruneus Koehler, 1911 * MR, SSI, WS, AP, SOI, SG, SSandI

  Astrotoma agassizii Lyman, 1875 * SC, AR, F/MI, MR, SSI, WS, AP, SG, SSandI

  Gorgonocephalus chilensis (Philippi, 1858) SB, URU, SC, AR, F/MI, MR, WS, AP, SG, SSandI

Family Hemieuryalidae

  Ophiochondrus stelliger Lyman, 1879 AR, MR, SSI, WS, AP, SOI, SSandI

Family Ophiacanthidae

  Ophiacantha antarctica Koehler, 1900 * MR, SSI, WS, SOI, SG, SSandI

  Ophiacantha cosmica Lyman, 1878 SB, WS, SOI

  Ophiacantha vivípara Ljungman, 1870 SC, AR, F/MI, MR, SSI, WS, AP, SOI, SG, SSandI

  Ophiomitrella conferta (Koehler, 1922) AR, F/MI, MR, SSI, WS, AP

  Ophioscolex nutrix Mortensen, 1936 * SB, MR, AP, BS

Family Ophiactidae

  Ophiactis asperula (Philippi, 1858) URU, SC, AR, F/MI, MR, SSI, AP

Family Ophiuridae

  Ophiocten amitinum Lyman, 1878 * SC, AR, F/MI, MR, SSI, WS, AP, SG, SSandI

  Ophiogona doederleini (Koehler, 1901) * MR, SSI, WS, AP, BS, SOI, SSandI

  Ophiolimna antarctica (Lyman, 1879) MR, SSI, WS, AP, SOI, SG, SSandI

  Ophioplinthus inornata (Lyman, 1878) AR, F/MI, WS

  Ophiura ambigua (Lyman, 1878) * MR, WS

  Ophiura (Ophiuroglypha) lymani ( Ljungman, 1871) SC, AR, F/MI, MR, WS, SG

  Ophiura meridionalis (Lyman, 1879) MR, SSI, AP, SG

Holothuroids > 800 m Regions

Family Chiridotidae

  Taeniogyrus contortus (Ludwig, 1874) * SC, AR, F/MI, MR, SSI, WS, AP, SG, SSandI

  Trochodota purpurea (Lesson, 1830) SC, AR, F/MI, MR, SSI, SOI, SG, SSandI

Family Cucumariidae

  Cladodactyla crocea Lesson, 1830 SC, AR, F/MI, MR, SOI, SG

Continuation of Table 1
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  Cucumaria georgiana Lampert, 1886 F/MI, SSI, WS, AP, SOI, SG, SSandI

  Heterocucumis steineni (Ludwig, 1898) F/MI, SSI, SOI, WS, AP, SG

  Trachythyone parva (Ludwig, 1874) SC, AR, F/MI, WS, AP, SOI, SG

Family Deimatidae

  Oneirophanta mutabilis mutabilis Théel, 1879 * AR, SG, SSI, SSandI

Family Elpidiidae

  Scotoplanes globosa (Théel, 1879) * URU, SSI, WS, AP, SOI, SG, SSandI

Family Molpadidae

  Molpadia antarctica (Théel, 1886) * SC, AP, BS

  Molpadia musculus Risso, 1826 * SC, F/MI, SSI, WS, AP, BS, SOI, SG

Family Psolidae

  Neopsolidium convergens (Hérouard, 1901) SC, AR, F/MI, SG

  Psolidium incertum Ludwig & Heding, 1935 F/MI, WS

  Psolus antarcticus (Phillippi, 1857) * SB, SC, F/MI, MR, WS, AP, BS, SOI, SG, SSandI

