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ABSTRACT
 Population projection models have received much attention in ecology and made important theoretical 

advances in the last 50 years. They represent vital tools for improving conservation strategies and management 
actions. Here we attempt to join some of theoretical advances made in the field of population projection 
modelling, briefly revise the history and present some applications derived from population matrix models in 
ecological and evolutionary studies.
Keywords: Elasticity; life cycle; sensitivity; selection; vital rate.

RESUMO
O ESTADO DA ARTE DE MODELOS DE PROJEÇÃO POPULACIONAL: DA MATRIZ DE 

LESLIE À DEMOGRAFIA EVOLUTIVA.   Os modelos de projeção populacional receberam muita atenção 
na Ecologia e tiveram importantes avanços teóricos nos últimos 50 anos. Eles representam uma ferramenta 
vital para uma melhoria nas estratégias de conservação e ações de manejo.  Nesta revisão, abordamos a história 
do desenvolvimento dos modelos de matrizes populacionais, seus  avanços teóricos, e também apresentamos 
algumas aplicações dos modelos em estudos ecológicos e evolutivos.
Palavras-chave: Elasticidade; ciclo de vida; sensibilidade; seleção; taxa de vida.

RESUMEN
ESTADO DEL ARTE DE LOS MODELOS DE PROYECCION POBLACIONAL: DESDE LA 

MATRIZ DE LESLIE A LA DEMOGRAFIA EVOLUTIVA. Los modelos de proyección poblacionales 
han recibido mucha atención en ecología y han generado importantes avances teóricos en los últimos 50 
años. Representan herramientas vitales para mejorar las estrategias de conservación y las acciones de manejo. 
Aquí intentamos reunir algunos de los avances teóricos hechos en el campo de los modelos de proyección 
poblacional, revisar brevemente la historia y presentar algunas aplicaciones derivadas de los modelos 
poblacionales matriciales en estudios ecológicos y evolutivos.
Palabras clave: Elasticidad; ciclo de vida; sensibilidad; selección; tasa vital. 

INTRODUCTION

Demographic studies have evolved to be essential 
to the understanding of evolutionary outcomes of 
natural populations (Fisher 1930, Cole 1954, Caswell 
2001, Coulson et al. 2010, Jonzén et al. 2010, 

Tuljapurkar 2010, Carslake et al. 2008), yet prior to 
the 1930s, demography was still a discrete discipline 
in relation to evolution. Important connections 
between demographic and evolutionary fields were 
established using matrix population models (ex. 
van Tienderen 2000) since they establish a bridge 
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between population fitness, an evolutionary feature, 
and population demographic rates, which influence 
this fitness. This method is not new, dating back to 
Leslie (1945), but it is a demographic analysis tool 
of animal populations that has been transformed 
by an impressive number of improvements and 
modifications, rendering it an indispensable 
modern tool for ecological analysis. Here we 
attempt to combine some theoretical and analytical 
developments made in the field and present some 
applications derived from population matrix models 
in ecological and evolutionary studies after the initial 
appearance of population matrix modelling. 

POPULATION PROJECTION MODELS

Population projection models (PPMs) represent 
a vital tool for planning conservation strategies and 
improving the management of endangered plant and 
animal species by identifying critical vital rates, or 
those that can most effectively cause an increase in 
population size (Baxter et al. 2006, Heppell 1998, 
Caswell 2001, Van der Voort & McGraw 2006); 
however, the same analysis might be used to decelerate 
the growth rate of an invasive or exotic species, or be 
applied for biological control purposes (Shea et al. 
2005, Neubert & Caswell 2000). PPMs have been 
used for studying human populations as well (ex. 
Cohen 1979). The beauty of PPMs lies in the change 
in focus from the individual to the population’s state, 
by presuming that a population can be meaningfully 
classified into stages (or classes), where individuals 
of the same stage (or class) share equal demographic 
parameters. Such a model is typically represented by 
the following equation: 

                             x(t+1)=Ax(t) 		                 (1)

where A represents the population projection matrix 
(PPM), i.e. a matrix containing the transition rates 
between life-cycle stages (or age classes). When i=3, 
the equation 1 is equivalent to:

			   	

(2)

