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ABSTRACT 

High chromium cast iron (HCCI) is usually employed in equipment that experience high abrasive wear and 

therefore requires high resistance. Niobium could be added to these alloys to improve their resistance to wear. 

This study consisted in addressing the influence of 0.5% and 1.0% of niobium on the microstructure of a 26% 

Cr and 2.8% C HCCI alloy. Standard samples – without niobium – and samples with 0.5% and 1.0% Nb 

were melted, cut and then machined into adequate dimensions for tests. Two groups of samples – with and 

without heat treatment – were analyzed through X-ray Diffraction (XRD), optical microscopy, scanning elec-

tron microscopy (SEM), Vickers and Rockwell-C hardness. Carbides Volume Fraction (CVF) was quantified 

in the heat-treated samples. The majority of NbC carbides were observed to be thin and presented a hook 

shaped morphology. In addition, it was noted a precipitation of Nb-rich layers around the M7C3 carbides, 

which could act as a higher hardness coating. There was significant reduction in carbide volume fraction, 

from an initial 33.3% to 28.1% for the 0.5 % Nb alloy, and further reduction to 24.9% for the 1.0% Nb alloy, 

it was also noted an alteration on the quasi-eutectic microstructure to a hypoeutectic microstructure. The NbC 

carbides prevented hardness reduction as a result of lowering the CVF in heat-treated alloys; however, the 

alloys without heat treatment experienced reductions in hardness.  
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1. INTRODUCTION 

High chromium cast iron (HCCI) has many applications, especially in mining industry, for manufacturing 

components that require high resistance to abrasive wear. In contrast, for applications regarding impact, the 

use of HCCI is narrow due to its low impact resistance [1, 2]. The high resistance to wear is mainly attributed 

to the presence of primary and/or eutectic carbides of the (Fe, Cr)7C3 type in a predominantly austenitic or 

martensitic matrix [1–3]. 

The wear properties of the material is influenced by factors such as size, shape and distribution of car-

bides, heat treatment, presence of alloys elements and retained austenite content [1–3]. 

 HCCI exhibits hypoeutectic, eutectic and hypereutectic microstructures. The hypoeutectic alloys, in 

its as-cast state, displayed austenitic dendrites involved by a eutectic made of austenite and M7C3 carbides. 

The eutectic alloys showed a lamellar structure, which was formed by the eutectic. At last, the hypereutectic 

alloys exhibited large hexagonal primary carbides involved by the eutectic [1–3]. 

The hypoeutectic alloys have smaller CVF, with carbide content usually below 30%. The eutectic al-

loy results in CVF around 30%, while the hypereutectic alloys usually present carbide contents above that 

value. The literature indicates that, in general, the eutectic microstructure results in a higher resistance to 

abrasive wear [1–3]. 

Zum Gahr and Eldis [3] analyzed HCCI alloys hardness as a function of their CVF. The referred study 
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showed that HCCI hardness is directly proportional to CVF in both austenitic and martensitic matrixes.  

Niobium can be added in cast iron production, mainly to increase resistance to wear [4–10]. 

The resistance to abrasion of alloys containing niobium has been associated to the presence of NbC 

metallic carbides, which resist the abrasive penetration, due to the high hardness of these carbides [4–7, 9,10]. 

The distribution and morphology of niobium carbides should be controlled to optimize mechanical 

properties in the final product, since neither coarse nor agglomerated carbides are desired on the microstruc-

ture [11]. 

Controlled additions of niobium in HCCI alloys reduce the volume fraction of primary and/or eutectic 

carbides, which makes it possible for an alloy with „initial‟ chemical composition of hypereutectic to result in 

a eutectic alloy [6–8, 12]. These alloys exhibit NbC and showed higher resistance to abrasion when compared 

to alloys that did not experienced niobium addition 13. Values between 0.5% and 1.0% for addition showed 

significant gains regarding the benefit-cost ratio [13]. 

