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ABSTRACT 

One of the main problems affecting the quality of steel products is the existence of contaminants in alloy 

steel, being phosphorus (P) a major contamination element interfering with the steelmaking process. The 

increased P concentration levels can severely affect physical integrity of steel bonds, thus threatening the 

quality of the final product. The dephosphorization process of Ferromanganese consists by carbothermic 

reaction that involves the control of the manganese volatilization and reduction of manganese oxide in 

injection of oxygen. Therefore, we propose to forecast model for dephosphorization process of 

Ferromanganese steels in a steelmaker industry, that allows estimating the phosphorus concentration levels at 

the final refining process. We chose the artificial neural network models because it is computational models 

inspired in the human nervous system and an architecture of neural network with the Levenberg-Marquadt 

algorithm and Kolmogorov theorem for improving the estimation technique. The developed model presented 

excellent performance with a percentage error of 0.09%. Based on this created estimation model it is possible 

to estimate the impact of certain P concentration levels in FeMnMC beforehand, with a considerable amount 

of reliability. 
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1. INTRODUCTION 

Assuring the quality of processes and products remains a constant challenge for companies, and this is 

increasingly becoming a fundamental requirement for their endurance. This is no different in steelmaking 

companies. One of the main parameters affecting the excellence of products in this sector is the existence of 

contaminants in alloy steel. 

Phosphorus (P) is one of the main contaminants found to interfere in steelmaking processes. The 

ferromanganese alloys are the major sources of P contamination during the process of steelmaking, which 

creates a limitation on the use of this type of alloy throughout the process [1]. The increased P levels can 

significantly affect physical aspects of alloy steel, thus severely compromising its quality. P-rich steel 

compounds usually show: (i) increased hardness; (ii) decreased ductility; (iii) appearance of ghost lines in 

carbon-rich alloy steels; and (iv) increased frailty of steel bonds under high and low temperatures [2]. The 

refining process adopted by the company subject to this study uses high-purity oxygen to reduce carbon 

levels in High-Carbon Ferromanganese (FeMnHC) originating Medium-Carbon Ferromanganese (FeMnMC) 

which has higher market value. During this process there is alteration in levels of other elements, including P. 

Therefore, the present work proposes a model for the FeMnMC refining process in an important Brazilian 

metallurgic industry with the purpose of predicting P levels at the end of the refining process. The Artificial 

Neural Network (ANN) method, defined as data processing systems based on the behavior of the human 

nervous system, was the chosen modeling technique [3]. The main advantages of ANNs are: (i) the capacity 

of approximating the behavior of non-linear physical phenomena, not requiring profound comprehension  

statistical and complex statistical treatment of the modeled data and; (ii) the capacity of learning any 

input/output variables of continuous form [4]. 

An ANN is usually called a black-box model, considering that this kind of technique approximates the 

relative input/output of a certain process. For process studied here, input variables were FeMnHC 
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composition, dross composition, alkalinity indexes and amounts of solid loads added during the process. The 

output variable was P concentration at the end of the process. Application of ANN to model different 

chemical and industrial processes is relevant and several authors have profited from the approximation of 

processes with complex behavior allowed by this technique in their work, such as, it has been developed [5] a 

image system to quantity values of microstructures in steel and cast iron for volumetric fraction. In [6] 

propose to measure the acoustic emission for detection defects propagation in pipelines rigid. This method 

was performed to identify values of pressure, temperature and volume for evaporation of low carbon 

ferromanganese alloy , which occurs in alloy melt when increasing temperature and decreasing pressure [7] 

and [8] used ANN to model the Pleuromutilin fermentation process. 

2. MATERIALS AND METHODS 

Several kinds of steel are affected by high levels of phosphorus or manganese, which can compromise their 

quality. The refining process of ferromanganese consists by carbothermic reaction that involves the reduction 

and control of the percentage of carbon in the liquid metal by injection of oxygen in bath.  