In this case, where individuals are classified 
according to age classes, the elements denoted as 0 
represent the impossible transitions and the matrix in 
equation 2 is called the Leslie matrix (Leslie 1945). 
The Fi elements correspond to fecundity rates and 
the Pi elements to probabilities of surviving from 
one class to the other. A more general case where all 
the transitions (including reverse) between stages 
are possible, since the classification is established 
based on the organism’s life stages, is referred to as 
the Lefkovich matrix (Lefkovich 1965). In a species 
where ni,t individuals are classified into i life stages 
at a certain time t, the number of individuals in time 
t can be projected to the following interval t+1 and 
the system of equations describing this may be joined 
into the following generic matrix notation:
			                                            (3)

where s is the maximum number of stages, xi is the 
number of individuals in each stage in either time 
t or t+1, and ap,i,t are the coefficients of matrix A, 
representing the transitional rates between stages (p 
stands for a specific stage) (Lefkovitch 1965). Such 
a matrix is more appropriate for organisms where an 
individual can regress in a state, which is impossible 
when classified according to age. Some organisms 
are difficult or even impossible to classify according 
to age. Therefore size may be a more appropriate 
classificatory criterion, especially in organisms where 
vital rates, such as survival and fecundity, are less 
related to age and more to the size of an individual.

In the PPMs, time is incorporated by the variable 
t, and it is usually measured in years or reproductive 
intervals, depending on the species studied. Yet, the 
nature of the PPMs can vary and the different PPMs 
grade the matrix population models into distinct 
classes (Figure 1): if PPM A is constant, the resulting 
population projection model is a time-invariant linear 
system of difference equations (1). This means that 
survival and reproduction are constant parameters. 
Such a model is also autonomous, since it incorporates 
no exogenous variables (McCarthy et al. 2008). If A 
is not constant (which is a more realistic scenario for 
natural populations), the variation in its transition rates
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Figure 1. Matrix population models resulting from the different types 
of variability included in the population projection matrix (PPM) (from 

Caswell 2001, pp 9). 

may be due to endogenous effects of a population on 
itself (where a factor affects the population while it 
is being affected by the population as well) or due 
to exogenous factors, external to the population 
(such as the climate conditions, for example). 
The corresponding matrix population model for 
incorporating an external factor would thus include 
environmental variation, which can be deterministic 
or stochastic, but the model still remains a linear 
model. In this model, each transition between 
life-cycle stages within the matrix can vary as a 
function of time. However, there are different types 
of external variations that an exogenous factor may 
cause: 1) deterministic (predictable) and 2) stochastic 
(unpredictable), which can be further separated into 
3) periodic (fluctuating), and 4) aperiodic (Figure 1). 

A linear PPM assumes that a population under 
study has constant demographic parameters and that 
the population growth is not dependent upon the 
population abundance or density at any time. Such 
models can be useful in a constant environment 
(Caswell 2001), and for example in some populations 
where population size is below the carrying capacity. 
Such a scenario is advocated especially for endangered 
species, since, if supposing their population size is 
reduced, the endogenous factors would be less likely 
to be operating (Grant & Benton 2000), as compared 
to large sized populations reaching their carrying 
capacity, where such a factor would be more likely 
to operate. The importance of endogenous factors 
in population dynamics has been a point of strong 
debate among ecologists (Sibly et al. 2005); however, 

the main reason for the rare incorporation of them 
into demographic models is probably the difficulty 
in obtaining demographic data that can detect their 
functioning (Grant & Benton 2000).

A model becomes non-linear when variation 
caused by endogenous factors is included, which 
allows for the transition rates of the PPM to be a 
function of the population itself (vector x in eq. 1). 
The equation of the PPM that contains an endogenous 
factor can be represented as:

                  x(t+1)=Axx(t) 			   (4)

Where Ax denotes that the matrix A is a function 
of a factor endogenous to the population. However, 
in many animal (and plant, as well as in human) 
populations the vital rates can depend on the sex, 
rather than on density of the whole population. It is 
not rare that males present higher mortality rates than 
females, and in such cases, the frequency-dependence 
can be incorporated into the PPM in a similar manner 
as functioning of an endogenous factor. It depends 
entirely upon the function to which you constrain 
matrix A; however, usually including such factors 
of any kind results in complex dynamics, which are 
difficult to interpret.

Throughout the 20th century, two approaches 
have held sway in ecology: the first propose density-
dependent factors and processes (ex. intra-specific 
competition for resources) as the main driving forces 
for population dynamics (Nicholson 1933), and the 
second propose the density-independent factors 
(ex. climate) as the principal population regulatory 
forces (Andrewartha & Birch 1954). New revisions 
of anterior concepts based on empirical evidence 
joining the two previous approaches have emerged, 
proposing a synergism of endogenous and exogenous 
factors in studies of population dynamics (Murdoch 
1994, Turchin 1995, Leirs et al. 1997, Grenfell et al. 
1998, Lima et al 2001a, Lima et al 2001b, Lima et 
al. 2002). PPMs conveniently offer an alternative of 
integrating both types of factors into a system of non-
homogeneous non-linear equations:

                 x(t+1)=Ax,tx(t) 	 (5)

but may sometimes be difficult to interpret (Caswell 
2001). 
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APPLICATIONS OF POPULATION 
PROJECTION MODELS 