This study aims to assess the influence of 0.5% and 1.0% additions of niobium on the microstructure, 

morphology and carbide volume fraction; thus, the influence of these variables in micro-hardness and hard-

ness of a 26% Cr and 2.8% C HCCI alloy. 

2. Materials and methods 

The raw materials were composed by pieces from HCCI rotor and additions of niobium were performed un-

der 1550 ºC ± 50ºC with scraps of a Fe-Nb alloy with a 66% Nb content, which presented an average particle 

size of 19.73 µm. The melting was performed in a medium-frequency induction furnace from Inductotherm 

with 25 Kg of capacity.   

Three alloys were melted according to previously verified ASTM A-532 Class III type A, and their 

corresponding chemical compositions after melting can be observed in Table 1.  

Table 1: Alloys chemical compositions (%) 

 
The samples at 1585ºC ± 15ºC were poured into green sand molds of 75 x 25 x 12.7 mm dimensions 

[14]. Only the underneath surfaces of the samples were analyzed. A portion of the samples was heat-treated 

by annealing at 700 ºC for 2h, then passed along to austenite destabilization at 1000 ºC during 5h, forced air 

cooled and finally tempered at 250º C for 2h, in order to increase the transformation of the austenitic matrix 

into a martensitic one [2, 13, 15, 16]. 

The samples were wet sanded in ascending order of sandpaper grit sizes: 80, 120, 220, 320, 400 and 

600 meshes; after that, they were polished using 9, 3 and 1 µm diamond paste. They were chemically etched 

with Vilella‟s reagent (1g picric acid + 5 ml hydrochloric acid + 100 ml ethanol) for 5 s to 20 s duration.  

The X-ray diffraction experiments were performed using a Shimadzu XRD-7000 instrument with Cu 

Kα radiation, a step-size of 0.02º, scanning speed of 2º/min and a 2θ range of 30º-85º.  

The optical microscopy was conducted using an Inverted Platinum Metallographic Microscope Fortel 

IM713 instrument, while the scanning electron microscopy (SEM) analysis was carried out using a JSM-

6510LV-JEOL instrument equipped with a Thermo Scientific Ultra Dry microprobe for energy dispersive 

spectroscopy (EDS). 

Measurements of microhardness were performed using both Wolpert and Shimadzu instruments at 

400x magnification. In this test, 10 indentations were performed in each specific component of all alloys, for 

that a square-based diamond pyramid indenter was used with a 50g load applied for both matrix and carbides. 

In terms of Rockwell-C hardness, 18 measurements for each alloy were conducted using an IGV 

RM401/A instrument. The carbide volume fraction (CVF) was only specified for the heat-treated samples; 

for these, 10 images, with 500x magnification for each alloy, were analyzed using the software Fiji Is Just 

Image J. A single factor ANOVA analysis was performed in Microsoft Excel with α = 0.05.  

ALLOY Cr C Nb Mn  Si Ni Mo Cu  P S 

HCCI (0%Nb) 26.626 2.892 0.063 1.622 0.572 0.519 0.027 0.088 0.032 0.006 

HCCI (0.5%Nb) 26.172 2.844 0.476 1.405 0.566 0.498 0.025 0.098 0.032 0.007 

HCCI (1%Nb) 25.954 2.743 1.014 1.216 0.460 0.488 0.025 0.106 0.034 0.007 
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3. RESULTS AND DISCUSSION 

The position of the HCCI 0%Nb standard alloy on the metastable liquid surface Fe-Cr-C, proposed by 

Thorpe and Chicco [17] can be observed in Figure 1. The alloy in this image is found near the eutectic region 

(line U1 ⇌ U2). The solidification is initiated by the formation of proeutectic austenite (γ) around 1300º C 

and the chemical composition of the liquid is modified towards the eutectic solidification line U1⇌U2 - when 

the eutectic formation takes place [17]. 

 

Figure 1: 26%Cr – 2.9%C position on Fe-rich corner of metastable C-Cr-Fe liquidus surface [17]. 

