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ABSTRACT 

Band structures, density of states, and absorption spectra of pure, Nd doped, C doped, and Nd-C codoped 

TiO2 are calculated using first-principles based on density functional theory. Calculation results show that Nd 

4f state forms empty impurity energy levels below conduction band, and C 2p state together with Nd 2f state 

forms occupied impurity energy levels with higher density than that of single doped TiO2 above valence 

band. Consequently, more electrons in occupied energy levels can be excited by visible light to empty Nd 4f 

states rather than Ti 3d states, resulting in further enhancement of visible light absorption and absorption 

edge red shift. In addition, the impurity energy levels act as carriers trap centers, thus decreasing the 

recombination rate of carriers. 
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1. INTRODUCTION 

It’s well known that anatase TiO2 is an excellent photocatalyst due to its nontoxicity, physical and chemical 

stability, low cost and high photocatalytic activity. However, anatase TiO2 has a relatively wide band 

gap(Eg=3.23eV), and only the ultraviolet light whose photon energy exceeds the band gap of TiO2 can excite 

photogenerated electron-hole pairs.  

           Furthermore, TiO2 has a high carriers recombination rate, leading to photogenerated carriers can not 

be made full use of. These two problems limit the wide applications of TiO2. To solve these problems, 

researchers made great efforts and found that doping appropriate impurities into TiO2 is an effective and 

practical approach to cause visible light response and reduce carriers recombination rate.  

           Through years of development, the dopants change from metal ions[1-7] to nonmetal ions[8-10], and 

the doping method develop from single doping to codoping[11-14]. Carbon is one of the most adopted 

nonmetal dopants both in single doping and codoping. For instance, SAKTHIVEL et al.[15] accidentally 

achieved C doped anatase TiO2 during their work on N doped TiO2, and found that it was much more active 

than N doped TiO2 in degradation of 4-chlorophenol with visible light irradiation. IRIE et al.[16] fabricated 

carbon-doped anatase TiO2 by oxidative annealing of TiC, in which carbon atoms were at substitutional sites 

of oxygen atoms. Experimental results indicated that the as-prepared carbon-doped TiO2 had a smaller band 

gap, its absorption edge had a red shift, and showed visible light photocatalytic activity. Rare earth metal ions 

doped TiO2 is also one of the research focus[7,17,18]. LI et al.[19] synthesized Nd
3+

 doped anatase TiO2 

nanoparticles, and found it being superior to undoped TiO2 nanoparticles in degrading 2-chlorophenol with 

visible light irradiation.  

           By theoretical calculations, they considered that the band gap of Nd
3+

 doped TiO2 was narrowed by 

introducing Nd 4f state below the conduction band, consequently, the absorption edge shifted to visible light 

region. Given the important roles of C and Nd ions on the improvement of photocatalytic activity of TiO2, 

WU et al.[20] synthetized Nd-C codoped anatase TiO2 (C at O, and Nd at Ti), expecting for reaching some 

synergetic effects between codoped ions. Their experimental results indeed indicated that Nd-C codoped 

TiO2 gained further enhancement of visible light absorption compared with C or Nd alone doped TiO2, and 

the photogenerated carriers recombination was effectively inhibited by introduced Nd 4f energy levels and 
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oxygen vacancies. Therefore, the photocatalytic activity of Nd-C codoped TiO2 was superior to single doped 

TiO2. By far as we know, there have no reports concentrate on the theorytical calculations of the Nd-C 

codoped TiO2.  

           So in this paper, using first principles based on density functional theory (DFT), we firstly calculated 

the band structures, density of states and optical absorption spectra of Nd-C codoped TiO2. In addition, the 

related properties of Nd doped TiO2, C doped TiO2 and pure TiO2[21] were also calculated. By comparing 

the electronic structures differences between Nd-C codoped TiO2 and the pure and single doped TiO2, we 

investigate the mechanism of further improvement as mentioned above from the electronic structure point of 

view. 

2. MATERIALS AND METHODS 

In this study, Nd-C codoped anatase TiO2 is modeled using a 3×3×1 anatase TiO2 supercell, in which one O 

atom is replaced by C atom, and one Nd atom substitutes for one Ti atom, as shown in Figure 1. Our 

calculations are performed using CASTEP program[22]. The interaction between ion core and valence 

electrons is described by ultrasoft pseudopotential, and the Perdew-Burke-Ernzerhof (PBE) generalized 

gradient approximation (GGA) is employed to describe the exchange-correlation energy for valence 

electrons. The electron wave functions are expanded in plane wave basis set with a cutoff energy of 360 eV.    

           The k-points for Brillouin zone sampling is set as 2×2×2. The band structure, density of states, and 

optical absorption spectra are calculated based on geometry optimized crystal structure. The calculations of 

corresponding properties of pure and single doped TiO2 are performed using the same method as that of Nd-

C codoped TiO2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Structural model of Nd-C codoped TiO2 

3. RESULTS AND DISCUSSION 

The band structures and density of states (DOS) near Fermi level for pure, Nd doped, C doped, and Nd-C 

codoped TiO2 are shown in Figure 2. Fermi level is chosen at zero. It can be seen from Figure 2 that doping 

does not change band gap significantly, just gives rise to a slight band gap broadening. Therefore, the band 

gap is not the dominant factor which influences optical absorption. However, the dopants introduce impurity 

energy levels in the band gap, these gap levels can cause remarkable influence on optical absorption. 

