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ABSTRACT 

The modulus of elasticity of concrete is often calculated as a function of the compressive strength, and as a 

deterministic value. However, variations in the aggregates properties may result in module values different 

than those estimated, which may lead to excessive deformation and eventual instability of the structure. In 

this work, the influence of the coarse aggregate batch variation on the variability of the modulus of elasticity 

of the concrete was investigated. Three different aggregate sources (one of granite origin and two of gneiss 

origin), three water/cement ratios (w/c) and five different batches of each aggregate were investigated. The 

compressive strength and static modulus of elasticity of the concretes were determined at 28 days. The 

analysis of variance (ANOVA) showed that the variable "batch" had a significant influence on the modulus 

of elasticity of the concrete, indicating that this property is a probabilistic variable indeed. The normality of 

the distribution of its values was attested, and values of characteristic modulus of elasticity were proposed, 

which were from 6 to 10% lower than the mean values. In addition, the use of gneissic aggregates led to 

modulus of elasticity values 30% higher than those of the concretes with granitic aggregates and equivalent 

compressive strengths, while the reduction of the w/c ratio from 0.71 to 0.46 increased the modulus of 

elasticity in about 5%. 

Keywords: Aggregate; Concrete; Modulus of elasticity; Variability. 

1. INTRODUCTION 

The construction of tall buildings in reinforced concrete has become a common practice in South America, 

eventually exceeding 250 meters in height [1]. In addition to the obstacles encountered in the execution of 

these buildings, a challenge for structural projects is the rigidity required by these structures, since they are 

often slender buildings. This demand leads to the need for concretes with high elasticity modules.  

The importance of such a property is demonstrated by the existence of numerous researches related to 

the theme. PARRA et al. [2] evaluated the difference in the elasticity module of conventional and self-

compacting concretes, with the same compressive strengths. The authors found that the modulus of elasticity 

of the pastes that make up the self-compacting concretes tends to be higher, due to the presence of mineral 

additions which promote greater compactness of the cementitious matrix. However, the presence of higher 

volumes of paste in this type of concrete led to slightly lower modulus of elasticity. ABED et al. [3] 

investigated the residual mechanical properties of self-compacting concrete incorporated with unprocessed 

waste fly ash after expose to the elevated temperature. The authors found that the modulus of elasticity is 

more sensitive to high temperature exposure than other mechanical strength (e.g. compressive and flexural 

strength), and replacing cement with up to 15% waste fly ash improved the residual modulus of elasticity of 

concrete. ALSAMAN et al. [4] evaluated the elasticity modulus of ultra-high performance concrete, made 

mailto:paulorm.matos@gmail.com


VASCONCELLOS, A.T.; DE MATOS, P.R.; CASAGRANDE, C.A.; et al.. revista Matéria, v.26, n.4, 2021. 

with a w/c ratio equal to 0.20 and only natural small aggregates, with a maximum diameter of 1.0 mm. For 

strengths of 130 to 160 MPa, elastic modules of 38 to 46 GPa were obtained. SILVA et al. [5] evaluated the 

modulus of elasticity of concretes containing recycled aggregates, observing values lower than those obtained 

for concretes with conventional aggregates. According to the authors, this occurred due to the lower modulus 

of elasticity of the recycled aggregates and the characteristics of the paste / aggregate transition zone. Piesta 

et al. evaluated the correlation between the modulus of elasticity of conventional and high-performance 

concretes, and of the rocks that originated the aggregates (basalt, granite, dolomite and quartz). The modulus 

of elasticity of basaltic rock was 100.8 GPa, while of granite it was 28.0 GPa. This resulted in modules of 

elasticity 25 to 45% higher for concretes containing aggregates of basalt compared to those containing 

granite, for same w/c ratios. The same behavior was observed by JUROWSKI and GRZESZCZYK [6], who 

investigated the elasticity module of self-compacting and high-performance concretes produced with natural 

and basalt aggregates. SCHANKOSKI et al. [7] found that the mineral origin of the filler used in self-

compacting concrete significantly affects the modulus of elasticity of the composite, observing values up to 

16% higher for concretes produced with granite and diabase fillers, compared to those produced with fillers. 

limestone. In addition to the various correlations proposed in the literature, models for predicting codes and 

standards are available, such as Model Code [8], ACI 318 [9], and Brazilian [10], British [11], Spanish [12], 

New Zealand [13], and Canadian [14] standards. 