Two pioneers in the use of the population projection 
models were E.G. Lewis (1942), contributing to 
a discussion on population growth rate, and P.H. 
Leslie (1945) commonly given even more credit 
for studying fertility and mortality patterns through 
projection models. As a legacy to the latter, the name 
of the quadratic matrix, representing the growth of 
an age-structured population where only the first 
row (fertilities) and the sub-diagonal elements 
(survival probabilities) are non-zero, was named the 
Leslie matrix. Both Lewis and Leslie independently 
introduced the idea of projecting a structured 
population size in discrete steps in the future. Some 
extensions of the use of PPMs were published in 
1959 by Williamson, Usher (1966) and some years 
later, Lefkovich (1965) added an important attribute 
by grouping individuals by stage categories (rather 
than by age as in the Leslie matrix), since his study 
objects were insects. Bosch (1971) extended the use 
of Lefkovich matrices in tree populations.

Another gratifying characteristic of the population 
projection models is equalizing the dominant 
eigenvalue of the PPM with the population growth 
rate, λ . If population growth is described by a PPM A, 

the eigenvalues λ (i) and the right and left eigenvectors 
(w(i) and v(i), respectively) of matrix A should satisfy

A w(i) = l(i) w(i)

v(i)CCTA= l(i) v(i),
Where CCT stands for a complex conjugate 

transpose of vector x (Caswell 1996). Among i 
eigenvalues, the highest real positive value (the 
dominant eigenvalue) represents the rate at which a 
population grew in a defined time interval. 

The long-term population growth rate is 
frequently a desirable variable to estimate, and at this 
point we should note that there are different ways 
of representing the PPM and solving the system of 
linear equations, which makes the method even more 
accessible. Here, the life-cycle graph analysis turned 
out to be a useful analytical expansion since a PPM 
can be easily transformed into a self-explanatory 
life-cycle graph, which represents the probability 
of transitions between stages or age classes equally 
(Hubbell & Werner 1979, Ebert 1999). An example 
of a Leslie matrix (2) transformed into a three-node 
life cycle for a hypothetical three age-class organism 
is represented in Figure 2. Transitions a, and b 
correspond to survival from class 1 to class 2 and 
class 2 to class 3, respectively, while transitions c, d, 
and e correspond to fecundity rates, Fi in the matrix 
of equation 2. 

Figure 2. A life cycle derived from a 3x3 Leslie matrix for a hypothetical organism. Transitions a and b correspond to survival parameters, and 
transitions c, d and e to fecundity parameters.

For example, the element in the matrix position 
[1,3] (first line third column, F3 in this case) will 
represent an incoming transition to the first class from 
the third class, and is represented in Figure 1 as the 
transition c. 

A life-cycle graph is especially useful for 
complicated life cycles, and all the transitions can be 

seen, whereby all the time intervals must be compatible 
between each other (equal or proportional) – which is 
an important premise of any PPM as well (Caswell 
2001). Through a life-cycle graph a characteristic 
polynomial equation for the population growth rate 
may be derived. The same equation may be obtained 
by rearranging the Euler equation (Ebert 1999):
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If we have, for example, a four age class organism, 
x=1,2,3,4, and er=l,

then the characteristic equation may have a form of

where the lx are the products of Pi. Once we have 
the characteristic equation for λ, we can distinguish 
those components of the life-cycle graph that have 
the highest first partial derivatives with respect to 
population growth rate.  In other words, to which 
component (or matrix element) the dominant 
eigenvalue (λ) is most sensitive to. Each matrix 
entry has a positive effect on the population rate of 
increase, λ (Caswell 2001). So, sensitivities, δλ/δaij, 
represent the first-order derivatives of the population 
growth rate with respect to each matrix element (aij), 
and as such, quantify the impact of changes in aij on λ

Another important measure for population 
analysis is the elasticity (Kroon et al. 1986), which 
can be obtained as:

 or   

These measures are scaled and quantify the 
proportional increase of λ with an increase of a certain 
character aij. Allowing proportional comparisons 
between survival and fecundity makes elasticities 
particularly useful (de Kroon et al. 2000), because 
fecundity data normally does not fall within the 0-1 
interval. Such comparison would not be possible 
without a relative measure (Ebert 1999). Also, a life-
cycle graph has an additional practical characteristic: 
it can be further subdivided into separate loops, each 
one representing reproduction events at different 
stages of age classes (van Groenendael et al. 1994). 
As such, a characteristic elasticity can be identified 
for each loop, which permits us to identify those 
reproductive loops that are proportionally most 
influential on a population growth rate. 

