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ABSTRACT 

Duplex stainless steels (DSS) are alloys with binary microstructure consisting of ferrite (δ) and austenite (γ), 

combining high mechanical properties and corrosion resistance by pitting and stress corrosion, due to the two 

phases austenite/ferrite. However, the formation of secondary and intermetallic phases, during solidification 

processes, heat treatment or welding in duplex steels tend to cause the degradation of its main properties. The 

present study aim to investigate the corrosion behaviour of UNS S82441 aged at 850°C for 30, 300 and 3000 

minutes, due to the formation of sigma phase. Corrosion resistance evaluation was performed by means of 

stress corrosion testing, potenciodinamic polarization and mass loss. The microstructural characterization and 

morphology confirmed the presence of sigma phase in the UNS S82441 duplex stainless steel, and that the 

amount of this phase increases with the time of heat treatment of aging. The aging time influences negatively 

the corrosion resistance of this steel, with a gradual drop of up to 50% on passivation regime for the condi-

tion of aging at 850°C for 3000 minutes. 
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1. INTRODUCTION 

Duplex stainless steels (DSS) are system alloys Fe-Cr-Ni-Mo, 50% ferrite (δ) and 50% austenite (γ), with 

similar amounts of δ/δ and γ/γ grain boundaries, and δ/γ interfaces [1-3]. Especially in industries of oil pro-

specting, oil refining, petrochemical and energy, there is a great attraction for the use of duplex steels due to 

the combination of corrosion resistance and high mechanical properties, mainly in aggressive environments 

for steels [2,3]. However, these properties can be drastically reduced, if undesirable secondary phases for-

mations occur, such as sigma phase (σ), chi phase (χ), austenite (γ2), chromium nitrides (Cr2N) and carbides 

(M23C6, M7C3). The high corrosion resistance of DSS derives from their high Cr content in combination 

with additions of Mo, Ni and N [4]. However, high molybdenum levels increase the tendency for deleterious 

precipitates to form. The intermetallic phases cited remove elements such as chromium (Cr) from the alloy 

matrix [4,5]. The sigma phase is a tetragonal crystal structure that has particular impact on the reduction of 

corrosion resistance and mechanical properties of DSS, having deleterious effect such as embrittlement [4-8].  

The precipitation of 𝜎 phase in stainless steels occurs between 600°C and 1000°C, its precipitation being 

faster between 800°C and 900°C due to the eutectoid decomposition of ferrite to sigma (𝛿→𝜎), in the high 

Cr-concentrated region of 𝛿 (above 20 wt.%) [7-9]. The sigma phase takes place at high-energy regions such 

as grain boundaries and interfaces (δ/δ and δ/γ). After nucleation, sigma grows into ferrite phase, it is because 

an interstitial atom (Cr) can diffuse faster in a body-centred cubic structure (δ-BCC) than in face-centred cu-

bic structure (γ-FCC) [6-8].  

Recent developments in stainless steels led to the evolution of the subgroup of duplex stainless steels 

known as Lean Duplex Stainless Steels (LDX or LDSS). It has less content of alloying elements in relation to 

standard DSS, and therefore, lower cost plus greater corrosion resistance combined with mechanical proper-

ties about twice higher than the austenitic stainless steels [3,10]. A better combination of mechanical proper-

ties and corrosion resistance of DSS occurs when austenite is maintained between 40-60% [1-3]. In contrast 

to traditional DSS, the Outokumpu company developed the Lean Duplex Stainless Steel LDX-2404® in 2010, 

which became available as UNS S82441 by the ASTM in 2011 [11]. Compared to the study of DSS, studies 

about LDSS are still incipient, focusing primarily on 2304 and 2204, most common commercially. Due to 
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recently DSS developments, it is necessary to investigate the corrosion behaviour of UNS S82441 LDSS, 

recently developed, as well as the effects of precipitates in its properties.  

The present study aims to investigate the effect of sigma phase in corrosion resistance of UNS S82441 

LDSS after heat treatment of the aging at 850°C for different times (30, 300 and 3000 minutes). 

2. EXPERIMENTAL METHOD 

The material was supplied as cold rolled 3 mm thickness plate. Samples were produced for microstructural 

characterization and corrosion tests.  The chemical composition of the material was determined by Energy 

Dispersive Spectrometry, in semi quantitative analysis, coupled with the Scanning Electron Microscope 

(SEM-EDS, Model JEOL JSM-7100F). Analysed 10 distinct regions, the results are presented in Table 1. 