  Psolus koehleri Vaney, 1914 * F/MI, SSI, AP, BS, SOI, SG, SSandI

  Psolus patagonicus Ekman, 1925 SB, SC, AR, MR, AP, SG

  Psolus squamatus (Koren, 1844) SC, AR, AP

Family Synaptidae

  Anapta fallax Lampert, 1889 SC, AR, MR, SG

Family Synallactidae

  Bathyplotes natans (Théel, 1886) SC, SSI, AP, BS, SOI

  Mesothuria bifurcata Hérouard, 1906 * SC, MR, SSI, WS, AP, BS, SSandI

  Molpadiodemas violaceus (Théel, 1886) * SC, AR, SSI, SOI, SSandI

  Molpadiodemas involutus (Sluiter, 1901) * AR, F/MI, SSandI

Crinoids > 800 m Regions

Family Antedonidae

  Isometra vivipara Mortensen, 1917 * SB, AR, F/MI, MR, WS, SG

  Promachocrinus kerguelensis Carpenter, 1888 * MR, SSI, WS, AP, SOI, SG, SSandI

Continuation of Table 1

Holothuroids > 800 m Regions
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The number of shared echinoderm species 
between the study regions is provided in Table II. The 
Magellanic Region has showed the highest number of 
shared species (n=74) with the Antarctic, being this 
more than half of the total number of species found in 
this South American region (67%). Further north along 
the Chilean coast the percentage of shared species 
was much lower. The Falkland Is. and Argentinean 
margin showed the second highest values of shared 
species, and also here these represent the majority of 
echinoderm species found in these regions (equivalent 
to 78 and 54%, respectively, see Table II). Only 5% 
of species found off South and Southeast Brazil 
have also been recorded in Antarctica so far. This is 
expectedly a much lower proportion than that found 
for the Uruguayan margin. 

The South Shetland Is. and the Antarctic 
Peninsula had the highest number of echinoderm 
shared species records with South America (Table 
II). Even though this number was similar to those 
found for some South American regions, such as in 
Falkland Is., its proportion in relation to the total 
number of species in these Antarctic regions is 
much lower than the others. The number of shared 
species between the Weddell Sea and South America 
was similar to that found between South Orkney Is. 
and South Georgia. However, proportionally, the 
Weddell Sea showed a lower percentage of shared 
species than these islands. The Bellingshausen Sea 
had only 10 species in common with South America 
but represented around 23% of the total species 
(Table II). 

Table II. Number of shared species between the South American and Antarctica regions and the percentage of shared species in relation to the total 
species records of each region.

 

Regions Antarctic - South America shared 
species % shared species / total species

Southern Brazil 10 5.18

Uruguay 16 32.00

Argentina 54 54.00

Falkland/Malvinas Islands 58 78.38

Southern Chile 39 53.42

Magellanic region 74 67.27

South Georgia 54 44.63

South Orkney Islands 54 35.06

South Sandwich Islands 39 37.86

South Shetland Islands 66 30.99

Antarctic Peninsula 63 29.85

Weddell Sea 43 21.83

Bellingshausen Sea 13 22.81

REGIONAL RELATIONSHIPS

The nMDS diagram clearly separated the South 
American and Antartic regions. Two major groups 
were identified through the: 1) South American 
regions excluding the Brazilian margins, but with 
less than 30% similarity; and 2) all the Antarctic 

regions (Figure 3). The South Orkney Is., South 
Shetland Is., Antarctic Peninsula, and the Weddell 
formed a well defined cluster with more the 50% 
similarity between these regions. The South 
Georgia and South Sandwich Is. were grouped as a 
separate cluster with about 53% of similarity. The 
Bellingshausen Sea stood as a separate group from 
these two groups of Antarctic regions.
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Figure 3. Similarity between regions using a non-metric multidimensional scaling (nMDS) and cluster analysis of 602 echinoderms species from 
Antarctica and South America.(SB) Southern Brazil; (URU) Uruguay; (SC) Sothern Chile; (AR) Argentina; (F/MI) Falkland/Malvinas Is.; (MR) 
Magellanic Region; (SSI) South Shetland Is.; (WS) Weddell Sea; (AP) Antarctic Peninsula; (BS) Bellingshausen Sea; (SOI) South Orkney Is.; (SG) 

South Georgia; (SSandI) South Sandwich Is. 

Despite being outside the Polar Front, the Uruguay 
margin, the southern Chile, Magellanic Region, 
Argentinean margin, and Falkland/Malvinas Is. 
showed higher similarity with the Antarctic regions 
than to the Brazilian margins. These three latter 
regions showed great affinities and were grouped 
with over 50% of faunistic similarity. Southern 

Chile was grouped with this concise cluster with 
more than 45% of similarity. The Uruguay margin 
stood as a separate region. The PERMANOVA 
tests (Table III) showed that the South America and 
Antarctica regions groups are statically strong and 
can be considered to have different echinoderms 
assemblages.
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Table III. Results of  PERMANOVA analyses (10000 permutations) between Antarctica and South American regions.