Sensitivity and elasticity analysis have been 
frequently used for plants (ex. Ramula 2008, Ehrlén 

2003) and have also been commonly used with 
animals, for turtle demography (Heppel 1996, 1998), 
fish (Bronikowski et al. 2002), birds (Steen & Erikstad 
1996, Clark & Martin 2007, Wisdom et al. 2000) and 
mammal populations (Heppel et al. 2000, Zeoli et al. 
2008, Gerber et al. 2004, Nilsen et al. 2009, Brault & 
Caswell 1993, Gaillard & Yoccoz 2003).

THE APPLICATION OF PPMs IN 
THE CONTEXT OF EVOLUTIONARY 
DEMOGRAPHY 

Sensitivities reveal important demographic 
information; however, they assume no correlation 
between elements in the Leslie matrix, and are as 
such, described by Stearns (1992) as direct selection 
pressures. Elasticity analysis can provide insights 
into the strength of direct selective pressures on 
age-specific vital rates (van Tienderen 2000, Benton 
& Grant 2000, Rose et al. 2002), but Caswell 
(2001) argues that selective pressures should not be 
represented by elasticities, but rather by sensitivities, 
which are represented by partial derivatives of 
population growth rate. “Sensitivities, not elasticities, 
appear in the evolutionary calculations” (Caswell 
2001, p. 295) and taking elasticities as selection 
gradients can result in erroneous interpretations 
of the roles that certain vital rates or traits have in 
the life history of an organism, since elasticities 
would consider any vital rate with value of 0.00 as 
selectively neutral, which may not always be the case. 
For example, future fecundity for most animals has 
a value of 0.00, thus, a resulting zero elasticity, but 
may have non-zero sensitivity, and thus may not be 
selectively neutral. 

One of the measures of the population’s fitness 
is its rate of increase, λ (Caswell 2001) and the 
sensitivity of λ to a certain trait can be interpreted as 
the intensity of selection on that trait. However, the 
strength of selection pressure acting on a given life 
history trait is determined by all “surrounding” life 
history traits and by phenotypic relationships among 
them (Stearns 1992). Thus, the sensitivities can be 
called situational (in the sense that they ignore the 
surrounding traits and their correlation) and hence, 
second derivatives of finite population growth rate 
are biologically interesting to calculate (Caswell 
1996). 
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Second-order derivatives permit distinguishing 
between the different types of selection acting on 
a certain trait. The self-partial derivative of form 
∂2λ/∂a2

ij represents the relationship between the 
sensitivity of a matrix element (∂λ /∂aij) and itself (aij). 
If negative, it indicates a concave type of selection, 
corresponding to a stabilizing selection in the case 
of a single trait, forcing the trait to remain close to 
its mean. If positive, it indicates convex selection 
(corresponding to disruptive selection), forcing the 
variance in a trait or vital rate to increase (Caswell 
2001, McCarthy et al. 2008).

However, selection acts on variations of a certain 
trait as well as on its mean, and any evolutionary 
demographic analysis should include an analysis 
of variations of the traits (Benton & Grant 1996, 
Gaillard & Yoccoz 2003, Tuljapurkar 2010, Phillips 
& Arnold 1989, Pfister 1998). It may be induced 
via demographic stochasticity or environmental 
stochasticity/variability (Kendall 1998, Saether et 
al. 1998, Drake 2005). Valuable contributions of 
demography population studies, by considering 
environments random, were made by Tuljapurkar 
(1989, 2010, Tuljapurkar et al 2003, Tuljapurkar & 
Orzack 1980). Depending on the environment as well 
as the species characteristics; deterministic, stochastic, 
or both population growth rates should be considered, 
since the stochastic type accounts for the population’s 
growth rate in all possible environments (Tuljapurkar 
et al. 2003). The deterministic formulations can be 
useful when the stochastic effects are minimized or 
absent; however, wherever there is some evidence 
for stochasticity, it can be incorporated into the 
calculation of population growth rate.

One example of incorporating stochasticity into 
a population growth rate calculation was shown 
by Doak et al. (2005), where the authors report an 
approximation of the log stochastic population 
growth rate, log λS:

where
 

The τ is calculated based on correlations between 
matrix elements and their standard deviations, rather 
than covariances. To determine which component of 

variation contributes most to the stochastic population 
growth rate, the sensitivity and elasticity of the growth 
rate to variation in matrix elements can be obtained, 
as well as the sensitivity and elasticity of the growth 
rate to the correlation between matrix elements (Doak 
et al. 2005).