Table 1: Chemical composition (wt%) of UNS S82441 LDSS (SEM-EDS). 

ELEMENT WT% 

Fe 61,73 ± 1,40 

Cr 24,52 ± 1,08 

Ni 3,69 ± 0,66 

Mo 1,91 ± 0,54 

Mn 2,51 ± 0,87 

N 0,12 ± 0,17 

Cu 0,31 ± 0,12 

2.1 Aging Thermal Treatments 

Isothermal treatments were carried out in an electric furnace muffle at 850°C, with a temperature variation of 

± 2 °C, for 30, 300 and 3000 minutes. After the isotherm times, all samples were quickly cooled in water. 

2.2 Microstructural Characterization 

Specimens of 10 x 10 x 3 mm were cut from the plate for microscopy.  All samples were ground, using 

grinding papers between 400 and 2500 mesh, followed by polishing with diamond paste 3 μm and 1 μm. The 

microstructure was investigated by confocal laser microscope (CONFOCAL, Model Olympus LEXT, OLS-

4100) after etching with Modified Behara reagent (80 ml H2O, 20 ml HCl, 1g K2S2O5, 2g NH4HF2) for 15 

to 60 s. For quantification of the phases, the methodology described in the ASTM E1245-03 standard was 

used as reference, using the ImageJ v.1.51® software. The crystal structures were analysed by using X-ray 

diffraction (XRD, Model Shimadzu LabX XRD-6000 diffractometer) with Cu-Kα radiation, 40 kV voltage 

and 30 mA current. XRD data were collected in a range of Bragg’s angles (10° ≤ 2θ ≤ 100°), with 2°/min 

speed. 

2.3 Corrosion Tests 

To investigate the influence of the sigma-phase precipitation on the corrosion behaviour, the following exper-

imental techniques were used: (a) open circuit potential (OCP); (b) potentiodynamic polarization; (c) stress 

corrosion cracking (SCC); and (d) mass loss.  The Table 2 shows the test solutions used. 

Table 2: Solution and temperatures used in corrosion tests. 

TEST SOLUTION (Wt%) TEMPERATURE (°C) 

OCP NaCl (3,0%) 25 ± 2 

Potentiodynamic Polarization NaCl (3,0%) 25 ± 2 

SCC MgCl2 (43%) 155 ± 2 

Mass Loss FeCl3 (6%) 50 ± 2 

Pickling HNO3 (20%) + HF (5%) 60 ± 2 
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The electrochemical tests were performed using a potentiostat/galvanostat (Model METROHM AU-

TOLAB) and a conventional electrochemical cell with three electrodes immersed the 3% NaCl solution. A 

saturated calomel electrode was used as the reference electrode. A platinum counter electrode was also used. 

UNS S82441 samples (exposed area of 1 cm²) mounted in thermoset resin were used as working electrode, 

and the potential was swept in the anodic direction (according to ASTM G5). 

1. Open circuit potential (OCP): The open circuit potential (corrosion potential) of the specimens 

was monitored for 1200s in the 3% sodium chloride solution, in triplicate for each sample.  

2. Potentiodynamic polarization: The tests were carried out using a scan rate of 0.1 mV/s and a range 

of potential investigated was - 100mV to + 1,6V, in relation to the corrosion potential (Ecor) de-

termined by the OCP measured.   

3. Stress corrosion cracking: U-bend specimens were shaped according to ASTM G30. Specimens 

with dimension 100 x 10 x 3 mm were cut and bended. The specimens were stressed using a two-

stage method around a cylindrical rod with a 26 mm diameter, and secured with nuts and bolts. 

Two U-Bend specimens immersed in effervescent magnesium chloride solution were used at 

155°C for 24 hours, as prescribed in ASTM G36, for each studied condition.  

4. Mass loss: Specimens with dimension 50 x 20 x 3 mm were immersed in a ferric chloride solution 

at 50°C ± 2 °C for 24 hours. Before and after immersion, the samples were pickled (in solution 

20% HNO3 + 5% HF, 60°C) for 5 minutes. The samples mass were measured before and after 

immersion.  

3. EXPERIMENTAL RESULTS 

3.1 Microstructural Characterization 

Figure 1a shows typical microstructures found in the solution treated DSS specimens, containing only austen-

ite and ferrite; the ferrite content of the solution treated sample is 51.91 ± 5.52%. Austenite "islands" elon-

gated in the rolling direction were dispersed in the δ-ferrite matrix; the austenite content of the solution treat-

ed sample is 48.10 ± 5.25%.  The presence of precipitates is not evident. 