 

The X-ray diffraction pattern presented in Figure 2 confirms the presence of austenite phases and 

M7C3 carbides, which is shown by various peaks in the standard HCCI 0%Nb alloy, as well as the tested 

HCCI 0.5%Nb and HCCI 1%Nb alloys, all in as-cast conditions. Due to the proximity of peaks referent to 

M7C3 and martensite (~44º), the X-ray diffraction indicates a possibility of martensite formation during the 

cooling phase of pieces in as-cast conditions, which is in accordance to Dogan et al. [18], who affirmed that 

in general, the 26Cr alloys are composed of an austenitic matrix and M7C3 carbides, with a layer of marten-

site surrounding the carbides. 
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Figure 2: X-ray diffractions performed in „as casted‟ and heat-treated samples. 

 

The three alloys without heat treatment resulted in similar spectrums, from which the surging of a 

peak referent to NbC in HCCI 1%Nb alloy could be highlighted. The surging of these peak was also expected 

for the HCCI 0.5%Nb alloy; however, it could not be observed, the most likely reason is the low Nb content 

in this particular alloy. After heat treatment, the spectrums were altered in a similar manner for all three al-

loys, most of the austenite (γ) peaks have disappeared, while new martensite peaks have emerged, which is a 

result of austenite transformation into martensite during heat treatment. However, the 41º, 43º and 50.5º 

peaks indicate presence of retained austenite in the heat-treated alloys. 

The microstructures for the alloys without heat treatment are presented in Figure 3. The HCCI 0%Nb 

(Fig. 3a) showed a microstructure quasi-eutectic, which was composed by small fraction of proeutectic aus-

tenite and eutectic of austenite (γ) + rod-type [18] M7C3 carbides morphologies identified by number 1. In 

Fig. 3 (b) and (c) it was possible to observe that the addition of Nb and its respective increase was responsi-

ble for altering a quasi-eutectic microstructure into a hypoeutectic one through the appearing of proeutectic 

austenite (γ) dendrites. This modification resulted in a eutectic morphology modification, promoting the ap-

pearing of blade-type carbides [18] M7C3 carbides identified by number 2, this is caused by a presence of 

larger fractions of proeutectic austenite, which promotes a smaller undercooling (because of the heat released 

by the formation of the proeutectic austenite), favoring the blade-type carbide shape formation [18]. It is pos-

sible to observe the formation of thin NbC agglomerates in the 0.5% and 1.0% Nb alloys. 
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Figure 3: Optical microscopy of no heat treatment alloys (a) HCCI 0%Nb; (b) HCCI 0.5%Nb; (c) HCCI 1%Nb. 1: rods-

type M7C3 carbides; 2: blade-type M7C3 carbides. 

The presence of austenite dendrites caused by the addition of Nb suggests a right-shift of the eutectic 

line U1⇌U2 showed in Fig. 2 [4]. Similar microstructural changes caused by addition of Nb were observed 

by He-Xing et al. [4], Filipovic et al. [5]; Ibrahim; El-Hadad; Mourad [6]. In order to better evaluate the al-

terations caused by the heat treatment, the photomicrographs obtained via SEM and their respective chemical 

analysis done in heat-treated samples are shown in Figures 5, 6 and 7.  

The red identifies a region rich in iron, while blue represents chromium and yellow stands for niobium. 

The microstructure of a quasi-eutectic morphology composed by M7C3 carbides, which were dispersed in a 

predominantly martensitic matrix + secondary carbides (SC) could be observed in Figure 4 (a). The precipita-

tion of secondary carbides occurs in annealing and destabilization during the heat treatment. This occurs due 

to the depletion of elements from the saturated matrix, which results in an increase for the temperature (Ms) 

where the transformation of austenite into martensite occurs, enabling a maximum amount of martensite for-

mation [19].  

In the chemical mapping (Fig. 4b), it is possible to observe that M7C3 carbides are rich in chromium, 

while their matrix is predominantly composed by iron.  It is also possible to notice a similar microstructure 

among the HCCI 0.5%Nb (Figure 5) e HCCI 1%Nb (Figures 6 and 7). Both alloys presented M7C3 carbides 

rich in chromium and dispersed in a martensite rich matrix + secondary carbides, but different from each 

other in terms of eutectic carbide fraction and precipitation of NbC carbides. These two alloys presented thin 

and agglomerated NbC carbides. 
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Figure 4: (a) SEM; and (b) chemical mapping of HCCI 0%Nb. 