Variability will influence a population’s fitness 
negatively, since the more variable a life history 
stage is, the less it contributes to population growth 
rate (Pfister 1998). If variability is selectively 
disadvantageous (Gaillard & Yoccoz 2003), fitness 
components with a variation that influences the 
population growth rate will suffer selection against 
variation (canalization). The different effects of 
selection on variation in a trait can be inferred as 
described by Caswell (2001) through the self-partial 
derivatives. If we take an example of a single trait, 
stabilizing selection will reduce the variance of the 
trait under selective pressure, while a disruptive 
type of selection will force the variation to increase, 
leading away from the trait mean (Caswell 2001, 
Carslake et al. 2008). Disruptive selection after some 
generations may thus result in divergent phenotypic 
extremes within the population. However, variation 
may be induced or prevented by other means too; in 
some cases species may even respond evolutionarily 
to human disturbances originating from removal of 
the population (ex. Mangel 2006). 

CONCLUSION

Population matrix models have grown increasingly 
important in Ecology studies after much development 
since the first Leslie Matrix. They provide a wide 
range of applications since they have undergone 
thorough analytical development and their utility 
in, for example, conservation biology, is not trivial. 
When aiming to intervene in the growth rate of a 
certain population (either to increase or decrease it), 
the sensitivity and elasticity analysis of population 
matrix models can contribute to assembling efficient 
management strategies, since they identify the 
targets that influence the population growth rate most 
critically (thus possibly cause most efficient change 
on the population with less cost) (Caswell 2000). The 
advantage of modelling a stage (or age) structured 
population have been extended not only into 
identifying specific management targets, but also in 
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a wide spectrum of possible applications, especially 
in evolutionary demographic research. Evolutionary 
implications inferred form convex or concave shapes 
of the growth rate function, taking into account 
that evolution may occur on a shorter time scale 
(Stockwell et al. 2003). They may also have strong 
implications for biodiversity conservation, since they 
provide detailed insight into the life history dynamics 
of a population under study, and may thus be the basis 
for well-informed decisions. 

ACKNOWLEDGEMENT: We wish to thank A. M. Marcondes for 
administrative help. The study was financed by CNPq, FAPERJ, 
CAPES and CAPES/PNPD. AcademicEnglishSolutions.com revised 
the English.

REFERENCES

ANDREWARTHA, H.G. & BIRCH, L.C. 1954. The distribution 

and abundance of animals. University of Chicago Press, 

Chicago, IL. 782p.

BENTON, T.G. & GRANT, A. 1996. How to keep fit in the 

real world? Elasticity analyses and Selection pressures on Life 

Histories in a variable environment. The American Naturalist, 

147: 115-139, http://dx.doi.org/10.1086/285843

BENTON, T.G. & GRANT, A. 2000. Evolutionary fitness in 

ecology: comparing measures of fitness in stochastic density-

dependent environments. Evolutionary Ecology Research, 2: 

769-789. 

BAXTER, P.W.J.; MCCARTHY, M.A.; POSSINGHAM, H.P.; 

MENKHORST, P.W. & MCLEAN, N. 2006. Accounting for 

Management Costs in Sensitivity Analyses of Matrix Population 

Models. Conservation Biology, 20: 893-905, http://dx.doi.

org/10.1111/j.1523-1739.2006.00378.x

BERRYMAN, A. 1999. Principles of population dynamics 

and their application. Stanley Thornes Publishers Ltd., 

Cheltenham. 243p.

BOSCH, C.A. 1971. Redwoods: a population model. Science, 

172: 345-349, http://dx.doi.org/10.1126/science.172.3981.345

BRONIKOWSKI, A.;CARK, M.; RODD, F.H. & 

REZNICK, D.N. 2002. Population-Dynamic Consequences 

of Predator-Induced Life History Variation in the Guppy 

(Poecilia reticulata). Ecology, 83: 2194-2204, http://dx.doi.

org/10.1890/0012-9658(2002)083[2194:PDCOPI]2.0.CO;2

BRAULT, S. & CASWELL, H. 1993. Pod-Specific Demography 

of Killer Whales (Orcinus Orca). Ecology, 74: 1444-1454, http://

dx.doi.org/10.2307/1940073.

COHEN, J.E. 1979. Ergodic theorems in demography. Bulletin 

of the American Mathematical Society, 1: 275-295, http://dx.doi.

org/10.1090/S0273-0979-1979-14594-4

COLE, L.C. 1954. The population consequences of life history 

phenomena. Quarterly Review of Biology, 19: 103-137, http://

dx.doi.org/10.1086/400074

CARSLAKE, D.; TOWNLEY, S. & HODGSON, D.J. 2008. 

Nonlinearity in eigenvalue-perturbation curves of simulated 

population projection matrices. Theoretical Population Biology, 

73: 498-505, http://dx.doi.org/10.1016/j.tpb.2008.03.004

CASWELL, H. 1996. Second Derivatives of Population Growth 

Rate: Calculation and Applications. Ecology, 77: 870-879, http://

dx.doi.org/10.2307/2265507 

CASWELL, H. 2001. Matrix Population Models. Construction, 

analysis and interpretation. Sinauer Associates Inc., Sunderland, 

MA. 722p.

