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RESUMEN 

La energía solar es una de las tecnologías más prometedoras y desarrolladas de los últimos años, debido a su 

alta eficiencia y bajo costo. En este sentido, las celdas solares de tipo perovskita han sido el foco de atención 

de la comunidad científica mundial. El objetivo principal de este trabajo es presentar un análisis de diversas 

investigaciones reportadas sobre la síntesis y desarrollo de películas fotoactivas de perovskita ABX3 para 

celdas solares, con énfasis en el efecto que la temperatura y la humedad tienen sobre la estabilidad de su es-

tructura química y cristalina de la perovskita inorgánica ABX3. En cuanto a la estructura de las celdas foto-

voltaicas basadas en perovskitas inorgánicas tipo ABX3, se presenta un análisis sobre los materiales de los 

que están conformadas y sobre la mejora de la eficiencia (PCS), factor de llenado (FF), densidad de corriente 

a corto circuito (Jsc) y del voltaje a circuito abierto (Voc) de estos dispositivos. A manera de conclusión, se 

presenta una relación de los métodos, variables de síntesis y tipo de perovskita inorgánica utilizados para el 

desarrollo de dispositivos fotovoltaicos con las mejores eficiencias; también se resaltan las tendencias hacia 

las que se dirige esta área importante de la ciencia. 

Palabras clave: Perovskitas inorgánicas, propiedades optoelectrónicas, estabilidad química, estructura crista-

lina, métodos de obtención. 

ABSTRACT 

Solar energy is one of the most promising and developed technologies in recent years, due to its high effi-

ciency and low cost. Perovskite-type solar cells have been the focus of attention by the world scientific com-

munity. The main objective of this article is to present an (PSCs) analysis of the various investigations re-

ported on the development of ABX3 inorganic halide perovskite-based solar cells, with emphasis in the effect 

that temperature and humidity have on their chemical and crystal structure stability. The main methods that 

are used to obtain ABX3 inorganic halide perovskites are also presented and analyzed. An analysis about the 

structure of these photovoltaic cells and how to improve their efficiency (PCS), fill factor (FF), short circuit 

current density (Jsc) and open circuit voltage (Voc) of these devices is presented. As a conclusion, a relation-

ship of the methods, synthesis variables, and type of inorganic halide perovskite used for the development of 

devices with the best efficiencies is presented; the trends towards which this area of science is heading are 

also highlighted. 

Keywords: Inorganic perovskites, opto-electronics properties, chemical stability, crystal structure, obtention 

methods. 

1. INTRODUCTION 

Solar energy is one of the most promising alternatives to handle world energy demand, for which it is neces-

sary to develop new materials and devices, such as solar cells, that allow it to be used more efficiently. The 
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materials used for the manufacture of photovoltaic cells are those that convert photons into electrons through 

the photoelectric effect. This is why the search for materials that have the ability to absorbing light for appli-

cation in photovoltaic devices has focused on materials ranging from metallic oxides, such as silicon, organic 

dyes, semiconductor polymers, as well as other chemical structures capable of performing this function, such 

as metal halide perovskites, which have a small band gap, charge mobility, low excitonic energy, long diffu-

sion lengths, and high carrier mobility. Those materials are the basis for different generations of solar cells, 

the latter being used in perovskite solar cells (PSCs) [1-7]. 

The work describing the use of perovskites as an absorbent layer was published in 2009 when Miyasaka 

et al., used lead halides and methyl ammonium (MA) perovskites in a Grätzel-type cell, which use liquid 

electrolytes. Although the efficiency of these cells was only 3.8%, they paved the way for the development of 

current PSCs, which have reached efficiencies greater than 22%, for which the liquid electrolyte was changed 

for semiconductors carrying solid hollows [8, 9]. Nowadays, the PSCs are cells n-i-p type where (n) is an 

electron transporting layer (ETL) typically TiO2, (i) is the perovskite totally inorganic or with an inorganic 

cation and (p) is an organic or inorganic hole transporting layer (HTL) [10-12]. Although the efficiency of 

these devices has reached levels that makes them a real alternative for their application and use in large-scale 

clean energy generation, they still present points of improvement, such as the chemical and structural stabil-

ity of perovskite. As mentioned before, the first perovskite used for this purpose consisted of methyl ammo-

nium and lead halides, particularly CH3NH2PbI3 (MAPI) and CH5N2PbBr3 (FAPBr), which are still being 

used and are the ones with the highest efficiency. However, these structures have a low stability against to 

factors such as the presence of humidity and the presence of oxygen, in addition to being unstable at tempera-

tures above 85 °C, low formation energy, etc., making it difficult to apply in environmental conditions. Due 

to the above, research is continuing on the synthesis of perovskites and the development of solar cells based 

on perovsquites that do not present these deficiencies [10, 13-16]. Inorganic perovskites appeared as a possi-

ble solution to the deficiencies on chemical stability presented by organic/inorganic perovskites, since tem-

perature affects the crystal structure but does not degrade its components, which is vital for devices that will 

be exposed to solar radiation. Inorganic perovskite solar cells have lower efficiencies than organic/inorganic 

perovskite-based cells [17, 18]. 

The most used cation to replace another cation in the structure of the organic perovskite MABX3 has 

been the Cs, radically increasing stability. Inorganic perovskites are not so hygroscopic and withstand high 

temperatures unlike their organic / inorganic counterpart, however, far from being presented as the definitive 

solution for application in photoconversion processes, they still need to be adapted, since they present differ-

ent crystallographic arrangements and not all of them are photoactive [19-22]. 

The main inorganic perovskites currently used are CsPbI3, CsPbBr3 and CsPbIyBr3-y. The first one has a 

band gap that is very close to 1.73 eV, this structure presents a black coloration in its cubic phase that turns 

yellow once it decays to its orthorhombic form, which is inactive and more stable at room temperature, which 

is thermodynamically favorable, even when it is kept free of moisture and invariably occurs within a few 

days at most [23-26]. The perovskite CsPbBr3 has a gap band width of nearly to 2.3 eV, in its cubic phase, 

this is the most stable of the inorganic perovskites at room temperature. It has been reported that photovoltaic 

devices manufactured with this perovskites exceed the 2000 hours of use, nevertheless, in comparison with 

CsPbI3, it has lower photoconversion efficiency [27-31], that is why the inclusion of Br
-
 and I

-
 in the same 

perovskite ABX3 (X=Br3-y, Iy) lead to obtain a structure that presents better efficiencies than those that only 

have Br
-
 and better stability than I

-
 perovskites [32-34]. The inclusion in the crystalline network of cations 

such as K, Zn, Bi, has also been explored to modify the size of the crystallite and favor its stability under 

environmental conditions. Some researchers have chosen to replace the Pb of perovskite due to the toxicity of 

this element. The lead-free CsSnX3 perovskite has very low percentages of photoconversion efficiency [35-

40]. This work aims to provide a current perspective of the stability of inorganic ABX3 perovskites used for 

the construction of solar cells, including the architecture of the devices, the structure of the perovskites, the 

synthesis and the additives used, as well as the efficiencies achieved and future trends. 