A fact neglected both by the models and correlations presented in the literature and in structural 

projects is the possible variability in the value of the concrete's modulus of elasticity. In contrast to the 

compressive strength, for which a characteristic value is adopted due to the dispersion of its values, the 

modulus of elasticity is approached as a deterministic variable. Thus, the occurrence of values lower than the 

one adopted may result in calculation errors and lead to excessive deformations, or even to instability of the 

structure. In this context, to the authors’ best knowledge, reports of the variability of the modulus of elasticity 

of concretes produced with aggregate from the same source over time are non-existent. 

Therefore, this work evaluated the influence of the variation of the batch of the coarse aggregate in the 

variability of the elasticity module of the concrete. For this, concretes were made with coarse aggregates 

from three different sources, three different water/cement ratios, and five different batches from each source 

of aggregate. The compressive strength and static elastic modulus of the concretes were determined at 28 

days. Based on the results obtained, a probabilistic approach is proposed for the modulus of elasticity, 

determining a characteristic value for this property.  

 

 

2. MATERIALS AND METHODS 

2.1 Materials 

Portland cement available in Brazil as CP IV-32 [15] was used, equivalent to CEM II/A-V [16]. The 

chemical and physical characteristics of the cement are presented in Table 1. As fine aggregate, a 

combination of two sands was used: quarzitic natural sand with fineness modulus of 1.04 and density of 2.65 

g/cm³, and limestone manufactured sand with fineness modulus of 3.03 and density of 2.80 g/cm³. The 

combination of 60% natural sand + 40% manufactures sand was used since it was previously defined as the 

optimum proportion [17], resulting in a composition with fineness modulus of 1.84 and density of 2.71g/cm³. 

The particle size distribution of the fine aggregate used is presented in Figure 1. 

Table 1: Chemical and physical characteristics of the Portland cement used. 

Chemical composition 

SiO2 Al2O3 Fe2O3 CaO K2O Na2O MgO SO3 LOI IR Free CaO 

28.99 9.79 4.07 45.45 *1.18 2.41 2.59 3.24 26.10 0.67 

Physical properties 

Density (g/cm³) Blaine fineness (cm²/g) 28-day nominal strength (MPa) 

2.86 4380 43.3 

* Na2O equivalent; LOI = loss on ignition; IR = insoluble residue. 
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Figure 1: Particle size distribution of the fine aggregate used. 

Three gravels were used as coarse aggregate: one granitic, produced in Tijucas, SC, Brazil (referred to 

as “Granite”), and two gneissic, one of which was produced in Blumenau, SC, Brazil (referred to as “Gneiss 

1”) and the other in Gaspar, SC, Brazil (referred to as “Gneiss 2”). For each gravel, 5 samples were collected 

on different dates, collected in two size fractions: 4.75-12.5 mm and 9.5-25.0. For concrete production, the 

two size fractions were used in equal proportions. The particle size distribution of the coarse aggregates of 

different types and batches are shown in Figure 2, their physical characteristics are presented in Table 2. 

Table 2: Physical characteristics of the coarse aggregates from different types and batches. 