CLARK, M.E. & MARTIN, T.E. 2007. Modeling tradeoffs in 

avian life history traits and consequences for population growth. 

Ecological Modeling, 209: 110-120, http://dx.doi.org/10.1016/j.

ecolmodel.2007.06.008

COULSON, T.; TULJAPURKAR, S.; & CHILDS, D.Z. 2010. 

Using evolutionary demography to link life history theory, 

quantitative genetics and population ecology. Journal of Animal 

Ecology, 79: 1226-1240, http://dx.doi.org/10.1111/j.1365-

2656.2010.01734.x 

DRAKE, J. 2005. Density-dependent demographic variation 

determines extinction rate of experimental populations. 

PloS Biology, 3(7): e222,  http://dx.doi.org/10.1371/journal.

pbio.0030222

EBERT, T.A. 1999. Plant and animal populations. Methods in 

demography. Academic Press, San Diego, CA. 312p.

EHRLÉN, J. 2003. Fitness components versus total demographic 

effects: evaluating herbivore impacts on a perennial herb. American 

Naturalist, 162: 796-810, .http://dx.doi.org/10.1086/379350

FISHER, R.A. 1930. The Genetical Theory of Natural Selection. 

Clarendon Press, Oxford.



KAJIN, M. et al.

Oecol. Aust., 16(1): 13-22, 2012

20

GAILLARD, J.M. & YOCCOZ, N.G. 2003. Temporal variation 

in survival of mammals: A case of environmental canalization? 

Ecology, 84: 3294-3306, http://dx.doi.org/10.1890/02-0409

GERBER, L.R.; TINKER, M.T.; DOAK, D.F.; ESTES, J.A. & 

JESSUP, D.A. 2004. Mortality Sensitivity in Life-Stage Simulation 

Analysis: A Case Study of Southern Sea Otters. Ecological 

Applications, 14: 1554-1565, .http://dx.doi.org/10.1890/03-5006

GRANT, A. & BENTON, T.G. 2000. Elasticity Analysis for density-

dependant populations in stochastic environments. Ecology, 81: 

680-693, http://dx.doi.org/10.1890/0012-9658(2000)081[0680:EA

FDDP]2.0.CO;2

GRENFELL, B.T.; WILSON, K.; FINKENSTAEDT, B.F.; 

COULSON, T.N.; MURRAY, S.; ALBON, S.D.; JONZEN, N.; 

POPLE, A.R.; GRIGG, G.C. & POSSINGHAM, H.P. 2005. 

Of sheep and rain: large-scale population dynamics of the red 

kangaroo. Journal of Animal Ecology, 74: 22-30, http://dx.doi.

org/10.1111/j.1365-2656.2005.00915.x

GROENENDAEL, VAN J.; DE KROON, H.; KALISZ, S. & 

TULJAPURKAR, S. 1994. Loop analyses: evaluating life-history 

pathways in population projection matrices. Ecology, 75: 2410-

2415, http://dx.doi.org/10.2307/1940894

HEPPELL, S.S. 1998. Application of Life-History Theory and 

Population Model Analysis to Turtle Conservation. Copeia, 1998: 

367-375, http://dx.doi.org/10.2307/1447430

HEPPELL, S.S.; CROWDER, L.B. & CROUSE, D.T. 1996. 

Models to Evaluate Headstarting as a Management Tool for 

Long-Lived Turtles. Ecological Applications, 6: 556-565, http://

dx.doi.org/10.2307/2269391

HEPPELL, S.S.; CASWELL, H. & CROWDER, L.B. 2000. 

Life Histories and Elasticity Patterns: Perturbation Analysis for 

Species With Minimal Demographic Data. Ecology, 81: 654-

665, http://dx.doi.org/10.1890/0012-9658(2000)081[0654:LHA

EPP]2.0.CO;2

HUBBELL, S.P. & WERNER, P.A. 1979. On measuring the 

intrinsic rate of increase of populations with heterogeneous 

life histories. American Naturalist, 113: 277-293, http://dx.doi.

org/10.1086/283385

JONZÉN, N.; POPLE, T.; KNAPE, K. & SKJÖLD (2010). 

Stochastic demography and population dynamics in the red 

kangaroo Macropus rufus.  Journal of Animal Ecology, 79: 109-

116, http://dx.doi.org/10.1111/j.1365-2656.2009.01601.x

KROON, H. DE;  VAN GROENENDAEL, J. & EHRLEN, J. 2000. 