 

2. PEROVSKITE SOLAR CELL DEVICES  

The basic structure of PSCs shown in Figure 1, consists of an optically transparent conductive substrate, 

followed by a "n" type semiconductor layer responsible for the transport of electrons, which are produced in 

the perovskite layer "i" in which the photoelectric effect takes place. Attached to this is a gap transporter film 

of a "p" semiconductor and finally a conductive electrode such as gold, carbon or silver. However, it is not 
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the only structure tested (nip), since type cells have been generated (pin) which are commonly called inverted 

PSCs, in both cases solar irradiation is carried out through the conductive glass which is commonly oxide of 

fluorine doped tin (FTO) or indium tin oxide (ITO) although the use of graphene thin films has also been 

reported. Some researchers have tried irradiating the cells from the conductive electrodes, although this has 

not presented a competitive photo-conversion efficiency, nevertheless it is important to know that these de-

vices can take advantage of the diffuse radiation that hits the other side of the PSCs [41-46]. 

 

 

Figure 1: General structure of a PCS. 

As already mentioned, the photoelectric effect is carried out on the perovskite, allowing the generation 

of electric current in these devices. This can be described as the promotion of an electron from the valence 

band of perovskites to the conduction band, followed by the mobility of electrons and holes (excitons) in op-

posite directions, being the generation of the exiton or electron hole pair, Equation 1, to later be separated 

through semiconductor films, said mobility which is expressed by Equations 2 and 3 for the electron in n-

type films, while what happened in p-type films is described by Equations 4 and 5 [47, 48]. 
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In the general structure of PSCs, a pair of layers are required that can separate the positive and negative 

charges once the exiton has been generated, as shown in Equations 2-5. This process must be performed 

quickly, to avoid recombination of electrons, which in turn results in low photoconversion efficiency, these 

layers of diverse materials must be energetically coupled with the perovskite used to facilitate these processes 

[49-51], as shown in Figure 2. Load-bearing films can help improve the stability of perovskites, since when 

placed on the bottom and top they help to isolate the perovskite from external factors, therefore the correct 

choice of these films allows to extend the life time of these devices. In the case of HTL, there is a large num-

ber of possible materials for this purpose, among the most used materials are (2,2ʹ, 7,7ʹ-tetrakis (N, N-di-p-

methoxyphenylamine) -9, 9ʹ-spirobifluorene)) (Spiro-OMeTAD) or poly (triarylamine) (PTTA). Another 

widely used material is Poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonate) (PEDOT: PSS). With the 

aim of improving these films, modifications have been made to the most widely used films, such as the Spi-

ro-OMeTAD, in which the modification has been reported changing the position of the substituents p-

methoxy (-OMe) in ortho positions, goal and for, which allowed to identify, that the position for is the most 

efficient in terms of transport of holes [3, 41, 52-55]. 

…
…

Electrode
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A molecularly engineered hole transport material with a simple asymmetric fluorene-dithiophene (FDT) 

core replaced by N, N-di-p-methoxyphenylamine donor groups, may serve as HTL, other promising materials 

are allotropic forms of carbon as carbon nanotubes, which have been used for this purpose. On the other hand, 

the use of inorganic structures as hole carriers, such as NiOx, as well as Cu-doped oxides has also been in-

vestigated [56-58]. Also, a PSCs structure like Au/Spiro-OMeTAD/CsPbI3/CsPbBr3/TiO2/FTO has been 

studied  [59-62]. 

 

Figure 2: Schematic energy-level diagram of Au/Spiro-OMeTAD/CsPbI3/CsPbBr3/TiO2/FTO. 

 

It is important to emphasize that the negatively charged carrier must present a band gap capable of pre-

venting the flow of electrons but facilitating the mobility of the holes because the negatively charged parti-

cles generated by the photoelectric effect carried out in the perovskite are subtracted dare of n-type semicon-

ductor films, of which the most common is TiO2, either in its anatase, rutile or even brokite phase, with the 

purpose of improving ETL. The anatase phase of TiO2 is the most used as an ETL in perovskite solar cells 

(DSSC) or as a photoanode in dye-sensitized solar cells (DSSC), using synthetic [63] or natural [64] dyes. 

with Y has been reported, which has allowed a better adjustment of energy levels to those of perovskite, thus 

preventing recombination. Other works on materials used as ETL have reported the use of SnO2 or ZnO, 

mixtures of metallic oxides, and even the application of organic macromolecules such as fullerene, which has 

been used alone or decorated with Zn, and the graphene used to doping the TiO2. In particular, the use of 

graphene has been shown to stabilize the cubic phase of perovkites, increasing their useful life [49, 65-67]. 

The perovskite photoactive layer is made up of chemical structures represented by ABX3 where "A" 

corresponds to a large cation, such as Cs
+
 or methyl ammonium, located in the center of the crystal, "B" is a 

cation located in the corners commonly Pb
2+

, although Sn
2+

 has also been used, while "X" corresponds to an 

anion, particularly I
-
, Br

-
, Cl

-
, located in the center of the edges of the cubic cell [68, 69]. Ideally, perovskites 

have a cubic crystalline structure centered on the faces, this being the most desired for their photovoltaic ap-

plications. However, it is not the only structure that can be formed, since they can also have tetragonal, ortho-

rhombic or rhombohedral phases. To evaluate this, the Goldschmidt's tolerance factor is used (Equation 6), 

which depends on the ionic radii of cations A and B and on anion X [68, 70]. In Figure 3, the cubic structure 

of perovskite ABX3 and some factors of tolerance for various perovskites are shown. 