Material / size fraction Property Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Average 

Granite 

4.75-12.5 mm 
Density (g/cm³) 2.60 2.60 2.62 2.62 2.62 2.61 

Fineness modulus 6.42 6.44 6.46 6.45 6.42 6.44 

9.5-25.0 mm 
Density (g/cm³) 2.61 2.60 2.63 2.62 2.62 2.62 

Fineness modulus 6.98 7.09 7.10 7.06 7.03 7.05 

Gneiss 1 

4.75-12.5 mm 
Density (g/cm³) 2.75 2.78 2.76 2.78 2.80 2.77 

Fineness modulus 6.35 6.24 6.21 5.89 6.02 6.14 

9.5-25.0 mm 
Density (g/cm³) 2.78 2.78 2.76 2.77 2.80 2.78 

Fineness modulus 6.97 6.94 6.92 7.02 7.03 6.98 

Gneiss 2 

4.75-12.5 mm 
Density (g/cm³) 2.85 2.85 2.81 2.84 2.80 2.83 

Fineness modulus 6.02 6.09 4.98 6.12 5.68 5.78 

9.5-25.0 mm 
Density (g/cm³) 2.85 2.85 2.81 2.84 2.78 2.83 

Fineness modulus 6.98 6.94 6.97 2.05 7.01 5.99 
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Figure 2 Particle size distribution of the different types and batches of coarse aggregate. 

2.2 Mix proportioning 

Firstly, a water content of 174 liters/m³ and a volumetric mortar content of 59% were fixed for all the mixes, 

which were previously verified as adequate for producing concretes with the materials commercially 

available in the region [18]. Then, the cement content was varied to reach compressive strengths compatible 

with those used in practice (i.e. from 25 to 40 MPa), therefore establishing three water/cement (w/c) ratios by 

mass: 0.46, 0.57 and 0.71. The volumetric content of coarse aggregate was fixed (in about 41%) in order to 

verify only the effects of the aggregate type and batch – and not of its content – on the mechanical properties 

of concrete. Finally, the fine aggregate content was defined as the volume necessary to complete 1 m³ of 

concrete. Figure 3 illustrates the detailed composition of the concretes investigated, in volumetric basis. 

Considering three types of coarse aggregate, five batches of each aggregate, and three w/c ratios, a total of 45 

concretes were produced. 
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Figure 3: Volumetric proportioning of the concrete mixes investigated. 

2.3 Sample preparation 

Concretes were prepared in a vertical axis mixer with capacity of 35 liters and 60 rpm. For each composition, 

batches of 15 liters were prepared, mixed according to the following steps: (i) addition of cement and sand to 

the mixer container and homogenizing for 1 min; (ii) addition of water gradually over 1 min; (iii) after a total 

of 4 min mixing, adding the gravel; (iv) after a total of 5 min mixing, gradually adding the plasticizer until 

reaching the desired consistency; (v) mix up to a total of 10 min. The aggregates were previously dried, and 

the materials were stored in the laboratory for 24 hours before using for temperature stabilization. 

Immediately after the concrete preparation, the slump test was conducted according to ASTM C143 

[19] to check if the workability reached the desired target of 150 ± 30mm, in addition to determining the 

entrained air content by the gravimetric method according to ASTM C185 [20]. Then, six cylindrical 

specimens of 100 in diameter and 200 mm in height were cast according to ASTM C39 [21]. Immediately 

after casting, the specimens were placed in room wt 23.0 ± 2.0 °C for 24 h. Then, they were demolded and 

immersed in a water tank saturated with lime, where they were kept until 28 days. 

2.4 Testing methods 

The compressive strength tests were conducted according to ASTM C39 [21], and the modulus of elasticity 

of concrete was determined according to ASTM C469 [22]. Both tests were performed at 28 days using a 

UH-2000 (Shimadzu) hydraulic press, with constant loading rate of 0.45 ± 0.10 MPa/s. 

2.5 Statistical analysis  

Analysis of variance (ANOVA) was used to verify the influence of the parameters “w/c ratio”, “type of 

aggregate”, “batch of aggregate”, and the combination between them in the compressive strength values and 

modulus of elasticity of concrete. The analysis was performed using the software Statistica (version 13.2), for 

95% reliability. 

The normality of the results was verified by the Kolmogorov-Smirnov Normality Test. This method 

consists of comparing the cumulative frequencies of the values obtained experimentally with those of the 

theoretical normal distribution. To accept the normality of the data, the maximum absolute difference 

between the observed and theoretical distributions must be less than a critical value, which depends on the 

significance and size of the sample [23]. This comparison is conducted using Equation 1, where Dn is the 

observed difference, F(x) is the assumed cumulative distribution function (in this case, the normal function), 

and Fn(x) is the cumulative distribution obtained experimentally (i.e. empirical distribution). 