Elasticities: A review of methods and model limitations. Ecology, 81: 

607-618, http://dx.doi.org/10.1890/0012-9658(2000)081[0607:EAR

OMA]2.0.CO;2

LEIRS, H.; STENSETH, N.C.; NICHOLS, J.D.; HINES, 

J.E.; VERHAGEN, R. & VERHEYEN, W. 1997. Stochastic 

seasonality and non-linear density-dependent factors regulate 

population size in an African rodent. Nature, 389: 176-180, . 

http://dx.doi.org/10.1038/38271

LEWIS, E.G. 1942. On the generation and growth of a population. 

Sankhya: The Indian Journal of Statistics, 6: 93-96.

LIMA, M.; JULLIARD, R.; STENSETH, N.C. & F.M. 

JAKSIC. 2001a. Demographic dynamics of a neotropical small 

rodent (Phyllotis darwini): feedback structure, predation and 

climate. Journal of Animal Ecology, 70: 761-775,  http://dx.doi.

org/10.1046/j.0021-8790.2001.00536.x

LIMA, M.; STENSETH, N.C.; JOCCOZ, N.G. & F.M. JAKSIC. 

2001b. Demography and population dynamics of the mouse 

opossum (Thylamys elegans) in Semiarid Chile: feedback 

structure and climate. Proceedings of the Royal Society of 

London, Series B, 268: 2053-2064, http://dx.doi.org/10.1098/

rspb.2001.1735

LIMA, M.; MERITT, J.F. & F. BOZINOVIC. 2002. Numerical 

fluctuations in the Northern Short-tailed Shrew: Evidence of 

non-linear feedback signatures on population dynamics and 

demography. Journal of Animal Ecology, 71: 156-172, http://

dx.doi.org/10.1046/j.1365-2656.2002.00597.x

KENDALL, B.E. 1998. Estimating the magnitude of 

environmental stochasticity in survivorship data. Ecological 

Applications, 8: 184-193, http://dx.doi.org/10.1890/1051-

0761(1998)008[0184:ETMOES]2.0.CO;2

LEFKOVITCH, A. 1965. The Study of Population Growth 

in Organisms Grouped by Stages. Biometrics, 21: 1-18, http://

dx.doi.org/10.2307/2528348

LESLIE, P.H. 1945. On the use of matrices in certain population 

mathematics. Biometrika, 33: 183-212, http://dx.doi.org/10.1093/

biomet/33.3.183 

MANGEL, M. 2006. The Theoretical Biologist’s Toolbox. 

Quantitative Methods for Ecology and Evolutionary Biology. 

Cambridge University Press, Cambridge. 390p. 

MCCARTHY, D.; TOWNLEY, S. & HODGSON, D. 2008. On 

second order sensitivity for stage-based population projection 

matrix models. Theoretical Population Biology, 74: 68-73, http://

dx.doi.org/10.1016/j.tpb.2008.04.008



THE STATE OF THE ART OF POPULATION PROJECTION MODELS

Oecol. Aust., 16(1): 13-22, 2012

21

MURDOCH, W.W. 1994. Population regulation in theory and 

practice. Ecology, 75: 271-287, http://dx.doi.org/10.2307/1939533 

NEUBERT, M.G. & CASWELL, H. 2000. Demography and 

dispersal: calculation and sensitivity analysis of invasion speed 

for structured populations. Ecology, 81:1613-1628, http://dx.doi.

org/10.1890/0012-9658(2000)081[1613:DADCAS]2.0.CO;2 

NICHOLSON, A.J. 1933. The balance of animal populations. 

Journal of Animal Ecology, 2: 132-178, http://dx.doi.

org/10.2307/954 

NILSEN, E.B.; GAILLARD, J.M.; ANDERSEN, R.; ODDEN, J.; 

DELORME, D.; VAN LAERE, G. & LINNELL, J.D.C. 2009. A 

slow life in hell or a fast life in heaven: Demographic analyses of 

contrasting roe deer populations. Journal of Animal Ecology, 78: 

585-594, http://dx.doi.org/10.1111/j.1365-2656.2009.01523.x

PFISTER, C.A. 1998. Patterns of variance in stage-structured 

populations: Evolutionary predictions and ecological 

implications. Proceedings of National Academy of Science, 95: 

213-218, http://dx.doi.org/10.1073/pnas.95.1.213

PHILLIPS, P.C. & ARNOLD, S.J. 1989. Visualizing 

Multivariate Selection. Evolution, 43: 1209-1222, http://dx.doi.

org/10.2307/2409357

RAMULA, S. 2008. Responses to the timing of damage in an 

annual herb: Fitness components versus population performance. 