The chamber for the refining process of ferromanganese on the oxygen converter has an internal layer 

covered of magnesium oxide (MgO), and two tuyère (N2-cooled) and a vertical stream (water-cooled) blow 

oxygen. Inside the converter, the FeMnHC alloy has an average carbon level of 6.5%, which increases the 

efficacy of the oxidant dephosphorization. Lime is also used during the dephosphorization step, causing 

significant loss of manganese with no substantial effect on P levels. When lime is dissolved in the molten 

bath it increases the alkalinity of dross, which prevents the loss of manganese into the dross. Before the 

oxygen blow begins, approximately 60kg of CaO per ton of FeMnHC dissolved in the bath are added, in a 

process divided into 3 stages. 

On the first stage, dephosphorization and decarburization start occurring and significant amounts of 

manganese are lost to the dross through volatilization because of the excess of oxygen. If there is still silicon 

content in the FeMnHC alloy to be reduced, the dephosphorization occurs at the final this stage following the 

silicon oxidation. During the second stage, called decarburization, bath temperature rises, reducing 

manganese oxidation and increasing the rate of decarburization as well as Mn volatilization. 

Rephosphorization occurs because of such temperature variations, because P2O5 is highly unstable at high 

temperatures. As the temperature continues to rise, rephosphorization can only be halted if the activity of 

phosphor pentoxide is reduced, which can be achieved by dissolving P2O5 into the dross in the presence of 

lime:  
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At the third stage, there is addition of a solid deoxidizing load containing 110kg of HCFeMn or 

MCFeMn, 150 kg of FeSiMn and 40 kg of CaO per ton of liquid HCFeMn in the bath, which helps cooling 

the mixture and contributes to reduce manganese volatilization. At this point, a blow of inert CO2 gas at 200 

Nm3/h begins with the only purpose of stirring the bath.  

(    )       (   )       (         ); 

Due to the addition of lime in the converter, in this phase also occurs phosphorus oxidation of FeMnMC and 

reduction of manganese oxide of the slag. The Figure 1 illustrate the converter of oxygen with the vertical 

stream of flow rate of 350 Nm3/h in the upper part and two pipes with 800 Nm3/h in the lower part. 
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(a) 

(b) 

Figure 1: Oxygen converter of the studied process (a) and oxygen effects during dephosphorization process of steel (b)  

2.1 Artificial Neural Network (ANN) 

Artificial Neural Networks are systems that manipulate information through the interaction of basic 

processing units called artificial neurons [4]. Artificial neurons, in turn, are basic units that receive and 

process external inputs generating outputs. Figure 2 illustrates a conceptual model of ANN. In [9], an 

artificial neuron comprises the following components: (i) a group of synaptic weights that can balance the 

importance of input signals; (ii) a threshold term or Bias that enables to increase or decrease the impact of 

different inputs on neuronal function; (iii) an adder, which can add up values of inputs balanced according to 

synaptic weights and (iv) an activation function that controls the output signal. The artificial neural are 

usually organized in layers which can be categorized into: output and hidden layers. 
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Figure 2: Conceptual model of ANN. 

An ANN may have a variable number of hidden layers, but according to Kolmogorov’s theorem and 

to the second theorem of universal approximation only one hidden layer is enough to approximate any 

function of continuous nature [10].  This allows a reduction in the complexity of the model; but as a 

consequence, an increased number of neurons are required. An ANN with two layers may be mathematically 

described by the equations, 

 ̂    (∑    
   (∑    

      
 
   ) 

      );           , (1) 

where  ̂  is the estimated network output,    
  and    

  are the synaptic weights of the output and 

hidden layers, b represents the threshold terms,    are the values of input variables and  ( ) symbolizes the 

exchange between neurons in output and hidden layers. Even though there are several forms of transfer 

functions, the most commonly studied are the sigmoid logistic and the linear and hyperbolic tangent 

functions.  
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The choice of the most suitable activation function is a crucial step; a linear function is typically used 

for the output layer in issues of function approximation, whereas logistic or tangent hyperbolic functions are 

employed in the hidden layers. Before the learning process starts, data are standardized according to the 

activation function in the hidden layer. For logistic function, data are standardized in the interval [0,1] 

whereas the interval [-1,1] is used for the hyperbolic tangent function. This standardization process is ruled 

by the equation, 

   
       