                   ( )     ( )  (1) 

The empirical distribution function Fn(x) is defined by Equation 2, for n independent Xi observations, 
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where  [    ](  ) is the indicator function (equal to 1 if Xi ≤ x, and equal to 0 if Xi > x). 

            ( )   
 

 
∑ [    ]

 

   

(  ) (2) 

The observed difference (Dn) is then compared with the critical value D(α,n), which depends on the 

level of probability (α) and the sample size (n). If Dn is lower or equal to D(α,n), the hypothesis of normality 

is accepted. 

If the normality of the values is confirmed, a characteristic value can be determined from the t-student 

distribution given by Equation 3, where    is the sample mean, µ is the population mean, s is the sample 

standard deviation and n is the number of values. The characteristic value corresponds to the value that, for 

the adopted reliability, values below it will not be achieved. 

                
     

  √ 
 (3) 

3. RESULTS AND DISCUSSION 

The characterization of concrete in the fresh state was limited to determining its slump as an accepctance 

criterion. All the mixes reached the initially established range of 150 ± 30 mm. In addition, the air content of 

the concretes varied from 1.2 to 3.1%, therefore not significantly affecting its mechianical properties. 

3.1 Compressive strength of concrete 

Although the major goal of this work is to check the variability of the module of elasticity of concrete with 

different batches of aggregate, it is convenient to verify if the compressive strength of the concrete was 

affected. The compressive strength results at 28 days are shown in Figure 4. The mean strengths were 40.0, 

31.1 and 22.2 MPa, respectively for the w/c ratios of 0.46, 0.57 and 0.71. It can be notet that the type of 

aggregate did not have significant influence on the compressive strength of concrete, and this trend was 

confirmed by ANOVA presented in Table 3, in line with that reported by [24]. For conventional strength 

concrete (i.e. with compressive strenght up to 60 MPa), the aggregate usually presents strength greater than 

the cementitious matrix. Thus, the failure of the composite tends to occur in the matrix, while the type of 

aggregate generally does not significantly influence the strength of concrete as long as they have adequate 

mechanical characteristics and transition zone with the cementitious matrix [25]. In turn, the w/c ratio had 

significant influence on the compressive strength of concrete as expected. The reduction of the w/c ratio 

results in a more compact cementitious matrix, reducing its porosity and consequently increasing the 

mechanical resistance of the materia [24, 26].  

 

Figure 4: Compressive strength of the concretes at 28 days for the different w/c ratios, type and batch of aggregate. 
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Table 3: ANOVA: influence of “w/c ratio”, “aggregate type” and “aggregate batch” on the compressive strength of con-

crete. 

Source SS DOF MS F p Significant? 

w/c ratio (A) 14884.2 2 7442.08 1908.25 0 Yes 

Aggregate type (B) 19.262 2 9.631 2.47 0.087 No 

Aggregate batch (C) 217.733 4 54.433 13.957 0 Yes 

AB 31.088 4 7.772 1.993 0.096 No 

AC 36.995 8 4.624 1.186 0.308 No 

BC 585.486 8 73.186 18.766 0 Yes 

ABC 197.94 16 12.371 3.172 0 Yes 

Error 1013.99 260 3.9 
   

Total 16986.7 304 
    

SS: sum of squares; DOF: degrees of freedom; MS: mean square; F: F-statistic; p: probability value. 

3.2 Modulus of elasticity of concrete 

Figure 5 shows the average values of the modulus of elasticity of the concretes for each ratio w/c, type and 

batch of aggregate. ANOVA presented in  

 

 

 

Table 4 indicated that the three factors had significant influence on the module of elasticity, as well as the 

interactions between them, for 95% reliability. The influence of each factor will be discussed independetly in 

the following items. However, it is evident in Figure 5 that the values obtained for the granitic aggregate are 

lower than those obtained for the gneissic aggregates for the same w/c ratio, while the values obtained for the 

two gneissic aggregates did not have significant differences. 