DF SS MS F p p (MC)

Antarctic X South America 1 11598.36 11598.36 6.52 0.003 0.001

Residual 10 17778.58 1711.86

Total 11 29376.94

p (MC) Monte Carlo permutation

DISCUSSION

The assessment of Antarctic biodiversity, 
the knowledge about its role in the ecosystem 
functioning, and requirement for its conservation 
are of particular importance in the context of 
global environmental changes (Brandt et al. 2004). 
Although Polar regions have long been regarded as 
areas of low marine diversity, recent reviews (ex. 
Clarke & Johnston 2003) showed that the Southern 
Ocean benthos is considerably rich and diverse, 
despite variations across major groups. Many of 
the species currently known from Antarctica were 
described in the early 20th century, and around the 
turn of the century significant additions were made 
(Clarke 2008). 

Comparisons between different continents 
and their oceans may be limited by the general 
lack of marine richness data from all regions and 
realms (i.e., shelf, margin and abyssal plains). The 
Register of Antarctic Marine Species (RAMS) 
and SCAR-MarBIN have brought together over 1 
million distribution records for the Southern Ocean 
species, and is a good illustration of the large gaps 
or a complete lack of information in some Antarctic 
areas like the Bellingshausen Sea (Griffiths 2010). 

The northern Antarctic Peninsula and the South 
Shetland Is. were the focus of a high number of 
oceanographic expeditions and an intensive effort 
in taxonomic resolution during the last decades. 
Also, Clarke et al. (2007) demonstrated that current 
knowledge on mollusks Antarctic continental 
shelf species richness is constrained strongly by 
sampling intensity. These facts must be taken into 
account, when considering the high diversity found 
in these areas. But taking into account a cross-
section of major macro-invertebrate groups, the 

species richness of the Antarctic continental shelf 
is comparable with the shelf faunas of Hawaii or 
northwest Europe (Clarke 2008).

The idea that species richness typically increases 
with geographical area and decreases with isolation 
(e.g., MacArthur & Wilson 1967) is frequently 
assumed in ecological studies comparing the diversity 
from regions with different dimensions. For instance, 
in analyzing biogeographic patterns of Antarctic 
regions and surrounding oceans, Griffiths et al. 
(2009) showed that the relationship between area and 
species numbers for Gastropoda and Cheilostomata 
was highest in biggest areas, but this was not the 
case for Bivalvia and Cyclostomata. In this study, we 
have shown that the number of echinoderms species 
at the small islands of South Georgia and the South 
Orkneys were comparable, and in some cases higher 
than other larger areas, such as the temperate margin 
of Argentina, Southern Chile and the sub-tropical 
margin of southern Brazil. In fact, three of the four 
regions that had the highest echinoderm species 
records were within the Polar Front.

The echinoderm fauna from the southern South 
American and Antarctic continental shelves are 
relatively well studied. This provided the basis for 
examining in more detail their distribution patterns, 
verifying the existence of faunistic overlap, and 
providing further evidence for the connectivity 
between the two continents. Around 17% of all 
echinoderms species known for South America and 
Antarctica are shared between these two continents. 
Similar overlaps were found for different invertebrate 
groups, such as Actinaria and Corallimorpharia 
(Häuserman & Fösterra 2005), bivalves (Zelaya 
2005) and polychaetes (Montiel et al. 2005). More 
recently, Rodriguez et al. (2007) found that 15% of 
the anemone fauna are shared.
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Knox & Lowry (1977) proposed that Antarctic 
continental shelf fauna originates from three different 
sources: 1) a relict autochthonous fauna; 2) a fauna 
derived by migration into shallow water from adjacent 
deep sea; and 3) a fauna dispersing into Antarctica 
from South America along the islands of the Scotia 
arc. Furthermore, Clarke (2008) proposed a fourth 
possibility that some taxa would have migrated out 
of Antarctica in the reverse direction along the Scotia 
arc. 

Here, the relationship between the shared and total 
numbers of echinoderm species found in each region 
was lowest in Antarctica. Despite the fact that the 
Antarctic regions in this study had 101 echinoderm 
species shared with South America, a greater 
proportion of species was only known from the 
Southern Ocean, representing a relict autochthonous 
fauna. Conversely, in South America (e.g., Argentina, 
Falkland/Malvinas Is., and the Magellanic Region) 
the number of shared species represents more than 
half of the total species records in its regions, showing 
the great affinity with the Antarctic fauna. 