 

  
      

√ (      (6) 

Where rA and rB are the ionic radio of the cations A and B and rx is the ionic radius of the anion, if this 

number is equal to 1, the crystal structure will be face-centered cubic, if this value is higher, the structure will 

be hexagonal, if t is between 0.9 and 1 the crystallography will correspond to a distorted cube, while at values 

t between 0.7 and 0.9, the perovskite will present a tetragonal structure; on the other hand, at values t less 

than 0.7, the structures could be orthorhombic and rhombohedral. In other words, when the Goldschmidt tol-
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erance factor is different from 1, distortions in the network increase [71-73]. In the case of perovskites for 

photovoltaic applications in its active phase, also called the black phase, t is required to be greater than 0.8 

and less than 1. Likewise, the symmetric cubic phase is obtained when (0.9 < t > 1) or high temperatures. 

However, perovskites with organic cations such as FAPbI3 (t ≈ 1) or MAPbI3 (t ≈ 0.9) or CsPbI3 (t ≈ 0.8) that 

have a Goldschmidt's tolerance factor suitable for the black phase, present the inactive phase at room temper-

ature, also called yellow phase [38, 71, 74-76]. 

 

Figure 3: Cubic structure of perovskite ABX3 and tolerance factors of CsPbBr3, CsPbI3, CsPbI2Br, and CsSnI3 (Drawn 

with VESTA 3) [77]. 

 

As already mentioned, inorganic perovskites have better stability than those with an organic component, 

which when are irradiated by light generate superoxide O
2-

, which reacts with the protonated organic compo-

nent, meanwhile Cs
+
, which is the most common substituent "A", lacks protons in its structure, which reduc-

es the effect of superoxide, increasing stability against the effects of light and oxygen, compared to organic 

componentes. However, for B
2+

 type substituents such as Sn
2+

, it usually oxidizes to Sn
4+

 and changes the 

properties of perovskites that contain it [13, 76, 77]. Another adverse effect of environmental conditions is 

humidity, since it favors the structural rearrangement of inorganic perovskites towards the formation of the δ-

orthorhombic inactive phase [78-80]. According to Yihui Li et al., it is possible to maintain this CsPbI2Br 

structure for more than 300 hours by keeping the humidity below 25% [22]. A variable to take into account is 

the temperature, since the photoactive phases are favored at high values, as shown in Figure 4, however, at 

room temperature the most stable phase (orthorhombic) is photovoltaically inactive [6, 81, 82]. 

Modification of components A, B or X has been the first route to follow to increase the chemical and 

structural stability of perovskites, either by the total or partial replacement of any of its components, or by 

doping that relaxes the structural stress. Efforts have also been focused on optimizing the processes for ob-

taining these structures, controlling heat treatment, grain size, and the use of both organic and inorganic addi-

tives [32, 82-88]. 

 

3. STABILITY OF INORGANIC PEROVSKITES 

As mentioned, inorganic perovskites have better stability than those with an organic component, which when 

are irradiated by light generate superoxide O
2-

, which reacts with the protonated organic component, mean-

while Cs
+
, which is the most common substituent "A", lacks protons in its structure, which reduces the effect 

of superoxide increasing stability against the effects of light and oxygen, compared to organic components, 

however, for B
2+

 type substituents such as Sn
2+

, it usually oxidizes to Sn
4+

 and changes the properties of per-

ovskites that contain it [13, 78, 79]. Another adverse effect of environmental conditions is humidity, since it 

favors the structural rearrangement of inorganic perovskites towards the formation of the δ-orthorhombic 

inactive phase [80-82]. According to LI et al., it is possible to maintain this CsPbI2Br structure for more than 

300 hours by keeping the humidity below 25% [22]. A variable to take into account is the temperature, since 

the photoactive phases are favored at high values, as shown in Figure 4. However, at room temperature the 

most stable phase (orthorhombic) is photovoltaically inactive [6, 83, 84]. 

Modification of components A B or X has been the first route to follow to increase the chemical and 
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structural stability of perovskites, either by the total or partial replacement of any of its components, or by 

doping that relaxes the structural stress. Efforts have also been focused on optimizing the processes for ob-

taining these structures, controlling heat treatment, grain size, and the use of both organic and inorganic addi-

tives [32, 84-90]. 

 

Figure 4: Effect of temperature on the formation of active phases of CsPbX3 inorganic perovskites (Drawn with VESTA 

3) [75]. 

 

4. METHODS OF OBTAINING ABX3 PEROVSKITES 

The production of both organic and ABX3 inorganic perovskites for application in solar devices must be car-

ried out in such a way that highly crystalline structures are obtained, which homogeneously coat the surface 

and present the fewest possible defects, since the quality of the films perovskite has a significant effect on the 

stability and efficiency of devices. The desirable characteristics of these films can be achieved through con-

trol of crystallization, pre-treatments of the precursors, additives or catalysts, the technique of applying the 

precursors and by the applied heat treatment. In this context, there are various techniques that can be used to 

obtain high quality films by spin coating technique (using one or two steps) and vapor deposition technique. 

4.1 One step technique 

The chemical synthesis of the ABX3 perovskites is carried out by solvating the precursors, in polar media 

such as Dimethylformamide (DMF) or Dimethyl sulfoxide (DMSO), as well as solvent mixtures, obtaining a 

precursor solution, which is used to coat a surface and generate the precursor film, using the spin-coating or 

deep-coating techniques. The use of anti-solvents to promote crystallization and the formation of high-quality 

films is common, the most commonly used being diethyl ether, toluene and chlorobenzene, followed by a 

heat treatment that allows the production of perovskite [91-97]. The composition of the precursor solution 

depends directly on the desired perovskite, if we take the perovskite of CsPbI3 as an example, the use of CsI, 

PbI2, as precursors will be required on a molar basis. While the required heat treatment will be up to 300 °C 

to favor the crystallization of the active phase [20, 98]. WANG et al., prepared the CsPbI3 perovskite in a 

ratio of solvents (1: 4) DMF:MSO with precursors CsI and PbI2, 1 M, by means of the spin-coating technique 

with an annealing temperature of 250 °C [99]. ZHU et al., reported the convenient presence of controlled 

pores in CsPbIBr2 perovskites using the one-step technique, which provides better crystallinity and fewer 

film defects allowing cell efficiency of up to 9% [100]. On the other hand, ZHANG et al.,  studied 6 different 

anti-solvents; ethyl acetate, toluene, chlorobenzene, chloromethane, isopropanol and diethyl ether for the 

synthesis of CsPbIBr2, showing the influence of these for crystallization, homogeneity and packing of the 

grains, as well as to restrict the formation of holes, denoting a better film formation when using diethyl ether 

[94]. Figure 5 illustrates the two-step technique for making perovskite films. 