Aged samples showed sigma phase formation always associated with ferrite-austenite interfaces (Fig-

ure 1b). Figure 1c shows that the intermetallic phase started to grow towards ferrite, evidencing the consump-

tion of ferrite for the formation of the sigma precipitate (δ → σ). Long-term aging increased in the number of 

sites of austenite; the austenite content of the 3000 minutes aged at 850°C sample is 56,50% ± 6,92%, possi-

bly due to the formation of secondary austenite in the micro regions that was total ferrite consumption (δ → σ 

+ γ2). Figure 1d shows the increase in the fraction of the sigma phase until reaching a volume fraction almost 

equal to that of the ferrite in the microstructure, for the condition of aging for the longer time (3000 minutes). 
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Figure 1: Microstructure of UNS S82441 LDSS studied after modified Behara etching (1000X): (a) as-received (rolling 

direction); aged at 850°C for: (b) 30 minutes; (c) 300 minutes; (d) 3000 minutes (through thickness direction).   

A quantitative stereological analysis was performed to determine the area fraction occupied by each 

phase. The stereological analysis was based on ASTM E1245-03. Ten fields of each sample were analysed 

and ImageJ® software was used for quantification. Table 3 shows the mean volume fractions occupied by 

each phase, for each treatment time, obtained from the laser confocal microscopy images. As expected, there 

was an increase in the intermetallic phase volumetric fraction, for longer treatment times. 

Table 3: Volumetric fractions of the phases (%). 

AGING TIME (MIN) AUSTENITE (Γ) FERRITE (Δ) SIGMA (Σ) 

0 48,10% ± 5,25% 51,91% ± 5,52% 0 

30 44,61% ± 3,71% 53,50% ± 3,87% 1,89% ± 0,81 

300 46,31% ± 4,68% 49,18% ± 4,73% 4,51% ± 1,41 

3000 56,50% ± 6,92% 23,36% ± 5,58% 20,14% ± 2,52 

 

Scanning electron microscopy analysis was used to distinguish between the phases in the samples us-

ing the backscattered electron signal. Three different phases were identified from the EDS spectra, as shown 

on Figure 2. Comparison with results reported in the literature confirmed that the precipitate corresponded to 

the sigma phase, due to the highest levels of Cr. The distinction between austenite and ferrite was based on 

the difference in the Ni and Cr contents of these phases [12]. On Table 4 it is shown the results of the chemi-

cal composition analysis for points of each phase. 
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Figure 2: SEM of UNS S82441 LDSS aged 3000 minutes at 850 °C. 

Table 4: Chemical compositions of the γ, δ, and σ phases quantified by SEM-EDS. 

5. PHASE 
CHEMICAL COMPOSITIONS (WT%) 

Cr Ni Mo Mn N Cu 

Ferrite 24,75 ± 0,41 2,38 ± 0,38 2,48 ± 0,21 1,80 ± 0,04 0 0,45 ± 0,08 

Austenite 21,48 ± 0,69 4,30 ± 0,18 1,41 ± 0,08 2,66 ± 0,18 0,82 ± 0,07 0,55 ± 0,06 

Sigma 31,36 ± 0,01 2,16 ± 0,19 4,88 ± 0,06 2,04 ± 0,11 0 0,21 ± 0,07 

 

To confirm the presence of the phases observed by microscopy, X-ray diffraction analysis was per-

formed. As results, the diffraction spectra shown in Figure 3 were obtained. 

 

Figure 3: UNS S82441 LDDD diffractograms: (a) as-received; aged at 850°C for (b) 30 min; (c) 300 min; (d) 3000min 

The diffractogram of Figure 3a (as-received material), presents the ferrite and austenite phases with 

peaks corresponding to 2θ and respective Miller indices: 44.69° (110), 64.71° (200) and 81.98° (211) for the 

ferrite phase; and 43.46° (111), 50.47° (200), 74.25° (220) and 89.99° (311) for the austenite phase, no peaks 

of intermetallic phases are observed, indicating that the material was supplied in solubilized state. The aged 
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specimens present a repetition of the peaks corresponding to the austenite and ferrite phases; however present 

sigma phase peaks, corresponding to 42.42° (410); 44.89° (420); 46.99° (411) and 48.19° (331). The diffrac-

togram of Figure 3d shows the highest intensities for the sigma phase peaks at 850°C for 3000 minutes, com-

pared to the samples aged for 30 and 300 min, accompanied by a reduction in the intensity of the peaks of 

ferrite phase.  