The hypothesis about the existence of a connection 
between South America and the Antarctic Peninsula 
dates back to Arctowski in 1895 in which the Scotia arc 
lying between the southern tip of South America and 
the northern tip of the Antarctic Peninsula would serve 
as stepping stones for dispersion (Barth & Holmsen 
1939, Thomson 2004). The Scotia Arc is composed 
of a number of islands, seamounts and ocean deeps 
that evolved over the last 40 mya since the split of the 
two continents (Pearse et al. 2001, Thomson 2004). 
Arntz et al. (2005) suggested that the development 
of the faunal structure known today was triggered 
by exchanges along the Scotia Arc, which would 
possibly be the most likely migration route between 
South America and Antarctica. For instance, this was 
the case for eurybathic ophiuroid species (Dahm 
1999), and appears to have been the case for other 
echinoderm species with widespread distribution 
that occur on the southern South American shelf, 
especially in the Magellanic Region, and Antarctic 
Peninsula (e.g., the echinoids Arbacia dufresnii, 
Austrocidaris spinulosa, and Abatus philipii, the 
asteroids Anasterias pedicellaris, Ganeria falklandica 
and Henricia obesa, the ophiuroids Gorgonocephalus 
chilensis, Ophiactis asperula and the holothuroids 
Cladodactyla crocea and Trochodota purpurea).

Amongst the echinoderm shared species 47% are 
characteristically from deeper waters, found below 
800m. In this review, 44-50% of the shared species 
in each echinoderm classes (excluding crinoids) 
occur in the deep sea. It is interesting to note that this 
proportion can be higher due to our gap of knowledge 
on the biodiversity of the deep sea in these regions. 
It is known that the deepest portions of the Southern 
Ocean are well connected to other oceans, and in the 
Atlantic section below 800-1000m a branch from the 
Circumpolar Deep Water flows northwards within 
the Malvinas Current (Piola & Mantano 2001). 
Below this, a warmer water mass (the North Atlantic 
Deep Water) flows southwards towards Antarctica, 
and further down the Antarctic Bottom Water 
flows northwards reaching regions as far the North 
Atlantic (Rintoul et al. 2001). Similar oceanographic 
processes occur between the Southern Ocean, the 
Pacific and Indian Oceans. This potentially enables 
strong deep sea faunal exchange between Antarctica 
and other continents (Brandt et al. 2007a,b). As 
South America was the last to separate from the 
Gondwana, and being the closest to Antarctica, this 
high proportion of echinoderm shared species found 
at slope depths support the connectivity hypothesis, 
and it is very likely that as sampling efforts increase 
at deepest zones, more shared species should be found 
in future. Major questions remain though related to 
the ecosystem functioning, species source and rates 
of gene flow, these latter also dependant on each 
taxon biological features such as reproductive and 
development traits (e.g., Hunter & Halanych 2008, 
Thornhill et al. 2008). 

Similarities between the fauna from the Antarctic 
continental shelf and typical deep-sea (bathyal to 
abyssal) have been reported before (e.g., Gage 2004, 
Brandt et al. 2007b, Clarke 2008). Aronson et al. 
(2007) emphasizes the importance of echinoderms in 
benthic communities and the evolutionary connection 
between the faunas of the Antarctic continental shelf 
and the adjacent deep sea. Studies on other groups have 
shown similar evolutionary paths, for instance, whilst 
some isopod groups have moved from the continental 
shelves into the deep sea, others have colonized 
the shelves from the deep sea (Menzies et al. 1973; 
Brandt 1992). Invasion of Antarctic species into the 
deep sea, and then dispersion northwards seems to 
be the case for the ascidian Bathypeva, the crinoid 
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genus Florometra, the ophiuroid genus Ophiacantha 
and the cidaroids Aporocidaris (Pearse & Lockhart 
2004). The species Aporocidaris milleri occurs in 
the Antarctic deep sea, and its northern distribution 
extends along the western coast of Americas as far 
as Alaska (Pearse & Lockhart 2004). The ophiuroid 
Ophioscolex nutrix occurs in Antarctic shelves 
(Mortensen 1936) and in the Brazilian continental 
margin at depths greater than 1000m (Campos et al. 
2010). 