α-Cubic β-Tetragonal γ-Orthorhombic

Temperature+ -
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Figure 5: Schematic procedure of the one-step technique for obtaining perovskite films. 

4.2 Two Steps Technique 

The two-step technique consists in the addition of a first perovskite precursor, generally the precursor of Pb
2+

, 

or Sn
2+

 dissolved in DMF or DMSO, by spin-coating for its subsequent drying, followed by the addition of 

the Cs precursor dissolved in methanol or in another polar solvent, to increase the concentration of said pre-

cursor, due to the low solubility that salts like CsBr present in DMF and DMSO, the inclusion of Cs can be 

done by Spin or Deep coating [18, 101-103]. Once this is done, a heat treatment is carried out whose temper-

ature will depend on the perovskite and the desired phase. LIU et al., reported obtaining the perovskite CsP-

bBr3 by this technique, dissolving PbBr2 in DMF and then adding this solution on an FTO substrate previous-

ly adhered in the spin coater, the coated FTO substrate was dried and dipped in a 30 mg solution of CsBr in 

methanol, varying the time from 5 to 15 minutes, for its subsequent heat treatment at 180 °C, generating 

smooth and dense films with excellent stability under atmospheric conditions [104]. The synthesis of CsP-

bxSn1-xI3 has been reported using the two-step technique, applying a first layer of PbI2 in DMF by spin-

coating followed by immersion for 6 hours in a solution of CsI and SnI2 in anhydrous methanol, followed by 

heat treatment at 160 °C, this according to what was reported by TANG et al, said perovskite reached a sta-

bility in PSCs of up to 30 days [102]. Figure 6 illustrates the two-steps technique for making perovskite films. 

 

Figure 6: Schematic procedure of the two-steps technique for obtaining perovskite films. 

4.3 Vacuum processing 

Vapor deposition is a technique used to obtain perovskite ABX3 films that does not have the limitations of 

the solubility limits of solution techniques (one and two-step techniques), in addition to allowing more pre-

cise control of the thickness of the films generated, the homogeneity of perovskites, grain limits and their 

reproducibility [27, 105-107]. In 2017 FROLOVA et al., reported obtaining a compact and homogeneous 300 

nm layer by means of the co-evaporation technique using CsI and PbI2 as precursors for obtaining CsPbI3 

with excellent photochemical and thermal properties [108]. LI et al., reported obtaining CsPbBr3 / CsPb2Br5 

perovskites by precisely controlling the film thickness of the precursor materials [109]. Another technique 

assisted by steam is the sequential vapor deposition, which consists of forming a first layer of CsX precursor, 

to later cover it with PbX2, efficiently controlling the thickness of the resulting perovskite, this technique was 

used by TONG et al., who with his workgroup obtained CsPbBr3 perovskite with controlled grain sizes and 

passivation of grain boundaries, in addition to improving cargo carrier transport and achieving 45% con-

trolled humidity stability for over 2000 hours) [28]. LUO et al., obtained CsPbBr3 by means of the assisted 

evaporation of Br on the perovskite of CsPbI3, obtaining in a first stage the perovskite CsPbI3 by means of 

the one-step technique, followed by the exchange of halogen by the assisted evaporation of Br [23]. Co-

evaporation vacuum process (A) and vapor assisted deposition technique (B) for making perovskite films are 

AX, BX2 

Precursors solution 

Substrate

Heat treatment

Cubic face of ABX3

One Step Solution Technique

BX2 
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shown in Figure 7. 

 

Figure 7: Co-evaporation vacuum process (A) and vapor assisted deposition technique (B) for making perovskite films. 

 

5. INORGANIC PEROVSKITES 

The inorganic perovskites that show the best efficiencies in PSCs, like hybrid perovskites, have the cation of 

Pb
2+

 as substituent B, while Cs
+
 is the most used substituent A, in addition, they present the best results in 

terms of efficiency. On the other hand, the halides used are I, Cl or Br. Next, an analysis of the stability and 

efficiency of solar cells of the perovskites CsPbI3, CsPbBr3, CsPbBrI2, CsPbBr2I, and CsSnX3, which have 

better optical properties, as well as greater stability in the crystal structure, is presented. 

5.1 Pure CsPbI3, and CsPbBr3 perovskites 

The inorganic perovskite of CsPbI3 is the one with the highest efficiency in PSCs so far, with a record that 

exceeds 18% efficiency. The high efficiency values achieved using this structure are due to the optical band 

gap of ~ 1.73 eV. The absorption that this perovskite presents has been reported between 700 and 750 nm in 

its active phase [75], ideal for photovoltaic applications, despite this, the cubic phase is not very stable at 

room temperature, once obtained at high temperatures it presents a rapid rearrangement of its structure by 

decreasing temperature, passing through three photoactive black phases, α-cubic, β- tetragonal, γ- ortho-

rhombic and finally decaying to the inactive yellow phase δ-orthorhombic, the latter the most stable at room 

temperature, this it is explained by the low tolerance factor of Goldschmidt that the α phase presents, which 

is 0.807, just above the minimum limits necessary to formalize the perovskite [22, 26, 33, 71, 110]. 

The inorganic perovskite of CsPbBr3, for its part, has proven to be a structure of greater stability than its 

CsPbI3 counterpart, with a tolerance factor of 0.824. This perovskite has greater stability under environmen-

tal conditions, its active phase has a reddish coloration, so the absorption of this compound ranges between 

520 and 550 nm in its cubic phase, in addition to presenting an optical band gap of 2.3 eV, which declines up 

to 4 eV, once it is completely degraded. The temperature required to obtain the cubic phase of this perovskite 

has been reported between 250 °C and 350 °C [28, 106, 111, 112]. 

Various works have focused on maintaining the cubic phase for as long as possible, investigating the 
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method of obtaining it, controlling the dimensions, the inclusion of various substituents in A and B as do-

pants, or the use of protective films (encapsulation) to delay atmospheric effects, or the use of carbon as a 

conductive electrode as a hydrophobic barrier [45, 113, 114]. 