         
(         )      , (2) 

where    is the standardized variable,      and      are the minimum and maximum values of   , 
respectively,    is the original variable, and      and      are the minimum and maximum values of     

These functions are chosen due to easy to derivates and simplify for network learning process, at the 

synaptic weight regulation [11]. The learning process consists of two basic steps: (i) the prediction stage, 

where synaptic weights are adjusted based on a group of training data, and (ii) the test stage, that determines 

whether then on model is able to generalize. Synaptic weights are set through an optimization algorithm 

called learning algorithm, which for multiple layer ANNs is usually the error Backpropagation algorithm. It 

consists on the minimization of the mean quadratic error (Eq. 3) of output variables generated by the ANN 

relative to real measured values. 
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where   is the estimated error,    is the actual value measured at the system,  ̂  is the output estimated 

by the ANN and N is the number of samples. 

There are several variations of the error Backpropagation algorithm, being the Levenberg-Marquadt 

algorithm amongst the most efficient. This algorithm, however, tends to cause overfitting, where the model 

specializes in the training data. For that reason, it was proposed [12] a Bayesian regularization term be 

employed in the ANN cost function. The ANN cost function was then modified as, 
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where   and   are terms estimated by the learning algorithm with a cost function,    
  and    

  are the 

synaptic weights of output and hidden layers, respectively. To evaluate the generalization capacity of an 

ANN error minimization and model estimation strategies are used, such as: the root mean square error 

(RMSE) and the mean absolute percentage error (MAPE) and corrected Akaike Information Criteria (AICc), 
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3. RESULTS 

The 21 initial input variables defined as relevant for modeling the dephosphorisation process were grouped 

as: (i) composition of metal alloys (x1, …, x6); (ii) composition of slag (x7, …, x15); (iii) composition of solid 

loads (x16, x17, x18); and (iv) levels of alkalinity: binary; quaternary e optical basicity (x19, x20, x21), see Table 

1. The data selected covered a sample of 248 observations. 

Table 1: Variables in the studied process. 

GROUP VARIABLE UND 

Raw Materials Si*, P*, Fe*, Ti*, C*, O2 % 

Dross composition MgO, MnO, CaO, SiO2, Al2O3, BaO, K2O, TiO2, FeO wt-% 

Volume composition Initial, Liquid, Dross Nm
3
 

Alkalinity levels BB, BQ, BO Nm
3
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Considering the large number of variables analyzed, a correlation analysis was needed in order to 

select those which are actually linked to the P concentration levels at the final process. The Pearson 

correlation test is a statistical tool which indicates the correlation between two variables (to p<0.01) [13]. 

After the correlation test was applied it became clear that from the 21 initial variables only 4 (four) variables 

were significantly correlated with P level output variables at the final refining process, as: the initial 

phosphorus level (P*), the initial carbon level (C*), the manganese oxide level (MnO) and the loads 

composition (liquid). The other variables present in the dephosphorization process haven’t high influence to 

predict P concentration level at the final process. The Table 2 presents the statistical analysis of outcome 

elements and P concentration level (output variable) and the Figure 3 illustrates the Phosphorus level data 

from refining process. 

Table 2: Statistical summary of the variables selected. 

GROUP VARIABLES AVERAGE STD. DEV. MAX MIN CORRELATION 

Alloys P* 0.216 0.025 0.280 0.155 0.687 

Alloys C* 6.759 0.140 7.070 6.077 -0.291 

Slag MnO 39.056 5.848 51.993 24.202 0.289 

Loads Liquid 9.889 1.543 12.700 5.510 -0.295 

Output P 0.260 0.026 0.331 0.204 1.000 

 

 

Figure 3: Phosphorus concentration at the final process 

            The design of the proposed ANN and statistical analysis were performed using Matlab©. The chosen 

output variable to neural network was the P concentration level at the end Ferromanganese refining process. 

The input variables were: initial phosphorus content (P*), initial carbon content (C*), manganese oxide 

content (MnO) and Volume Composition (Liquid). 