 

Figure 5: (a) SEM; and (b) chemical mapping of HCCI 0.5%Nb. 

 

Figure 6: (a) SEM; and (b) chemical mapping of HCCI 1%Nb. 
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The X-ray diffractions indicated presence of retained austenite in samples after heat treatment. The 

SEM image in Figure 7 shows the morphology of secondary carbides and presence of martensite and retained 

austenite. It was also possible to verify martensite in platelet forms and retained austenite in islet forms dis-

persed between the martensite regions.  

 

Figure 7: (a) SEM; and (b) chemical mapping of HCCI 1%Nb. 

 

There are three types of carbides presented in the literature: M23C6, M3C and M7C3 [17], [20]. Howev-

er, the presence of the first two types was discarded based on the peaks shown in the X-ray diffractions and 

morphology comparisons to the work of Power and Laird [20]. Three distinct morphologies were observed 

for the secondary carbides: discrete rods, identified as number 1 in Figure 7, also plate-like shapes, identified 

as 2, and rod-like particles as number 3. 

In Figure 7 (a), a NbC carbide is shown closed to a M7C3 carbide rich in chromium, and is also possi-

ble to observe an interface formed between the two carbides. The Nb-rich region of the NbC carbide can be 

observed in Figure 7 (b). 

In Figure 8, it is possible to notice a statistically significant reduction of CVF, which corroborates 

with the results and microstructural alterations observed by Fiset et al. [7], Filipovic [8]
 
and Pacheco [12]. 

 

Figure 8: Carbides volume fraction. 



    MELO, I. N. R.; SILVA, A. E.; SILVA, L. R., et al. revista Matéria, v.25, n.2, 2020. 

The morphology change, from a quasi-eutectic microstructure to a hypoeutectic one, and the CVF re-

duction occur because niobium is a strong carbide forming and has higher melting temperature (3500ºC) than 

the high Cr liquid [21]. Thus, niobium carbides precipitates in the liquid, which reduces the amount of carbon 

available in the matrix to form M7C3 carbides, and acts forming nucleation sites for austenitic dendrites, re-

sulting in a lower CVF and a more refined microstructure [6]. 

Figure 9 shows the values obtained for hardness of the alloys with martensitic matrix (heat-treated) 

and austenitic matrix (as-cast) as a function of the CVF.  The one-way ANOVA analysis is shown in Table 2, 

from which can be noticed that there was statistical difference for the hardness of alloys with austenitic ma-

trix. 

 

Figure 9: Alloys hardness. 

Table 2: Alloys hardness variance analysis. 

CONDITION 
 

P-VALUE α F FCRITICAL CONCLUSION 

As-cast  0.011 0.05 4.744 3.091 Different 

Heat-treated   0.354 0.05 1.060 3.179 Same 

 

The ANOVA analysis indicates a statistical difference for at least one pair of means of alloys with 

austenitic matrix (for the CVF assessed). A linear regression of the data resulted in a slope of 0.2499 and a 

square correlation coefficient R² = 0.9814, which indicated a good correlation to the actual curve.  

The linear regression for hardness measurements in alloys with martensitic matrix resulted in a slope 

of 0.154 and R² = 0.9785. However, the ANOVA analysis indicated no statistical difference in hardness as a 

function of CVF, for the values assessed.  

The comparison between the slopes of the two regressed lines and the ANOVA indicates that hardness 

varied more sensibly to CVF values in alloys with austenitic matrix, when compared to martensitic ones. This 

behavior was also observed by the studies of Zum Gahr and Eldis [3] and Laird et al. [2]. 