 

 

Figure 5: Modulus of elasticity of the concretes at 28 days for the different w/c ratios, type and batch of aggregate.  
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Table 4: ANOVA: influence of “w/c ratio”, “aggregate type” and “aggregate batch” on the modulus of elasticity of con-

crete. 

Source SS DOF MS F p Significant? 

w/c ratio (A) 311.891 2 155.945 39.959 0 Yes 

Aggregate type (B) 6309.73 2 3154.865 808.386 0 Yes 

Aggregate batch (C) 109.964 4 27.491 7.044 0 Yes 

AB 49.06 4 12.265 3.143 0.016 Yes 

AC 65.488 8 8.186 2.098 0.039 Yes 

BC 66.65 8 8.331 2.135 0.035 Yes 

ABC 67.578 16 4.224 1.082 0.376 No 

Error 643.94 165 3.903 
   

Total 7624.302 209 
    

3.2.1 Effect of “type of aggregate” on the modulus of elasticity of concrete 

ANOVA presented in  

 

 

 

Table 4 indicated that the factor "aggregate type" had a more significant influence on the modulus of 

elasticity of concrete than the factor "w/c ratio" since the F index of the former was higher than that of the 

latter. This behavior was opposite to that observed in the compressive strength, where the type of aggregate 

did not have significant influence, while the “w/c ratio” played a major role. According to [24], properties 

such as the modulus of elasticity and density of the constituent phases, their volumetric fraction and the 

properties of the transition zone are preponderant in the elastic behavior of concrete. Thus, the use of 

aggregate with higher modulus of elasticity naturally increases the overall modulus of elasciticy of concrete. 

In this context, it was observed that concretes produced with granitic aggregates presented values of modulus 

of elasticity approximately 30% lower than those obtained for concretes containing gneissic aggregates, 

regardless of the strength level (i.e. w/c ratio) and aggregate batch. Similar behaviors to those observed in 

this work are reported by other authors in the literature [27-31]. 

Furthermore, Duncan post-hoc test was conducted to check if the type of gneiss led to significant 

differences in the values of modulus of elasticity, and the results are presented in Table 5. For the same w/c 

ratios, no significant differences between the modules of elasticity of the concretes produced with the 

different gneissic aggregates were observed, with 95% reliability. This reinforces the hypothesis that the 

mineralogical type of aggregate is the predominant parameter in the elastic behavior of concrete, for a fixed 

content of it. 

Table 5: Duncan test for the modulus of elasticity of the concretes with different gneissic aggregates. 

Mix Eci Std 0.71 0.71 0.57 0.57 0.46 0.46 

w/c Aggregate (GPa) (GPa) GN1 GN2 GN1 GN2 GN1 GN2 

0.71 GN1 44.3 2.52 - NS S NS S S 

0.71 GN2 43.0 2.36 NS - S S S S 

0.57 GN1 46.4 1.93 S S - NS NS NS 

0.57 GN2 45.4 2.29 NS S NS - S S 

0.46 GN1 47.6 1.87 S S NS S - NS 
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0.46 GN2 47.4 2.72 S S NS S NS - 

Eci = modulus of elasticity; Std = standard deviation; S = significant difference; NS = not significant difference. 

3.2.2 Effect of “w/c ratio” on the modulus of elasticity of concrete 

Figure 6 shows the values of the modulus of elasticity of the concretes as a function of their compressive 

strength, for each type of aggregate. There was a slight upward trend in the module of elasticity with the 

reduction of the w/c ratio (i.e. with the increase in the strength of concrete). This trend was confirmed by 

ANOVA presented in  

 

 

 

Table 4, with 95% reliability. Although the factor “w/c ratio” statistically influenced the modulus of 

elasticity, this trend was discreet: in the case of concretes containing granitic aggregate, reducing the w/c 

ratio from 0.71 to 0.46 increased the modulus of elasticity from 33.0 GPa to 34.0 GPa (about 3% increase); in 

the case of the concretes containing gneissic aggregates, this increase was slightly higher, from 44.3 GPa to 