After the pre-processing phase, it was randomly chosen 198 (80%) observations of the 248 total 

observations performed for composing the Training group and 50 (20%) were chosen for the Test group. It 

was used one hidden layer to projects in the ANN architecture, the Kolmogorov theorem and the Levenberg-

Marquadt algorithm. The Kolmogorov theorem found search-space for our study with neurons which is in 

agreement with the established restriction: N>w and T=198 observations [10]. The modelling process 

consisted to estimate ANN models with logistic and hyperbolic activation function in the hidden layer to 

assess which was more efficient model, using 4 (four) input variables, one output variables, crossover rate 

0.8, mutation rate 1.6, learning rate 0.05, momentum rate 0.1 and population 198 obs.  

The ANN model which better represented the process studied is with 11 neurons in the hidden layer 

with the logistic activation function, considering the error minimizing statistics and the complexity analysis 

of the model (see Table 3). For 11 neurons in the hidden layer the number of adjustable parameters isw = 67, 

keeping compliance to N > w. The Table 3 illustrates that as the number of neurons increases towards the top 

limit (jmax = 14), the power of estimation from model decreases and its complexity increases. 
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Table 3: Performance of ANN with logistic activation function 

NODES 10 11 12 13 14 

RMSE 0.0159 0.0159 0.0159 0.0159 0.0159 

MAPE 0.000958 0.000949 0.000956 0.000955 0.000949 

AICc 53.25 59.17 65.24 71.28 77.21 

 

The residuals or prediction errors generated by prediction model show a random distribution varying 

between -0.04 and 0.05, with no seasonal variation or tendencies (p<0.01) [14]. In general, the prediction 

regression model showed a mean percentage error of 0.09%, and it is possible to consider this ANN model as 

trustworthy for P concentration level at the final refining process. The Figure 2 illustrates a comparative 

between real data and predicted values of P concentration level at the final FeMnMC refinement process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison of Phosphorus concentration values real and predicted after modeling. 

 

4. CONCLUSIONS 

The process of extraction of metals, such as zinc, aluminum, iron and manganese for the production of alloys 

is very important to the industry, detaching the interest for reducing costs, environmental impacts and 

improvement performance. We propose to determine a prediction model for Ferromanganese refining process 

in a steelmaker industry that allows estimating the phosphorus concentration levels. The Ferromanganese 

refining process performed in a steelmaker industry to allow the prediction of P concentration levels. The 

development of the ANN model with the variables from Ferromanganese refining process were used as input 

and selected from correlation test. All the variables were tested with a correlation test to verify how each of 

them is related with the percentage of phosphorus in the final product. These results show that four variables 

were correlated and those were used to compose the input set of the ANN model. 

The architecture of neural network was composed: the Kolmogorov theorem, the Levenberg-

Marquardt algorithm and diagnostic criteria to improve the parameters estimates, increase the quality of 

prediction and decrease the statistical errors. The samples were divided in groups: one used to the training of 

the ANN model and a second used to test the ANN model, those groups were composed by 198 and 50 

samples, respectively. The great number of neurons in the hidden layers made the network structure very 

heavy in a computational way which demands a little more time to achieve the results, and the diagnostic 

analysis suggests 11 neurons, hyperbolic function to better performance of ANN model. 

The estimation model showed excellent results with an average percentage error of 0.09%, supporting 

the generalization capacity and reliability of the ANN model. Based on this created estimation model it is 

possible to estimate the impact of certain P concentration levels in FeMnMC beforehand, with a considerable 

amount of reliability.  
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The present study has established that dephosphorisation process of ferromanganese with alloys 

composition correlated variables: initial phosphorus (< 0.28%), initial carbon (< 7.070%) can be carried out 

to significant influence to estimate P concentration level. As soon, the manganese oxide level (24.20 – 

51.993wt-%) and loads liquid (5.51 – 12.7Nm
3
) for slag and loads composition for dephosphorisation of high 

carbon ferromanganese. To future research is possible to investigate non-linear or chaotic behaviour between 

input and output variables, as interesting point to be studied to make forecasting models. 
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