Evidence exists of fauna that entered the Southern 
Ocean deep regions from South America. For 
instance, Diaz et al. (2010) proposed that a possible 
scenario to explain the Sterechinus spp. evolutionary 
pathways between shallow and deep sea could have 
involved an initial separation between the Antarctic 
and Subantarctic species by the end of the Miocene (~ 
5 mya), and a later colonization of the deep ocean from 
the Subantarctic zone via Scotia Arc. Conversely, the 
Antarctic Circumpolar Current, the overall circulation 
complexity around the Antarctic Peninsula region, 
and the formation of Antarctic water masses that 
outflow from that region northwards (e.g., AIW and 
ADW) would allow pathways in reverse, providing 
grounds for Antarctic species to expand towards the 
north as proposed by some authors (Knox & Lowry 
1977, Pearse & Lockhart 2004). This South American 
‘invasion’ from Antarctic fauna through the deep 
ocean may have occurred principally during glacial 
maxima, where the continental ice sheets extended 
to the edge of the continental shelf in many areas of 
Antarctica (Thatje et al. 2005, Clarke 2008, Kaiser 
et al. 2010). 

Little detail is known about the majority of 
Antarctic benthic organisms, and only a few studies 
exists evaluating populations connectivity between 
the Southern Ocean and South American species 
(Hunter & Halanych 2008). In this sense, the shared 
species list shown here could be considered as target 
benthic taxa for molecular investigations of gene 
flows between populations from both continents.

The multivariate analyses showed that the overall 
echinoderm community from South America is 
statistically different from that of Antarctic regions. 
These communities’ differences are expected 
considering the unique Southern Ocean oceanographic 
features, such as the Polar Front as a dispersal barrier 
for many shallow benthic species. Conversely, the 

Drake Passage, its very deep ocean basins and the 
Scotia Arc combined with circulation patterns may 
enable free faunal exchange of eurybathic species.

A higher similarity was found between the 
echinoderm fauna from the South American tip and 
northern portion of western Antarctica than that 
observed between the southern Brazilian region and 
the tip of South America. This result suggests a clear 
turnover of species along the Atlantic South American 
margin from the Brazilian subtropical region towards 
temperate areas, mainly at Uruguay. This was 
supported by the cluster analysis, which showed that 
even though the Uruguayan margin grouped with 
the other regions from the South American cone, the 
similarity between them is less than 30%. 

The Magellan Strait and Magellanic Atlantic 
shelf, which extends from Rio de la Plata to Tierra del 
Fuego, have different topographic and oceanographic 
conditions, but also, both are different from the 
southern Chilean region from the Pacific coast 
(Montiel et al. 2005). Biogeographical studies using 
benthic invertebrates have also shown a turnover of 
species along the Chilean margin between the warm-
temperate Province, that extends until 42°S, and the 
cold-temperate Province, that extends until the Cape 
Horn 56°S in the pacific Ocean (e.g., Garth 1957, 
Bernasconi 1964, Desqueyroux-Faúndez 1994). 
Considering the Magellanic Region a single province, 
our results shows that the echinoderm fauna from this 
region had more affinities with the fauna from the 
Falkland/Malvinas Is. and the Argentinean Margin 
than that from the Southern Chilean. The continental 
margin from the South American cone is influenced 
by the Cape Horn Current, which surrounds the 
Magellanic Region and flows northwards reaching 
the Burdwood Banks and the Falkland shelf 
(Riemann-Zürneck 1991). These flows generate a 
relative homogeneous water mass pathway through 
these areas that could partly explain the distribution 
patterns observed, and so the northward flow of 
Cape Horn Current towards South America may 
transport echinoderm larvae and adults associated 
with algal wisps. This could be an important dispersal 
mechanism of echinoderm species as proposed by 
Fell (1962) and Smirnov (1990, 1992). 

Our data revealed that the Antarctic Peninsula, 
the South Shetland Is., South Orkney Is. and the 
Weddell Sea formed an outstanding group from other 
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Antarctic regions evaluated here. Similar results were 
found for mollusks species by Linse et al. (2006) 
in which South Georgia and South Sandwich stood 
as separate branch from that regions. An exclusive 
distribution of many anemone species represented 
a remarkable singularity in the Antarctic Peninsula 
and Weddell Sea regions (Rodriguez et al. 2007). 
Nevertheless, this was not the case for bryozoans and 
bivalves (Griffiths et al. 2009). It was evident from 
our study that the South Georgia, South Sandwich Is. 
represented transitions regions between Antarctica 
and South America.

