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ABSTRACT 

The superficial characteristics of honed surfaces are relevant for the tribological performance of cylinders of 

internal combustion engines (MCI). Recent studies found a correlation between the occurrence of the phe-

nomenon called folded metal and the presence of graphite of cast irons. However, the honing process tends to 

overlap the graphite, such that an application of a technique to remove a thin layer of material, exposing the 

graphite, would be useful. This paper aims to determine the best condition, of electric potential and time, for 

the exposition of graphite in honed surfaces using a technique of electrolyte polishing. The polishing was 

made on the concave surface with aid of a polishing mask developed for this matter. Samples of honed cylin-

ders were removed from MCI manufactured using a compacted graphite iron. The characterizations were 

done through metallography and white light interferometry. To determine the ideal condition, several condi-

tions of polishing were tested. For the verification of the repeatability, five repetitions were performed with 

the best condition. The results showed satisfactory repeatability, with an exposition of graphite and the ma-

trix etching. The roughness of the polished region presented considerable uniformity, with a significant 

change of roughness in comparison to the honed surface. Furthermore, removal of the characteristic topogra-

phy of the honed surface was observed. The layer removed showed little variation in depth along the polished 

region, with values close to 5 µm. This value accomplishes the demand of layer removal for the exposition of 

subsurface graphite. 
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1. INTRODUCTION 

According to SABEUR et al. [1], in serial manufacturing, the finishing of cylinders of internal combustion 

engines is usually obtained by honing. CORRAL and CALVET [2] showed that the topographic characteris-

tics of these surfaces are very relevant to the tribological performance of engine system, and they are com-

posed of valleys and plateaus. The plateaus are, generally, related to friction and wear phenomena, because 

these areas are in direct contact with the piston rings. On the other hand, MEZGHANI et al. [3] show that the 

valleys are associated with the lubrication and they serve as reservoirs, generating a network of channels 

where the oil may flow through [2]. 

An inherent phenomenon to the honing process is the folded metal [4]. These portions of material tend 

to obstruct the grooves, and further may be detached during the operation of the engine. Hence, there is a 

tendency of scratch in the axial direction of the cylinder, which allows the passage of fluids to the combus-

tion chamber, as demonstrated by DIMKOVSKI et al. [5]. 

VALE et al. [6] showed that the presence of graphite affects the occurrence of the folded metal in the 

honed process. In most of the cases, the subsurface location of graphite is relevant to the plastic deformation 

of cast irons matrix, leading to the folded metal occurrence. However, it is verified that graphite is often cov-

ered by the honing process. Thus, the removal of a layer as thin as possible is required to correlate the folded 

metal phenomenon with the graphite immediately below the surface. In this way, to develop a suitable tech-

nique to reveal the graphite in honed surfaces is useful. 

The use of etching techniques for removal specific micro-constituents in the cast irons is well reported 

by the literature. For example, RIVERA et al. [7] made use of a color etching to create color patterns to iden-
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tify the microsegregation in ductile irons. For white cast iron, their carbides can be better identified using a 

selective etching to remove deeply the matrix, as used by SINATORA et al. [8] for identifying M3C and 

M7C3 carbides, and by DA SILVA and BOCCALINI JR. [9] for MC and M2C ones. Finally, it is worthwhile 

to cite the investigation conducted by WOLLMANN et al. [10], who used an etching for removal successive 

layers of ductile iron for measuring residual stresses. 

Within this context, this paper aims to identify the best condition for electrolytic polishing in concave 

surfaces of honed cylinders of cast iron to expose the subsurface graphite. Besides this, an evaluation of the 

repeatability of the technique is presented. 

 

2. MATERIAL AND METHODS 

The specimens were extracted from cylinders of internal combustion engine blocks, model Ford Griffin V8. 

The blocks, provided by Tupy S.A., were manufactured in compacted graphite iron. The class of this material 

is the GJV450 (ISO 16112). After casting, the cylinders were honed. The applied honing process was the 

plateau type. For this process, diamond tips – D151 and D15 were used for roughing and finishing, respec-

tively. The feed rate and rotation speed were 12.4 m/min and 130 rpm, respectively. 

The apparatus used for polishing was the ElectroMet® 4 – Buehler device. In general, the polishing 

procedure is made by positioning the sample above a mask. It should create a conformal-contact with the 

surface, allowing to carry the solution to the region to be polished. The electrical contact is created using a 

rod, which serves to apply a force to keep the sample fixed. An acid solution was used, presenting the follow-

ing constitution on a volumetric basis of 1 liter: 

- 700 ml of Ethanol (95% Vol.); 

- 100 ml of 2-Butoxi-Ethanol; 

- 200 mL of Perchloric acid (30% Vol.). 