           In Nd doped TiO2, Nd 4f states have two density of states peaks, forming a series of intensive impurity 

energy levels below conduction band and an isolated energy level at Fermi level, respectively. The impurity 

energy levels below conduction band are above Fermi level, so they are not occupied by electrons. Electrons 

in valence band can absorb photons whose energy are smaller than band gap energy, and transit to the empty 

Nd 4f state, therefore, visible light absorption of Nd doped TiO2 is enhanced by the introduction of Nd 4f 

state.  

           Moreover, the impurity energy levels below conduction band also act as electron trap centers. Electron 
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trap centers have a strong ability to capture electrons, but poor for holes. When electrons are captured by 

electron trap centers, holes can hardly recombine with the trapped electrons, and it takes a long time to 

release trapped electrons by visible light irradiation to conduction band, thus decreasing carriers 

recombination rate and prolonging carriers lifetime. For C doped TiO2, C 2p state hybridizes with O 2p and 

Ti 3d states, forming three impurity energy levels in band gap, one is below conduction band, one is above 

valence band, and the other at Fermi level. 

           Our calculated band structure is in agreement with that of Li et al.[23] in general. The impurity energy 

level below conduction band lies above Fermi level, so it is lack of electrons, and the one above valence band 

is blow Fermi level, then is occupied by electrons. Hence, the electrons of valence band and occupied 

impurity energy level can be excited to conduction band and empty impurity energy level, extending optical 

absorption range to visible light region. 

           As with Nd doped TiO2, impurity energy levels below conduction band and above valence band play a 

role of electrons trap centers and holes trap centers, respectively, consequently inhibit carriers recombination 

and increase carriers lifetime. Nevertheless, the impurity energy level located at Fermi level is deep in band 

gap, and when C doping concentration is high enough it may become an effective carriers recombination 

center, this may be one reason for the existence of optimal C doping concentration[24]. 

           As for Nd-C codoped TiO2, Nd 4f state remains two density of state peaks, the higher one is below 

conduction band and forms several impurity energy levels as Nd doped TiO2, the lower one is above valence 

band, together with C 2p state forms an impurity energy band rather than an isolated energy level as Nd 

doped TiO2. Because the density of state peak above valence band is much bigger than that of Nd and C 

single doped TiO2, electrons of corresponding impurity energy levels have a larger probability to be excited 

to empty Nd 4f and Ti 3d states by visible light.  In addition, electrons and holes trap centers can capture 

more carriers due to increase of impurity energy levels concentration, decreasing carrier recombination rate 

and prolonging carriers lifetime in further. As a consequence, visible light absorption and quantum efficiency 

of Nd-C codoped TiO2 is enhanced compared with Nd and C single doped TiO2. 
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Figure 2: Structural mode Band structures and density of states for (a) pure[21] TiO2 (b) Nd doped TiO2 (c) C doped TiO2 

(d) Nd-C codoped TiO2 

 

The polycrystalline model of TiO2 was used to calculate the absorption spectra of the different 

systems. Because GGA method has the disadvantage of band gap underestimation, we used a “scissor 

operation” of 1.0 eV to move the absorption edge of pure anatase TiO2 to 3.2 eV. The optical calculations 

were based on the ground state of the electrons. The calculated absorption spectra for pure, Nd doped, C 

doped, and Nd-C codoped TiO2 are shown in Figure 3. From Figure 3 it can be seen that the absorption edge 

of all the doped TiO2 shifts to visible light region with respect to pure TiO2, and Nd-C codoped TiO2 has a 

greatest red shift extent. As all the doped TiO2 have a wider band gap than pure TiO2, the red shift should be 

caused by impurity energy levels. The empty impurity energy levels below conduction band form a new 

conduction band minimum (CBM), and the occupied impurity energy levels above valence band act as new 

valence band maximum (VBM), it seems like the band gap is narrowed, so the absorption edge shifts to 

visible light region [19]. Figure 2 also shows that Nd-C codoped TiO2 has a more intense visible light 

absorption than pure and single doped TiO2, which is in agreement with experimental result [20]. 
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Figure 3: Absorption spectra for pure, Nd doped, C doped, and Nd-C codoped TiO2 

4. CONCLUSIONS 

We have calculated the band structures, density of states, and absorption spectra of pure, Nd doped, C doped, 

and Nd-C codoped TiO2 using first-principles based on density functional theory. Nd 4f state forms empty 

impurity energy levels below conduction band, and C 2p state together with Nd 4f state forms occupied im-

purity energy levels with higher density than single doped TiO2 above valence band.  

           Consequently, more electrons in the occupied energy levels can be excited by visible light to empty 

Nd 4f state rather than Ti 3d state, resulting in further enhancement of visible light absorption and absorption 

edge red shift. Also, the impurity energy levels act as carriers trap centers, decreasing carriers recombination 

rate. 
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