5.2 CsPbI3 perovskite 

The use of HI or HPbI3 as a precursor in the method of obtaining one and two steps, has been shown to im-

prove the stability of the active phase of perovskite CsPbI3 and allow it to be obtained at lower temperatures 

[25], XIANG et al., reported obtaining CsPbI3 using HI as a catalyst, which allowed the generation of stable 

perovskite for 2 months and 300 hours under irradiation, using carbon as the conductive electrode [98]. In the 

work reported by XU et al., they use 4 (1H) -pyridinethione as an additive to promote crystallization through 

the interaction of S-Pb, which allows obtaining this α-cubic perovskite at low temperature (90-100 ° C) and 

keep it stable for 20 days, with a cell efficiency of 85%, compared to the first day of testing [115].  

ZHANG et al., reported obtaining CsPbI3 with a stability of 1000 hours. Obtained by using phenyl-C61-

butyric acid methyl ester in mixture with chlorobenzene, as an antisolvent, it used methylammonium iodide 

as a mediator, since it allows to improve the quality of the films, and it is removed by heat treatment at 

350 °C, generating PSCs with up to 16% efficiency [75]. Another additive used during the synthesis of this 

perovskite is phenylethylammonium iodide which hinders the transition to the inactive phase thanks to the 

steric effect of the additive once the crystals have formed [20]. Choline iodine was reported to stabilize per-

ovskite and improve its electronic communication with the electron transport layer in the work presented by 

WANG et al., who built a PSCs using this additive; It remained stable at lighting for 500 h, with only a loss 

of 5% of its efficiency [24]. The use of SCN
-
 as an additive to stabilize the perovskite α-CsPbI3 was reported 

by YAO et al., who compared to the perovskite obtained without the catalyst reported an increase in efficien-

cy from 15.36 to 17.04%, as well as indicating that perovskite with additive took longer to progress to the 

yellow orthorhombic phase [85]. CHEN et al., obtaining highly efficient CsPbI3 Quantum Dots (QD) based 

PSCs using mesoscopic TiO2 as the ETM; they reported a fabricated device with the best PCE value reaching 

14.32% (reverse scan) combined with an unprecedented high current density at short crcuit (Js-c) of 17.77 mA 

cm
−2 

[116]. 

 

5.3 CsPbBr3 perovskite 

In the work reported by ZHANG et al., passivation of perovskite film defects was achieved using the ionic 

liquid 1-butyl-2, 3-dimethylimidazolium chloride, improving efficiency up to 61.3% compared to that ob-

tained without the ionic additive, the perovskite obtained with the additive, maintained a stability under rela-

tive humidity of 70% at 20 ° C for 30 days with carbon as a conductive electrode [117]. Another additive 

used to promote the quality of perovskite crystals is the application of BiBr3, prior to the application of the 

CsBr coating in the two-step technique, reported by PEI et al., who obtained a stability of 90% PCE per 1000 

h. using a carbon electrode [118].  

WANG et al., obtained the perovskite CsPbBr3 by the two-step technique and using NH4SCN as addi-

tive in the precursor solution of PbBr2, followed by immersion in CsBr in methanol, generating a dense and 

homogeneous film with a stability of the cells greater than 200 hours under lighting [119]. BU et al., reported 

obtaining this perovskite using the two-step technique, which was assembled in an HTL-free cell; the carbon 

used as an electrode was modified with polyaniline / graphite, which gave it a stability of up to 50 days at 

80% relative humidity, with a 47% higher efficiency than unmodified carbon cells, this stability is attributed 

to the effect of the carbon modified as a better hydrophobic insulator [120].  

XIANG et al., prepared by vapor deposition the perovskite of CsPbBr3 applying a first treatment of 

320 ° C for 20 minutes, followed by a second treatment for 40 minutes at different temperatures, finding that 

a second treatment of 300 ° C achieves higher efficiency, coupled with excellent thermal stability of 40 days 

stored at 100 °C [27]. Table 1 presents a relationship of the architecture of different PSCs cells based on per-

ovskites CsPbI3 and CsPbBr3, their stability and efficiency. 
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Table 1: Performance and stability time of PSCs with CsPbI3 and CsPbBr3 perovskites. 

Architecture 

 

Testing or storage 

time 

JSC 

(mA*cm
2
) 

VOC 

(V) 

FF 

% 

PCE 

% 

Reference 

CsPbI3  

FTO/TiO2/ CsPbI3/Carbon 60 storage days 18.5 0.79 69.0 9.5 [98] 

FTO/ TiO2/ CsPbI3/PTAA/Au 60 storage days 18.95 1.059 75.1 15.07 [20] 

FTO/PPTA/ CsPbI3/ PCBM layer/Ag 20 storage days 17.38 1.08 73.67 13.88 [115] 

FTO/ TiO2/ CsPbI3/Spiro-OMeTAD/Au 500 hours of testing 20.03 1.11 82 18.4 [24] 

FTO/ TiO2/ CsPbI3/PTAA/Au Not reported 20.34 1.09 77 17.04 [8] 

ITO/SnO2/ CsPbI3/ Spiro-OMeTAD/Au 

1000 hours of tes-

ting 20.1 1.06 75.3 16.04 [75] 

FTO/ TiO2/CsPbI3/Spiro-OMeTAD/Au 100 hours of testing 17.77 0.84 

Not re-

ported 14.32 [116] 

CsPbBr3  

FTO/ TiO2/CsPBr3/ Mixed-carbon 30 storage days 7.16 1.357 72.97 7.09 [113] 

FTO/ TiO2/CsPbBr3/Spiro-

OMeTAD/Au 60 storage days 7.71 1.37 81 8.65 [106] 

FTO/ TiO2/CsPbBr3/Carbon 30 storage days 7.45 1.61 83 9.92 [117] 

FTO/ TiO2/CsPbBr3/Carbon 

1000 hours of test-

ing 7.84 1.39 80 8.73 [118] 

ITO/ TiO2/CsPbBr3/Spiro-

OMeTAD/Au 200 hours of testing 7.76 1.375 79.31 8.47 [119] 

FTO/ TiO2/CsPbBr3/Carbon 50 storage days 6.87 1.59 81.21 8.87 [120] 

FTO/ TiO2/CsPbBr3/Carbon 40 storage days 7.37 1.545 82.2 9.35 [27] 

JSC = Current density at short circuit; VOC = Voltage at open circuit; FF = Fill factor; PCE = Power-conversion efficiency 