To perform the polishing a customized mask was manufactured using polyamide 6, suitable to estab-

lish the contact with the concave surface of the cylinder. Figure 1 shows details of the mask and the mounting 

with the specimen. In this way, the polishing area kept itself restricted to the slot of 6 mm x 20 mm in the 

central section of the mask. The surfaces were cleaned with isopropyl alcohol before each procedure. 

 

(a)                                            (b) 

 

Figure 1: Details of the mask for electrolytic polishing. (a) Mask. (b) Mounting with the specimen. 

 

The possible settings in the apparatus are electric potential, time, and solution flow. The limits indi-

cated in the data sheet's apparatus were taken into account for determining the electric potential and time 

range for the electrolytic polishing. Thereby, the selected ranges were 20 to 40 V and 30 to 90 s. To avoid a 

factorial design, the test conditions were evaluated using a qualitative chart based on the images of etched 

surfaces, aiming to identify the best condition of polishing. This approach will become clear in the results 

and discussions section. Two runs of tests were necessary, with 5 conditions for each, as shown in Table 1. In 

these steps, a qualitative evaluation was made using images obtained with an optical microscope. 

It is worth pointing out that during the apparatus set up, a lower fluctuation of electrical current during 

the polishing was observed, due to two conditions. Firstly, the grinding of an area in contact with the elec-

trode apparatus; and secondly, the adjustment of solution flow for higher levels. 

After the determination of the ideal polishing condition, 5 repetitions were realized to evaluate the test 
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repeatability. Topography - and consequently roughness parameters - were determined, in addition to depth 

values associated with the layer removal. These procedures were carried out in an optical interferometer, 

Taylor Hobson Talysurf CCI Lite. The selected area for sampling was 0.825 mm x 0.825 mm for a resolution 

of 1024 x 1024 pixel. Figure 2 presents a schematic draw for the roughness measurements at the etched area. 

Roughness measurements were performed on the honed surface and in the polished area (central and edge). 

An evaluation of the height distribution of the roughness and the material ratio curve is presented. The fol-

lowing roughness parameters were used: 

 Sa: Arithmetic mean height [µm]; 

 Sq: Root mean square height [µm]; 

 Spk: Reduced peak height [µm]; 

 Sk: Core height [µm]; 

 Svk: Reduced valley height [µm]; 

 Sr1: Upper bearing area [%]; and 

 Sr2: Lower bearing area [%]. 

Table 1: Runs test parameters. 

TEST CONDITION 
ELECTRIC PO-

TENTIAL [V] 
TIME [S] 

1
st
 run 

1 20 30 

2 20 90 

3 30 60 

4 40 30 

5 40 90 

2
nd

 run 

1 20 45 

2 20 60 

3 30 45 

4 40 45 

5 40 60 
 

 

 

 
 

Figure 2: Schematic draw showing the roughness measurement at the etched area. 
 

For the quantification of the layer removed with the polishing, depth evaluations were carried out in 

waviness profiles as presented in Figure 3. For this purpose, a scanning in the axial direction of the cylinder 

was performed, from the honed area until the polished central area, as shown in Figure 2. For measurements 

of depth and distance, a coordinate system was imposed, which is presented in Figure 3. The height of the 

honed surface was considered as the reference for depth measurements, and the transition between the honed 

surface and the polished area was considered for distance measurement in the axial axis of the cylinder. Two 

results are presented and described below: 

 The mean depth of the layer removed along with the axial axis of the cylinder. The mean values 
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(referred to the five repetitions) were presented in distance increments of 1 mm; 

 The mean depth of the layer removed. This value considered the fifty evaluated points (10 per 

repetition). 

 

(a) 

 

(b) 

Figure 3: Characterization of the layer removal from the honed surface until the center of the region where occurred the 

electrolytic polishing. (a) 3D topography without filtering. (b) Filtered profile – Waviness. 

3. RESULTS AND DISCUSSION 

3.1 Determination of ideal condition for electrolytic polishing 

Figure 4 presents a typical surface of a honed cylinder before the electrolyte polishing. A characteristic to-

pography with plateaus and grooves, as seen elsewhere [2,3], can be observed in Figure 4. 

 
Figure 4: Superficial aspect of a typical honed surface before the electrolytic polishing. 
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The result of the qualitative evaluation of etched surfaces is shown in Figure 5. Two runs of tests with 

five conditions of electric potential and time were required. The indications 1 and 2 presented in this chart 

refer to 1
st
 and 2

nd
 test runs, respectively. 

 
Figure 5: Qualitative chart for identifying the ideal polishing condition. 