47.6 GPa (about 7% increase). These increases were much lower than the 80%-increase in compressive 

strength promoted by the reduction of the w/c ratio from 0.71 to 0.46. These results reinforce the hypothesis 

that an increase in compressive strength does not necessarily lead to significant increases in its modulus of 

elasticity. In fact, this is verified by [4], which obtained modulus from 38 to 46 GPa for ultra-high 

performance concretes with compressive strengths of 130-160 MPa, with strengths much higher than those 

obtained in the present work but similar modules. 

As already mentioned, the reduction of the w/c ratio results in a more compact cementitious matrix, 

with smaller pore volumes. However, in this study, the water consumption of the mixtures was kept fixed for 

all compositions, with the reduction of the w/c ratio effected by the increase in the cement consumption of 

the concretes. This led to increases in paste volume of up to 5% when comparing concretes with a w/c ratio 

of 0.71 and 0.46, since the volume of coarse aggregates and the content of mortar were kept constant for all 

mixtures. It is known that the modulus of elasticity of aggregates is, in general, much higher than that of 

cement paste [32]. Thus, the increase in the modulus of elasticity of concrete promoted by the increase in the 

stiffness of the paste (resulting from the reduction of the w/c ratio) was partially compensated by the increase 

in the volume of paste (the latter, with a lower modulus of elasticity). These results are compatible with those 

reported by [2]: according to the authors, the cement paste of self-compacting concrete have a module of 

elasticity 5-15% higher than the paste of conventional concrete, justified by the increase in compactness 

promoted by the addition of filler. Despite that, self-compacting concrete showed modulus of elasticity about 

5% lower than conventional concrete for the same compressive strength due to the higher volumes of paste of 

the former.  

 

Figure 6: Modulus of elasticity of concrete as a function of its compressive strength. 
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3.2.3 Effect of “aggregate batch” on the modulus of elasticity of concrete 

In order to evaluate the variability of the modulus of elasticity of concretes produced with aggregates from 

the same source extracted over time, ANOVA was conducted to check the influence of the factor “aggregate 

batch” on its property for each aggregate source separately. The results are presented in  

 

 

 

 

Table 6. The aggregate batch had significant influence on the module of elasticity of concrete, with 95% 

reliability, regardless of the aggregate type. This behavior suggests a probabilistic approach for this property, 

and not deterministic values resulting from specific tests, or simply correlated to compressive strength as 

often adopted in practice. Such a probabilistic approach is also suggested by other authors [33-35]. 

 

 

 

 

 

Table 6: ANOVA: effect of “aggregate batch” on the modulus of the elasticity of concrete, for each type of aggregate. 

Aggregate Source SS DOF MS F p Significant? 

GR 

w/c ratio (A) 23.495 2 11.747 5.728 0.006 Yes 

Aggregate batch (B) 52.093 4 13.023 6.35 0 Yes 

AB 9.93 8 1.241 0.605 0.769 No 

Error 108.693 53 2.051 
   

Total 194.21 67 
    

GN1 

w/c ratio (A) 117.883 2 58.942 15.211 0 Yes 

Aggregate batch (B) 43.087 4 10.772 2.78 0.036 Yes 

AB 45.549 8 5.694 1.469 0.191 No 

Error 201.496 52 3.875 
   

Total 408.015 66 
    

GN2 

w/c ratio (A) 219.17 2 109.585 22.864 0 Yes 

Aggregate batch (B) 78.653 4 19.663 4.103 0.005 Yes 

AB 69.774 8 8.722 1.82 0.092 No 

Error 277.991 58 4.793 
   

Total 426.419 70 
    

3.3 Normality and estimation of characteristic value of modulus of elasticity  

Since the modulus of elasticity behaves as a probabilistic variable, it can assume different frequency patterns 

depending on the sample data. When it comes to experimental data, it is known that several phenomena are 

well described by the normal distribution [36]. Thus, to assume this premise in this work, it was verified 

whether the data set adheres to normality, by the Kolmogorov-Smirnov Normalty Test described in item 2.6. 