The data obtained by Zum Gahr and Eldis [3]
 
showed an increase in hardness as a function of CVF for 

alloys with austenitic matrix, same results as Dogan et al. [18] for 26%Cr alloys. Values of hardness (HV50) 

and CVF between 20 and 40% were extracted from the paper of Zum Gahr and Eldis [3]. The work of Dogan 

et al. [18] indicated a table of Brinell hardness values and the present work states its values in Rockwell-C. In 

order to compare these different studies, all values were converted to HV50 , according to ASTM E140    

[22], which resulted in Figure 10.  
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Figure 10: Comparison between hardness variations as a function of CVF in alloys with austenitic matrix obtained by the 

present work and also by Zum Gahr [3] e Dogan et al. [18]. 

 

These three studies indicated a good squared correlation coefficient (R²); consequently, a strong linear 

correlation for the ranges assessed. It is important to note a sensible reduction in the slope (tgθ) for the pre-

sent work (tgθ = 3.1358), when compared to the lines obtained through the data extracted from Zum Gahr 

and Eldis [3] (tgθ  = 5.4491) and Dogan et al. [18] (tgθ  = 8.9399). This result indicates that an increase in 

niobium content, for the alloys in this present study, resulted in less sensibility variation for hardness as a 

function of CVF. 

 

Figure 11: Alloys microhardness. 
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           The microhardness of matrices and carbides for the heat-treated and „as-cast‟ samples are shown in 

Figure 11 with their respective ANOVA in Table 3. From these, it can be drawn that niobium addition was 

responsible for a statistical significant decrease in microhardness of carbides for both conditions. There was 

also variation in microhardness for the matrices under „as-cast‟ condition: a 0.5% Nb addition increased mi-

crohardness, but when the addition increased to 1.0%, the microhardness decreased.  

Table 3: ANOVA results of microhardness in alloys. 

CONDITION P-VALUE α F F CRITICAL CONCLUSION 

As-cast 

CARBIDE 

0.009 0.05 5.565 3.354 Different 

MATRIX 

0.029 0.05 4.068 3.354 Different 

Heat-treated  

CARBIDE 

0.000 0.05 11.233 3.354 Different 

MATRIX 

0.582 0.05 0.552 3.354 Same 

 

Under heat treatment conditions, the addition of niobium was not responsible for statistical variations 

in microhardness for the matrices.  

A correlation of hardness and microhardness for the heat-treated samples is show in Figure 12. 

 

 

Figure 12: Heat-treated hardness and microhardness alloys. 

As a result of a decrease in CVF (Fig. 8) and microhardness of carbides (Fig. 11), a lower hardness 

was expected for the alloys; however, this was not the case for the heat-treated alloys, as can be seen in Fig-

ures 9 and 12. This effect could be explained by a lower sensibility in hardness as a function of CVF for the 

alloys with martensitic matrix [2, 3], and in contrast, the diminishing of this sensibility caused by the increase 

in niobium content as observed in the present study (Figure 10). 

4. CONCLUSIONS 

The NbC carbides were observed in the 0.5 % and 1.0% alloys as homogeneously disperse agglomerates with 

thin morphology, needle shaped and hook profile. 

The addition of niobium in the alloys promoted a change in its quasi-eutectic morphology into a hypo-

eutectic morphology; it also promoted a reduction in CVF. 
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The heat treatment was responsible for altering the predominantly austenitic matrix into a predomi-

nantly martensitic matrix with secondary M7C3 carbides and retained austenite.  

In the „as-cast‟ alloys, the addition of niobium caused an increase in microhardness of matrices for the 

0.5% Nb alloy, but a reduction for the 1.0% Nb alloy. There was reduction in microhardness of carbides for 

both Nb contents. As for the heat-treated alloys, there was reduction in microhardness of carbides, while no 

significant changes were observed for matrix microhardness.  

The hardness of alloys with predominantly austenitic matrix were showed to be more susceptible to 

variations in CVF when compared to alloys with predominantly martensitic matrix. 

The comparison of the present study with the literature [3, 18] indicates that hardness sensibility, as a 

function of CVF, decreased with a Nb content increase in the alloys. 
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