5.4 Halide mixture in CsPb perovskite 

The band gap of 1.73 eV of its own and CsPbI3 is ideal for use as an adsorbent layer in PSCs, however its 

low thermal stability limits its long-term application in these devices [75]. On the other hand, the perovskite 

of CsPbBr3 is more stable under normal atmospheric conditions it presents a band gap of 2.3 eV [118], so the 

combination in different proportions of the halides I and Br in the structures allows to combine the intrinsic 

properties of these semiconductors, and allow to substantially improve the stability thus as a greater absorp-

tion of the electromagnetic spectrum. The CsPbIBr2 perovskite has an absorption around 600 nm with 2.05 

eV optical band gap, as well as a stability superior to that of the ABI3 perovskites and a better efficiency than 

the ABBr3 perovskites, which exceed 12% [103,121]. For its part, the perovskite composed with CsPbI2Br 

further reduces its energy gap by around 1.9 eV and it improves its thermal stability, although to a lesser ex-

tent than its CsPbIBr2 counterpart with an absorbance close to 650 nm and efficiencies greater than 16% [19, 

57, 122]. For these reasons year after year more work is done focused on improving both the properties of 

these absorbent layers and their performance in PSCs. It should be clarified that both structures can be ob-

tained by following the same procedures as singles halide perovskites.  

In an effort to increase the stability of the absorbing layer, NiOx and CeOx charge transport films were 

used to isolate the perovskite CsPbIBr2 from the effects of humidity and temperature according to what was 

reported by YANG et al.; they reported that this dispositive achieved stability for 500 hours (stored at 45-

50% of humidity) [123]. ZHU et al., obtained a perovskite of CsPbBr3 using the one-step technique followed 

by the addition of CsI in methanol to obtain CsPbIBr2 methodology that allowed obtaining a film that pre-

sented few limits grain, high crystallinity and that in cell allowed to maintain 90% of the conversion efficien-

cy for 60 days in environmental conditions of humidity and temperature [124]. ZHANG et al., synthesized 

the CsPbIBr2 perovskite using the one-step technique, using diethyl ether as an anti-solvent and a guanidini-

um additive to passivate the structure defects, obtaining a perovskite with a stability of 100 hours and an effi-

ciency of 9.17%, which is high for this structure [94].  As already mentioned, the TiO2 antasa phase is the 

semiconductor that has been most used as ETL in PSCs, it is used as a TiO2 compact film (c-TiO2) or as a 

TiO2 mesoporous film (m-TiO2), a photoactive inorganic perovskite of CsPbI2Br on TiO2 films was deposited 
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using a gradiente thermal annealing method (GTA) [125, 126] and PCE values of 14.5% and 16.07% were 

obtained, while PCE values of 15.25% and 15.69% were obtained when doping the CsPbI2Br perovskite with 

In
3+

 and Eu
2+

cations [127, 128]. Some researchers report that precalating the glass-FTO/c-TiO2 substrate at 

90 °C and using tammonium hexafluorophosphate (NH4PF6) as precursor additive to modify the grain size of 

the CsPbI2Br perovskite it is possible to obtain a photovaitaic device with an efficiency of 10.1% [129]. On 

the other hand, tin oxide (SnO2) has been used as ETL in solar cells containing CsPbI2Br perovskite and us-

ing ethyl acetate as anti-solvent or a programmable crystallization method to obtaining PCE values from 

14.33 % to 16.58% andy Jsc values from 13.61 to 16.23 mAcm
-2

 [130-132]. LIU et al., obtained the inorganic 

perovskite of CsPbIBr2 by means of the two-step technique assisted by vapor deposition, using copper (II) 

phthalocyanine (CuPC) and carbon as an electrode transporting film, which provides better stability to both 

perovskite and the device in general resisting for one month at 60 °C [107]. Table 2 collects results from 

works reported for PSCs in which the stability as a function of perovskite storage or test time of CsPbIBr2 

and CsPbI2Br can be seen. 

Table 2: Performance and stability time of PSCs with CsPbI2Br and CsPbIBr2. 

Architecture 

 

Testing or storage 

time 

JSC 

(mA*cm
2
) 

VOC 

(V) 

FF 

% 

PCE 

% 

Refe-

rence 

 

FTO/NiOx/CsPbIBr2/ZnO@C60/Ag 10 hours of testing 15.1 1.1 75.5 12.6 [133] 

FTO/TiO2/ CsPbIBr2/Spiro-OMeTAD/Au 100 hours of testing 10.24 1.2 74.6 9.17 [94] 

FTO/TiO2/CsPbIBr2/CuPc/Carbon 720 hours of testing 9.65 1.236 63.1 8.76 [107] 

ITO/NiOx/CsPbIBr2/CeOx/Ag  500 hours of testing 8.76 1.01 63.35 5.60 [123] 

FTO/TiO2/CsPbIBr2/Carbon 60 days of storage 10.71 1.169 66 9.16 [124] 

FTO/TiO2/CsPbI2Br/PCBM/Ag 500 hours of testing 15.33 1.22 78.8 14.78 [134] 

FTO/c-TiO2/m-TiO2/CsPbI2Br/ Spiro-

OMeTAD /Ag 3 hours of testing 15.8 1.27 78.0 15.5 [125] 

ITO/c-TiO2/CsPbI2Br/Spiro-OMeTAD /Au 120 hours of testing 16.79 1.23 77.81 16.07 [126] 

FTO/c-TiO2/m-TiO2/Doped-CsPbI2Br/ 

CuSCN/rGO/Au 

>1600 hours of 

testing 15.91 1.28 74.85 15.27 [127] 

FTO/TiO2/CsPbI2Br/Spiro-OMeTAD/Au 

30 storage days in 

air 15.44 1.25 79.00 15.25 [128] 

ITO/SnO2/CsPbI2Br/Spiro-OMeTAD/Ag 

25 storage days in 

N2 atmosphere 16.23 1.21 76.29 15.07 [130] 

ITO/SnO2:C60-EDA/CsPbI2Br/Spiro-

OMeTAD/MoO/Ag 

65 storage days in 

dry air 15.41 1.34 80.30 16.58 [131] 

ITO/ ZnO:Cs2CO3/ CsPbI2Br/PCBM/Ag 200 hours of testing 16.34 1.28 78.42 16.42 [97] 

FTO/NiOx/CsPbIBr2/ZnO@C60/Ag 300 hours of testing 15.2 1.14 77 13.3% [121] 

ITO/SnO2-ZnO/ CsPbIBr2/Spiro-OMeTAD 

-MoO3/Ag 360 hours of testing 15 1.23 78.8 14.16 [122] 