3.2 Electrochemical Corrosion Testing 

The evolution of open circuit potentials (OCP) for each heat treatment condition monitored versus time in 

3.0% NaCl solution (room temperatura) is shown in Figure 4. The open circuit potentials of samples moved 

towards the more positive potentials over time and tended to stabilize, exhibiting typical behavior of passive 

material. 

 

Figure 4: OCP (V) versus time (seconds) for all samples at room temperature in 3% NaCl. 

Due to the concentration of Cr and Mo in the sigma phase, which are important elements in the for-

mation of the passive layer, the lowest values of open circuit potential (according to Table 5), absolute and on 

average, were observed for the highest level of sigma precipitate (σ) which indicates higher surface activity 

in this condition. Surface heterogeneity and the presence of ions acting in the areas of failure in passivation 

due to precipitation can cause areas of potential difference leading to galvanic cells.  

The potentiodynamic polarization curves of UNS S82441 LDSS measured in 25°C, 3,0% NaCl solu-

tion at the scan rate of 0,01mV/s are shown in Figure 5.   

 

Figure 5: Potentiodynamic polarization curves of UNS S82441 LDSS, in 3.0% NaCl solution (room temperature). 
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Tested UNS S82441 LDSS showed a typical anodic polarization behavior of a stainless steel in a 

NaCl solution consisting of active dissolution, passivity, and increase in the current density due to pitting. 

This rapid increase in the current density indicates the occurrence of the stable pitting in which the potential 

corresponding to this current transient is known as a critical pitting potential, Epit [13-15]. In Figure 5 some 

current density spikes are observed at potentials below Epit for the sample aged 3000 minutes. These spikes 

are due to the occurrence of metastable pits and are explained by the consecutive formation and repassivation 

of micro size pits [13-15].  

Table 5 summarizes the current densities and the potentials determined from the polarization curves in 

Figure 5, for comparison. All of the polarization curves were evaluated by Tafel extrapolation of Tafel re-

gions to obtain Icorr. 

Table 5: Potentials and current densities obtained for the aged UNS S82441 LDSS. 

SAMPLE ECOR (MV) ICOR (A/CM²) 10-8 EPIT (MV) IPIT (A/CM²) 10-6 PASSIVATION RANGE (MV) 

0 -171 ± 82 -4,26 ± 5,32 1081 ± 129 7,46 ± 1,252 1252 ± 121 

30 -192 ± 39 -2,99 ± 0,62 583 ± 112 18,50 ± 0,774 774 ± 103 

300 -230 ± 13 -3,54 ± 2,43 397 ± 222 5,43 ± 2,130 627 ± 219 

3000 -189 ± 23 -2,89 ± 2,35 390 ± 109 5,78 ± 5,301 579 ± 108 

 

The polarization curves, for all the study conditions of the material, present peaks of minimum current 

density around 10-7 A/cm². In the region that the passivation process starts, all the samples evaluated have 

very similar passivation initiation potential (Ecor), about -200mV, and as the passivation process continues, 

the thermally treated samples present higher current density levels. The as-received material presents a pas-

sivation breaking potential (Epit) about 1000 mV, while the aged samples present lower values for the longer 

times of isothermal aging, reducing the (Epit) values to about 400 mV for samples aged for 300 and 3000 

minutes. The same behavior is observed for the passivation range. Increasing the aging time reduces the pas-

sivation range from 1200mV (material as received) to about 600mV (material aged for 300 and 3000 

minutes), probably due to chromium impoverishment in ferrite grains and grain boundaries, due to the pre-

cipitation of sigma phase, deteriorating the corrosion resistance of UNS S82441 LDSS. Therefore, for the test 

conditions analyzed above, the sample aged for 3000 minutes showed to be less resistant to the corrosive 

processes, presenting higher current density in relation to the others, in the measurements averages.  

The micrographs were obtained after the polarization test with interruption of the test when reaching 

the potential of Epit to verify the regions where the passivation was initially broken.  Figure 6 is a laser confo-

cal microscope image of a test samples showing stable pits and intergranular corrosion grown during the po-

tentiodynamic polarization.  Figure 6a show that the passivation breaking process occurs initially in the grain 

boundaries. 
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Figure 6: Pits and intergranular corrosion formed on UNS S82441 during the potentiodynamic polarization (1000X): (a) 

as-received; aged at 850°C for: (b) 30 minutes; (c) 300 minutes; (d) 3000 minutes. 