 

For the 1st run of tests, the conditions include the central point presented in Figure 5 as well as the 

border conditions in terms of time and electrical potential. Micrographs obtained for this run are presented in 

Figure 6. For a time of 90 s, the surfaces are darker, resulting in worst aspects. On the other hand, the better 

aspect, characterized as „good‟, was obtained for the central point condition. One can note that the metallic 

matrix revealing the pearlite. Furthermore, there was a significant change of surface roughness, eliminating 

the typical topography presented in Figure 4. 

 
Figure 6: Optical micrographs and qualitative evaluation of 1st of tests of electrolytic polishing. 

 

The results of the 2nd run are presented in Figure 7. Two conditions were evaluated as „good‟ and 

three as „very good‟. Considering the contrast between graphite and matrix – an important characteristic for 

the procedure of segmentation through image analysis – the condition of 30 V and 45 s was chosen. 
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Figure 7: Optical micrographs and qualitative evaluation of 2nd run of tests of electrolytic polishing. 

 

3.2 Assessment of test repeatability 

The test repeatability was evaluated in 5 specimens using the ideal condition of 30 V and 45 s. All tests re-

sulted in polished surfaces with high-quality, graphite exposition and pearlite revelation. An example is pre-

sented in Figure 8. 

 
Figure 8: Optical micrographs for the best condition obtained after the electrolytic polishing [30 V - 45 s]. 

 

Figure 9(a) and (b) show the 3D topography before and after the electrolytic polishing. After polishing, 

irregular portions (or „islands‟) with sharp peaks can be noted, associated with deeper regions at the edges of 

these „islands‟. 
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(a) (b)  

 
Figure 9: Typical topography of surfaces: (a) before and (b) after electrolytic polishing. 

 

Figure 10 shows the values for roughness parameters of the studied surfaces. One can note, in general, 

a significant change in the parameters with the electrolytic polishing. Comparing the results between the edge 

and central part of the polished region, an acceptable degree of homogeneity could be verified. Therefore, the 

following surface changes can be de-tailed: 

 An increase of amplitude parameters Sa and Sq; 

 Changes associated with the peaks:  

 An increase of Spk; 

 A higher percentage associated to Sr1; in other words, an increase of regions associated to the 

peaks; 

 An increase of core (Sk), which follows the tendency of increase in the amplitude parameters; 

 The amplitude of valleys (Svk) became practically unaltered. Probably this behavior is due 

mostly to the formation of deeper contours around the „islands‟ created by the polishing, as dis-

cussed in Figure 9. 
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(a) Amplitude parameters 

 

(b) Functional parameters–Familyk                                (c) Functional parameters - Sr1 e Sr2  

 

Figure 10: Roughness parameters before and after electrolytic polishing 

 

Figure 11 shows the drastic change, imposed by the polishing, on the height distribution of the rough-

ness and the material ratio curve. An increase in the occurrence of greater depths is observed, even with the 

appearance of depths below 5 µm. Also, a displacement of heights distribution after polishing and a change 

of the material ratio curve can be noted, in which before the polishing there was a typical curve of honed sur-

faces. 

 
 (a)                                                                    (b) 

 
Figure 11: Typical heights distribution of roughness and material ratio curve: (a) before and (b) after electrolytic polish-

ing. 
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Obviously, the evaluation of Figure 9 and Figure 10 gives rise to a conclusion that the functionality of 

honed surfaces was completely lost. The general increase in roughness parameters did not compromise the 

evaluation of surfaces through optical microscopy. 

The mean depth in relation to distance, related to the transition in the polished area, is presented in 

Figure 12. It was remarkable that this characterization refers to half of the polished region, as indicated in 

Figure 2. It is noted that the depth presents a high dispersion, but its mean values are very similar to the pol-

ished region, mainly beyond 2 mm of the transition of the polished region. The mean value of the depth re-

moved was -4.6 ±2.0 µm. Although the coefficient of variation is 42.5%, the values obtained to meet the de-

mand for this procedure to uncover the subsurface graphite, considering that this constituent has a character-

istic dimension close to 10 µm. 

 
 

Figure 12: Depth of removed layer in relation to the relative distance of the electrolytic polishing. 

 

4. CONCLUSIONS 

The best condition of electrolytic polishing was determined for compacted cast iron, using a special mask and 

higher levels of solution flow. Based on the presented results, the following conclusions can be forwarded: 

 

 The ideal condition was identified through qualitative evaluation of micrographs, for the condi-

tion of 30 V for electric potential and 45 s for the time; 

 The repeatability of the tests for the ideal condition was considered satisfactory. There was a sig-

nificant change in roughness parameters. However, it occurred in a considerably homogeneous 

manner along the polished area; 

 The depth of removed layer was in the order of micrometers and accomplishes the demand for the 

development of this technique for exposing the subsurface graphite. 
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