ITO/SnOx/ CsPbIBr2/ Poly (DTSTPD-r-

BThTPD)Au 

900 hours of inter-

mittent testing 14.25 1.4 77 15.53 [135] 

FTO/TiO2/ CsPbIBr2/ Spiro-OMeTAD/Au 

1000 hours of test-

ing 15.32 1.32 83.29 16.79 [93] 

ITO/ZnO/ CsPbIBr2/ Spiro-OMeTAD/Ag 

2.5 hours of testing 

at 200 °C 14.9 1.22 75.3 13.7 [87] 

PDOT:PSS/Al:ZnO/CsPbIBr2/tBCA/PTA

A/MoO3/Ag 60 storage days 15.87 1.26 75.41 15.08 [136] 

JSC = Current density at short circuit; VOC = Voltage at open circuit; FF = Fill factor; PCE = Power-conversion efficiency; CuSCN = 
Copper thiocyanate; C60-EDA = Fullerene-ethylenediamine; rGO = Reduced graphene oxide 

 

The synthesis of CsPbI2Br by the one-step technique using DMSO ducts, which allows the formation of 
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large-grain films with low defect density, and a longer life time for charge carriers, as well as better stability 

of up to 500 h according with GUANNAN et al. [135]. The use of CaCl2 as an additive in the formation of 

the CsPbI2Br perovskite by the one-step technique allows obtaining more stable structures with a prohibited 

band of 1.91 eV as well as good performance in PSCs, reaching a competitive efficiency of 16.79%, which is 

maintained at 90% after 1000 hours of continuous testing [93]. Processing at low temperatures is feasible to 

obtain perovskite as demonstrated by Xia Yang and his team, who obtained the absorbent layer by the one-

step method at 120 ° C. This was used to assemble a flexible cell which reached an efficiency 15% maximum 

that declined 7, 9 and 86% after 60 days stored under environmental conditions, 360 hours at 85 ° C and 30 h 

at 65% humidity, respectively. The cell structure was formed using tert-butyl cyanoacetate (T-BCA), PTTA 

and MoO3 as gap carriers, ZnO2 aluminum doped and PEDOT: PSS as gap carriers [136].  

Thermal stabilization and optimization of CsPbI2Br-based PCSs have also been tested by applying ZnO2 

doped with Cs2CO3 as an electron-bearing film that allows a good extraction of these charge carriers, result-

ing in an increase in efficiency, coupled with the isolation of perovskite that increases its stability ZnO: 

Cs2CO3 maintains efficiency at 93% for 200h. vs 73% who maintained the device that used only ZnO2 [97]. 

Another film used to improve electron transport is ZnO2 @ C60 which in 2018 achieved a photoconversion 

efficiency of 13.3% with a stability that reached 360 hours with only 20% loss of initial efficiency [59], re-

sults comparable to those presented by YAN et al., who reported a stability of 300 hours with a loss of 15% 

of the photoconversion efficiency (14.16%) using SnO2-ZnO as an electron carrier [122]. For his part, GOU 

et al., reported the device based in CsPbI2Br, the poly [(dithiene [3,2-b: 2 ', 3'-d] silolethiene [3,4-c] pyrrole-

4,6-dione) -random- (2,2'- bithiophenethiene [3,4-c] pyrrole-4,6-dione) (poly (DTSTPD-r-BThTPD)) (and as 

an electron acceptor SnCl2 device that reached a PCE of 15.53% and remained under intermittent illumina-

tion for 900 h, maintaining 71% of the initial efficiency [135]. In general, a greater number of works focused 

on CsPbI2Br are reported due to their lower bandgap. that allows obtaining greater efficiencies in PSCs alt-

hough they have less stability, on the other hand, CsPbIBr2 have better stability but less efficiency, so much 

of the effort is focused on increasing efficiency. 

5.5 CsSnX3 perovskite 

In the search to obtain lead-free perovskites, the use of Sn
2+

 has been tried to substitute it, since said element 

presents serious damage to the environment, thus the CsSnI3, CsSnBr3 and CsSnCl3 perovskites are presented 

as a greener option than their counterparts. These include lead, these structures have an optical band interval 

along the near and visible infrared region, with absorbance at 750, 610 and 420, respectively. However, Sn
2+

 

has short periods of functionality as a photoactive layer due to a rapid oxidation of Sn
2+

 to Sn
4+

. In the case of 

the perovskite CsSnI3, it has a band gap of 1.3 eV, which is ideal for its application in photovoltaic cells [40, 

89, 137-139]. In this sense, ZHANG et al., stabilized the CsSnI3 perovskite in a reducing environment by 

using cobaltocene, which is a large electron donor, which prevents Sn
2+

 oxidation, which results in increased 

stability of CsSnI3, however, it presents a low efficiency of 3%, however this is an encouraging result to re-

place lead in these devices [137]. The highest efficiency reported so far for CsSnI3 is 5.03% obtained by 

WANG et al. To do this, they synthesized perovskite in a single step using triphenyl phosphite as an antioxi-

dant additive to stabilize perovskite, which allowed its analysis under illumination for 400 minutes, which is 

considerable for this type of perovskites [140]. Another work on the development of cells based on perov-

skite CsSnI3 is that reported by ZHU et al., who obtained the perovskite CsSnI3 using the evaporative assisted 

solution method. The photovoltaic device had a maximum yield of 2.23% and an average yield of 1.93% that 

presented a decay at 70% of its initial efficiency at 70% humidity, after 60 min [141]. LEI et al., synthesized 

the perovskite CsPbxSn1-xI3, with a band gap between 1.3 and 1.7 eV observing a better electrical conductivi-

ty when increasing the Sn
2+

 concentration; although they did not build cells, their research provides an ap-

plicability option to these devices with a lower concentration of lead [110, 142]. 

The perovskite CsSnBr3 presents a band gap value around 1.9 eV, a thermal stability higher than 437 °C 

and a transition to its inactive phase that takes 48 hours at room temperature and around 60% humidity [143]. 