3.3 Stress Corrosion Cracking Tests 

Stress corrosion cracking tests (SCC) on specimens, U-Bend type, immersed in 43% MgCl2 solution at 

155°C, for 24 hours, were done following the methodology indicated in the standard ASTM G36. This is an 

accelerated test method for ranking the relative degree of stress corrosion cracking susceptibility for stainless 

steel. The materials were tested in the as-received and aged conditions. All specimens were stressed parallel 

to the rolling direction. The stressed parts of U-bend specimens were exposed to the boiling solution for 24 

hours and the temperature was maintained at 155°C (adding small amounts of distilled water). The specimens 

were evaluated by visual inspection, and inspected using dye penetrant examination (at intervals of 8 hours) 

for the presence of cracks due to SCC. Table 6 summarizes the experimental parameters for the stress corro-

sion cracking tests. 

Table 6: Results for the SCC tests. 

SAMPLE 

TIME AGED (MIN) 

CRACKED SPECIMENS 
NO CRACKED 

0h 8h 16h 24h 

0 0 0 0 50% 50% 

30 0 0 0 100% 0 

300 0 0 50% 50% 0 

3000 100% - - - 0 

 

The test specimens aged for 3000 min cracked during bending, indicating high embrittlement due to 

the increase in the level of sigma precipitate. In general, lower resistance to stress corrosion is observed for 

higher levels of precipitation. 

3.4 Mass Loss Tests 

Table 7 presents the mass loss values by immersion in iron chloride solution (FeCl2) in a water bath at 50°C 

for 24 hours. The increase of the corrosion rate occurs due to the increase of the volumetric fraction of the 

sigma phase. 
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Table 7: Results for the mass loss test in UNS S82441 LDSS. 

AGED TIME (MIN) ΔMASS (G) AREA (CM²) CORROSION RATE (G/CM²) SIGMA (%)  

0 0,2682 23,92 112,12 0  

30 0,3022 23,92 126,33 1,89% ± 0,81  

300 0,4080 23,92 170,59 4,51% ± 1,41  

3000 1,6050 23,92 671,06 20,14% ± 2,52  

 

From the analysis of the graph of Figure 7, the increase of the corrosion rate is verified as a function 

of the increase of the volumetric fraction of sigma phase in the microstructure of the studied material. 

 

Figure 7: Corrosion rate variation (g/m²) as a function of sigma phase fraction (%). 

Figure 8 shows the presence of pits in test specimens tested under all conditions. The amount of pit-

ting and depth of pitting increases with increasing aging time. 

 

Figure 8: Test specimens after mass loss test. (a) as-received; aged at 850°C (b) 30 min; (c) 300 min; (d) 3000 min 

4. CONCLUSIONS 

The as-received material contains two phases in approximately equal volume fractions: ferrite (δ) and austen-

ite (γ) and did not present precipitates in its microstructure. This indicates that the material was supplied in 
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the solution annealed condition. 

           At the temperature of 850°C, for all aging times, a change in the microstructure of the material is ob-

served, with an increasing in sigma phase content for longer times of aging. According to a previously ex-

pected result (since σ = 1.89% aging for 30 minutes, to σ = 20.14% aging for 3000 minutes). The sigma in-

termetallic phase initially appeared at the ferrite/austenite boundaries and grew inside the ferrite, reducing the 

fraction of ferrite since δ = 51.91% (as-received) to 23.36% (aged for 3000min).   

          In the potentiodynamic polarization tests, the exposure of the material to a temperature of 850°C af-

fected the passivation of the material compared to as-received material. The condition aged at 850°C for 

3000 minutes reduced the passivation range to 50%. Thus, confirming that the exposure time of this steel at 

high temperatures decrease its corrosion resistance due to the higher level of sigma precipitation observed.  

          It has also been proven that intergranular corrosion occurs due to the formation of phase deleterious 

(sigma), through exposure of the steel to specific temperatures and times, causing embrittlement of the mate-

rial and greater susceptibility to stress cracking corrosion. 

          The higher sigma phase content decreased the resistance to pitting and increased the corrosion rate of 

the material, as verified in the mass loss test.  
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