Basic and Applied Ecology, 9: 233-242, http://dx.doi.

org/10.1016/j.baae.2007.02.006

ROSE, K.E.; REES, M. & GRUBB, P.J. 2002. Evolution in the 

real world: stochastic variation and the determinants of fitness in 

Carlina vulgaris. Evolution, 56: 1416-1430.

SÆTHER B.E.; ENGEN S.; ISLAM A.; MCCLEERY R. & 

PERRINS, C. 1998. Environmental stochasticity and extinction 

risk in a population of a small songbird, the great tit. American 

Naturalist, 151: 441-450, http://dx.doi.org/10.1086/286131

SHEA, K.; KELLY, D.; SHEPPARD, A.W. & WOODBURN, 

T.L. 2005. Context-Dependent Biological Control of an Invasive 

Thistle. Ecology, 86: 3174-3181, http://dx.doi.org/10.1890/05-

0195 

SIBLY, R.M.; BARKER, D.; DENHAM, M.C.; HONE, J. & 

PAGEL, M. 2005. On the regulation of populations of mammals, 

birds, fish, and insects. Science, 309: 607-610, http://dx.doi.

org/10.1126/science.1110760

STEARNS, S.C. 1992. The Evolution of Life Histories. Oxford 

University Press, London. 249p.

STEEN, H. ERIKSTADT, K.E. 1996. Sensitivity of willow 

grouse Lagopus lagopus population dynamics to variations in 

demographic parameters. Wildlife Biology, 2: 27-35.

STOCKWELL, C.A.; HENDRY, A.P. & KINNISON, M.T. 2003. 

Contemporary evolution meets conservation biology. Trends in 

Ecology and Evolution, 18: 94-101, http://dx.doi.org/10.1016/

S0169-5347(02)00044-7

TIENDEREN, VAN, P.H. 2000). Elasticities and the link between 

demographic and evolutionary dynamics. Ecology, 81: 666-679, 

http://dx.doi.org/10.1890/0012-9658(2000)081[0666:EATLBD]

2.0.CO;2 

TULJAPURKAR, S. 1989. An uncertain life: Demography in 

random environments. Theoretical Population Biology, 76: 179-

188, http://dx.doi.org/10.1016/0040-5809(80)90057-X

TULJAPURKAR, S. & ORZACK, S.H. 1980. Population 

dynamics in variable environments. I. Long-run growth rates and 

extinction. Theoretical Population Biology, 18: 314-342.

TULJAPURKAR, S.; HORVITZ, C.C. & PASCARELLA, J.B. 

2003. The many growth rates and elasticities of populations in 

random environments. The American Naturalist, 162: 489-502, 

http://dx.doi.org/10.1086/378648

TULJAPURKAR, S. 2010. Environmental variance, population 

growth and evolution. Journal of Animal Ecology, 79: 1-3, http://

dx.doi.org/10.1111/j.1365-2656.2009.01619.x

TURCHIN, P. 1995. Population regulation: old arguments and 

a new synthesis. Pp. 19-40. In: N. Cappuccino & P.W. Price 

(eds.). Population Dynamics: New Applications and Synthesis. 

Academic Press, New York, NY. 429p. 

USHER, M.B. 1966. A matrix approach to the management 

of renewable resources, with special reference to selection 

forests. Journal of Applied Ecology, 3: 355-367, http://dx.doi.

org/10.2307/2401258

VAN DER VOORT, M. & MCGRAW, J. 2006. Effects of 

harvester behavior on population growth rate affects sustainability 

of ginseng trade. Biological Conservation, 130: 505-516, http://

dx.doi.org/10.1016/j.biocon.2006.01.010

VANDERMEER, J.H. 1975. On the Construction of the Population 

Projection Matrix for a Population Grouped in Unequal Stages. 

Biometrics, 31: 239-242, http://dx.doi.org/10.2307/2529726

WILLIAMSON, M.H. 1959. Some extensions of the use 

of matrices in population theory. Bulletin of Mathematical 

Biophysics, 21: 13-17, http://dx.doi.org/10.1007/BF02476455



KAJIN, M. et al.

Oecol. Aust., 16(1): 13-22, 2012

22

WISDOM, M.J.; MILLS, L.S. & DOAK, D.F.  2000. Modeling 

tradeoffs in avian life history traits and consequences for 

population growth. Ecology, 81: 628-641, http://dx.doi.

org/10.1890/0012-9658(2000)081[0628:LSSAEV]2.0.CO;2

ZEOLI, L.F.; SAYLER, R.D. & WIELGUS, R. 2008. Population 

viability analysis for captive breeding and reintroduction of the 

endangered Columbia basin pygmy rabbit. Animal Conservation, 

11: 504-512, http://dx.doi.org/10.1111/j.1469-1795.2008.00208.x

Submetido em 01/04/2011
Aceito em  03/10/2011