However, its preparation using additives such as SnF2 has allowed CsSnBr3 to be obtained with an optical 

band gap of 1.73 eV by reducing the gap between the valence band and the fermi level, coupled with limiting 

the formation of Sn
2+

 to Sn
4+

 [145]. SABBA et el., reported PSCs of this structure prepared without SnF2 and 

with this additive, demonstrating that the efficiency increases slightly from 0.1 to 0.91%, in turn they ob-

served that if Br
-
 is included in the perovskite of CsSnI3 the efficiency improves reporting a maximum effi-

ciency of 1.67% for the perovskite CsSnIBr2, the latter with a prohibited band of 1.75 eV [144]. ISLAM et al., 

synthesized the perovskite CsSnCl3 in order to improve its optoelectronic properties, since this structure has a 

band gap of 2.8 eV, which rules it out of applications in photovoltaic cells, so by including metals such as Cr 

or Mn sought to increase absorption in the visible spectrum, demonstrating that the valence band of Mn-
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doped CsSnCl3 samples shifts slightly towards the region of highest energy, which facilitates the promotion 

of electrons towards the conduction band, showing better photoconductivity and greater absorption than pure 

perovskite from CsSnCl3 [86]. 

Table 3: Performance and stability time of PSCs of CsSnX3. 

Architecture 

 

Testing or storage 

time 

JSC 

(mA*cm
2
) 

VOC 

(V) 

FF 

% 

PCE 

% 

Reference 

 

FTO/TiO2/Al2O3/ CsSnI3/NiO/Carbon 
100 hours of stor-

age 
18.24 0.36 46 3.0 [137] 

FTO/TiO2/CsSnIBr2/Al2O3/CsSnI3/Carbon 9 hours of testing 17.4 0.31 57 3.2 [143] 

ITO/PEDOT:PSS/CsSnI3/PCBM/Ag 
30 days of storage 

under N2 
23.792 0.42 

No report-

ed 
4.13 [140] 

ITO/ TiO2/ CsSnI3/ Spiro-

OMeTAD:TBP/Au 
No reported 27.67 0.201 29 1.66 [144] 

ITO/ TiO2/ CsSnI2Br/Spiro-

OMeTAD:TBP/Au 
No reported 15.06 0.289 38 1.67 [144] 

ITO/ TiO2/ CsSnIBr2/ Spiro-

OMeTAD:TBP/Au 
No reported 11.57 0.311 43 1.56 [144] 

ITO/ TiO2/ CsSnI3/ Spiro-OMeTAD: 

TBP/Au 
No reported 3.99 0.410 58 0.95 [144] 

JSC = Current density at short circuit; VOC = Voltage at open circuit; FF = Fill factor; PCE = Power-conversion efficiency 

 
Great efforts have been focused on optimizing the fabrication processes of solar cells with different 

structures based on ABX3 inorganic perovskites, using different methods like spin coating and vacuum depo-

sition, controlling heat treatment, grain size of the photoactive phase, and the use of both organic and inor-

ganic additives with the aim to get photovoltaic diapositives with high efficiency (PCS), filled factor (FF), 

open circuit voltage (Voc), and short circuit current density (Jsc) with high stability under environmental 

conditions of temperature and moisture. Table 4 show a summary of the best solar cells based on inorganic 

perovskite obtained until now; the three inorganic halide perovskites solar cells that present the best values of 

efficiency at high testing time are CsPbI3, CsPbIBr2, and CsPb2Br, with the architectures of 

FTO/TiO2/CsPbI3/Spiro-OMeTAD/Au, FTO/TiO2/CsPbIBr2/Spiro-OMeTAD/Au, and FTO/c-TiO2/m-

TiO2/Doped-CsPbI2Br/ CuSCN/rGO/Au, respectively. 

Table 4: PSCs made with ABX3 inorganic halide perovskites with the higher effciciency and testing time. 

Architecture 

 

Testing or storage 

time 

JSC 

(mA*cm
2
) 

VOC 

(V) 

FF 

% 

PCE 

% 

Referen-

ce 

FTO/ TiO2/ CsPbI3/Spiro-OMeTAD/Au 500 hours of testing 20.03 1.11 82 18.4 [24] 

FTO/ TiO2/ CsPbI3/PTAA/Au Not reported 20.34 1.09 77 17.04 [8] 

FTO/TiO2/ CsPbIBr2/ Spiro-OMeTAD/Au 1000 hours of testing 15.32 1.32 83.29 16.79 [93] 

ITO/SnO2:C60-EDA/CsPbI2Br/Spiro-

OMeTAD/MoO/Ag 

65 storage days in dry 

air 
15.41 1.34 80.30 16.58 [131] 

ITO/ ZnO:Cs2CO3/ CsPbI2Br/PCBM/Ag 200 hours of testing 16.34 1.28 78.42 16.42 [97] 

ITO/c-TiO2/CsPbI2Br/ Spiro-OMeTAD /Au 120 hours of testing 16.79 1.23 77.81 16.07 [126] 

ITO/SnO2/ CsPbI3/ Spiro-OMeTAD/Au 1000 hours of testing 20.1 1.06 75.3 16.04 [75] 

FTO/c-TiO2/m-TiO2/Doped-CsPbI2Br/ 

CuSCN/rGO/Au 

> 1600 hours of test-

ing 
15.91 1.28 74.85 15.27 [127] 
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6. CONCLUSIONS 

Inorganic perovskites are a promising alternative to supply the most widely used organometallic perovskites 

for the development of solar cells, so the focus of this review was to know the factors that affect these struc-

tures, the methods of obtaining them, the architecture with which photovoltaic devices, their components and 

processes of generation and load mobility are manufactured, as well as trends to improve both stability and 

efficiency. In this work we compile the photoconversion efficiencies reported in different investigation re-

ports, as well as the stability that these devices present under light irradiation or due to their storage time, 

under different conditions of temperature and humidity. Various studies carried out to adjust the perovskite 

band gap to improve its capacity as an adsorbent film, by doping or substitution of metal cations A
+
 and B

2+
, 

or by mixing halides I
-
 and Br

-
, were analyzed. The techniques used to stabilize the photoactive phases of 

perovskites, which range from the method of obtaining, the use of additives, heat treatments, the composition 

of perovskites, the application of various materials as charge carriers, mainly inorganic, which manage to 

stabilize the active phase. On the other hand, the use of carbon as an electrode generates a hydrophobic layer 

that stabilizes the PSCs and time of use and storage is increased. The total substitution of Pb in the perovskite 

structures is also addressed since, due to the contamination that this element causes to the environment.  In 

general, inorganic perovskites can considerably improve their performance using all these considerations, 

being the halides mixture the most common route promising to achieve an efficient and stable structure, so a 

large number of papers show increasing interest in the use of CsPbIx-yBry perovskites, and cell components to 

optimize these devices. 
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