The faunal resemblance of the Antarctic and South 
American continents and South Georgia was subject to 
debate in the literature. Zelaya (2005), using bivalves, 
included the South Georgia with the Antarctic 
regions. This was supported by Linse et al. (2006) and 
Griffiths et al. (2009) using mollusks and combined 
data of bryozoan and mollusks, respectively. Lovrich 
et al. (2005) studying decapods, and Ramos-Esplá et 
al. (2005) and Tatián et al. (2005) analyzing ascidian 
fauna suggested that the South Georgia would stand 
a transient position between South America and 
Antarctica. Our results support findings from these 
latter authors. Even though the island was grouped 
with the other Antarctic regions, it stood, with the 
South Sandwich Is., an outgroup from the Weddell 
Sea, South Orkney Is., South Shetland Is. and 
Antarctic Peninsula cluster. This resulted from a non-
restricted Antarctic species composition, including a 
South American signature in the echinoderm fauna of 
these islands, revealed by the proportions of shared 
species with the South American regions. The South 
Sandwich Is. are very young islands, probably no 
more than 5 mya (Baker 1990), tectonically active 
and surrounded by very deep trenches (Thomson 
2004). Kim and Thurber (2007) showed that the 
asteroids fauna from South Sandwich appear to be 
distinctively different from other Antarctic regions, 
but the result could be due the fact that the stations 
from these islands were deeper than others. 

Our results showed that the Bellingshausen Sea 
outgrouped is possibly related to the scarceness of 
data from this region, a fact that was attempted by 
Griffiths et al. (2010). The Bellingshausen Sea is older 
than the Scotia Sea and areas around the Antarctica 
Peninsula (Thomson 2004), so we should expect a 
higher number of species than these areas. The fact 

that the split of the Bellingshausen Sea is due a lack of 
data are also supported by the relative high proportion 
of shared species with the South American continent. 
This proportion was higher than the Weddell Sea (but 
probably because the far less number of species) and 
revealed that the region is not composed by a strict 
unique fauna. Future explorations probably will 
reveal that the Bellingshausen Sea has also a high 
number of species that are, in part, shared with other 
Antarctic regions and the South American continent.     

CONCLUSIONS 

This study assessed the connectivity between 
the Antarctic and South American continents using 
the echinoderm fauna. Around 17% of the Antarctic 
species were shared with South America. The 
percentage of shared species in South American 
regions (ex. Falkland/Malvinas Is., the Argentina 
margin and the Magellan Region) were sometimes 
more than half of the total species records. This result 
underlined the great overlap between the echinoderm 
fauna from the South American cone and, principally, 
the regions around the Antarctic Peninsula. The 
considerably low ratio between the number of shared 
and total species records from the Antarctic regions 
revealed that most of those species are most likely 
endemic to the Southern Ocean. The high species 
richness of the Antarctica Peninsula, South Shetland 
Is. and South Georgia is possibly a result from the 
highest sampling effort in these regions, a fact 
which may lead to mistakenly conclusions that these 
regions are definitely diversity hot spots, as reported 
for several invertebrate groups. And results shown 
here, in principal, would support this hypothesis. 
But care should be taken when analyzing metadata 
that were originally sampled from any region at 
different depths, using different gears, and different 
sampling designs. Besides, the Antarctic Peninsula 
and surrounding regions are tectonically active and 
their benthic communities more subject to frequent 
disturbances compared to other areas of Antarctica 
that split from the Gondwana at earlier stages, e.g., 
the East Antarctica in the Pacific section, which might 
effectively have highest diversity. 

The echinoderm fauna from the Brazilian 
margin were considered different from the tip of the 
continent, the latter showing more faunistic affinities 
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with the Antarctic regions. The Uruguayan margin 
represented a region of species assemblage turnover 
along the South American Atlantic margin. Also, 
the whole of the Magellanic region showed more 
affinities with the Argentinean Atlantic margin and 
the Falkland/Malvinas Is. than the southern Pacific 
Chilean margin.

South Georgia and the South Sandwich Is. are 
transitional positions between South American 
and Antarctic regions sharing species with both 
continents. The Weddell Sea, the South Shetland 
Is., the Antarctic Peninsula and the South Orkney 
Is. formed a well defined group within Antarctica. 
Distinct geological history and the tectonic activities 
play an important role in regulating the benthic faunal 
assemblage of these regions. The Bellingshausen Sea 
represented an isolated outgroup, possibly because of 
lowest sampling efforts in this region. 

Future explorations of the South American and 
Antarctic deep sea margins and basins could reveal a 
higher number of shared echinoderm species than that 
reported here. But, in any case, these comparisons 
should be backed up by taxonomic calibration and 
the use of molecular tools in order to distinguish 
cryptic species and evaluate genetic populations’ 
structure. These would lead to a better understanding 
of processes that determine biogeographical patterns. 
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