The results are shown in Table 7. It was found with 95% reliability that the values of modulus of elasticity 

obtained follow normality, for all types of coarse aggregate and w/c ratio.  
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Table 7: Kolmogorov-Smirnov Normality Test for the modulus of elasticity of concrete. 

Mix Eci (GPa) Std (GPa) n Dmax Dα(n) Normality 

0.46 GR 34.4 1.25 21 0.1815 0.188 Normal 

0.57 33.9 1.28 22 0.1211 0.186 Normal 

0.71 33.0 2.12 25 0.1207 0.180 Normal 

0.46 GN1 47.6 1.87 21 0.1176 0.188 Normal 

0.57 46.4 1.93 23 0.1776 0.184 Normal 

0.71 44.3 2.52 23 0.1041 0.184 Normal 

0.46 GN2 47.4 2.72 25 0.1430 0.180 Normal 

0.57 45.4 2.29 23 0.1060 0.184 Normal 

0.71 43.0 2.36 25 0.1077 0.180 Normal 

 

The normality of the data indicates that there is a probability of obtaining higher and lower values 

than the value experimentally determined. Thus, to ensure the safety of structural projects, it is proposed to 

adopt characteristic values for the concrete elasticity module (Eck). For this, the t-student distribution 

described in item 2.6 was used. The results of this analysis are shown in  

Table 8. The Eck values are, in general, 2.0 to 4.5 GPa lower than the average values experimentally 

obtained (i.e. from 6 to 11% lower). This indicates that the adoption of average values for the structural 

calculation can result in considerable errors, leading to excessive deformations of the structures. 

 

Table 8: Determination of the characteristic value of the modulus of elasticity (Eck) of concrete. 

Mix Eci (GPa) Std n  t Probability (%) Eck (GPa) 

0.46 GR 34.4 1.25 21 -13.763 100 32.3 

0.57 
 

33.9 1.28 22 -21.586 100 31.7 

0.71 
 

33.0 2.12 25 -26.717 100 29.4 

0.46 GN1 47.6 1.87 21 -41.549 100 44.4 

0.57 
 

46.4 1.93 23 -45.622 100 43.1 

0.71 
 

44.3 2.52 23 -43.033 100 40.0 

0.46 GN2 47.4 2.72 25 -30.836 100 42.8 

0.57 
 

45.4 2.29 23 -36.456 100 41.5 

0.71 
 

43.0 2.36 25 -45.218 100 39.0 

 

4. CONCLUSIONS 

In this work, the influence of the coarse aggregate batch on the variability of the modulus of elasticity of 

concrete was evaluated. Based on the results obtained, some conclusions can be drawn. 

 ANOVA indicated that the aggregate batch had significant influence on the modulus of elasticity of 

concrete for a 95% reliability. This suggests that such property should be treated as a probabilistic variable, 

and not a deterministic one as it is currently addressed.  

 The normal distribution for the modulus of elasticity was confirmed by the Kolmogorov-Smirnov 

Normality Test. A characteristic modulus of elasticity (Eck) was proposed, below which no experimental 

values will be obtained for 95% reliability. The proposed Eck values were 6 to 11% lower than the average 

values, indicating that the adoption of the average values for structural calculations may result in 

considerable errors and lead to excessive deformations. 

 The type of aggregate had no significant influence on the compressive strength of concrete, despite 

being the factor that most influenced the modulus of elasticity. Concretes containing granitic aggregate 

showed modulus of elasticity about 30% lower than those containing gneissic aggregates for the same 

compressive strengths. The w/c ratio significantly influenced the modulus of elasticity of the concretes, albeit 
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in a discrete way: a reduction in the w/c ratio from 0.71 to 0.46 increased the modulus by 3%-7%, while 

increasing compressive strength by about 80%. Thus, it was evident that increasing the compressive strength 

of concrete is not an effective alternative to increase its modulus of elasticity.  
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