
 

 

ISSN 1517-7076 articles e-12870, 2020 

Corresponding Author: Suzana Rempel 

 

 

10.1590/S1517-707620200004.1170 

Received on: 21/08/2019 Accepted on: 21/06/2020 

 

Toxicity effects of magnesium  
oxide nanoparticles: a brief report 

 

 

Suzana Rempel 
1
, André Júnior Ogliari 

4
, Elizeu Bonfim 

2
,  

Glaucea Warmeling Duarte 
3
, Humberto Gracher Riella 

5
, Luciano Luiz Silva 

6
,  

Josiane Maria Muneron de Mello 
4,6

, Carolina Riviera Duarte Maluche Baretta 
4
, 

Márcio Antônio Fiori 
4,6

 
 

 

1 Chemical Engineering Department, Community University of Chapecó Region, Unochapecó, Chapecó, SC, Brazil.  
2 Agronomy Department, Community University of Chapecó Region,  Unochapecó, Chapecó-SC, Brazil.  
3 Engineering and Technology Research Center, Barriga Verde University Center,  Unibave, Orleans-SC, Brazil.  
4 Post-Graduate Program in Environmental Science - PPGCA, Community University of Chapecó Region - Unochapecó, 

Chapecó-SC, Brazil.  
5 Post-Graduate Program in Chemical Engineering - PPGENQ, Federal University of Santa Catarina - UFSC, Florianópo-

lis-SC, Brazil.  
6 Post-Graduate Program in Technology and Innovation Management - PPGTI, Community University of Chapecó Re-

gion, Unochapecó, Chapecó-SC, Brazil.  

e-mail: suzi.rempel@gmail.com, elizeu.b@unochapeco.edu.br, gwduarte@gmail.com,  

andre_ogliari@unochapeco.edu.br, josiane@unochapeco.edu.br, fiori@unochapeco.edu.br,  

carolmaluche@unochapeco.edu.br, humberto.riella@ufsc.br, lucianols@unochapeco.edu.br 

ABSTRACT 

In this work, magnesium oxide nanoparticles were synthesized by the sol-gel route and their ecotoxicity was 

tested in worms of the Eisenia andrei species. Magnesium oxide nanoparticles were characterized by XRD, 

surface area via BET, TEM and SEM-FEG/EDS. The lethality test with Eisenia andrei earthworm species 

followed the recommendations of ISO 11268-1 (ISO, 2012) in a completely randomized design with six rep-

licates for each concentration tested (1.06, 2.12, 4.24, 8.48 and 16.96 μg of NPs-MgO/kg of soil), plus the 

control. The concentrations were mixed to the tropical natural soils, Entisol Typic Quartzipsamments and 

Oxisol, with no agricultural use history. The morphological and structural analyses of the nanoparticles indi-

cated the formation of magnesium oxide with cubic structure, constituting agglomerates of nanostructures of 

the order of 20 to 50 nm. The results of toxicity were submitted to analysis of variance (ANOVA One-way), 

followed by the Dunnett test (p <0.05). Based on standardized toxicological tests it was found that NPs-MgO, 

at the concentrations tested, did not affect the survival of Eisenia andrei species in the natural soils studied. 

Keywords: Terrestrial toxicity of nanoparticles, edaphic fauna, Terrestrial toxicity of magnesium oxide na-

noparticles.  

1. INTRODUCTION 

Several metal oxides have been studied and produced at the nanoscale due to their potential for application in 

several segments [1]. The development of these nanomaterials has expanded the opportunities of many indus-

trial segments, such as the industries dedicated to agriculture, pharmaceutical industries and for the chemical 

industries. 

Combined with these opportunities, important questions about the toxicity of these nanoparticles have 

been made, mainly by the scientific community, considering that the nanoparticles are transformed into prod-

ucts containing water and can be deposited in the soils when applied by the agricultural industries and when 

present in effluents from other industries. The presence of nanoparticles in these media can promote nega-

tively effects at the environment and, therefore, deserves the dedication of scientific studies regarding their 

toxicity [2, 3]. 

Magnesium oxide nanoparticles (NPs-MgO) are a good example and have been studied because they 

present possible applications as a catalyst, as antimicrobial agents, in the remediation of toxic water and as an 

additive for refractory materials [4]. It has also been used in electrochemical sensors and in biocomponents 

[5], as packaging additives [1] and in the addition of inks [6]. 

NPs-MgO can be absorbed through the skin, lungs and digestive system and to accumulate in the tissues. 
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However, many of its effects are still unknown [7], mainly in relation to its toxic effect. Some studies have 

already investigated the toxic effects of the NPs-MgO using model organisms, such as fishes, for example. 

The results revealed that magnesium oxide bulk particle was found to be more toxic when compared to NPs-

MgO [8]. 

For terrestrial organisms, even today, the lack of information on the use of some nanoparticles, especial-

ly in natural soils, is a major concern. Studies on the toxicity of NPs-MgO should be systematized to better 

understand the effects when these nanoparticles are incorporated into the soil [9], especially when it is con-

sidered that this is a likely destination for numerous nanoparticles after their application. 

Toxicological tests have been conducted in the laboratory with soil quality bioindicators to obtain in-

formation about the effects of some nanoparticles on soil organisms, such as NPs-ZnO, NPs-Ag, NPs-TiO2 

and others [10-13].  

The bioassays carried out in the nanomaterial toxicity on soil studies generally use earthworms of the 

Eisenia andrei and Eisenia fetida species, as they are representative of the soil invertebrates [12, 14-15]. 

These organisms play an important trophic role in soils, with rapid behavioral and physiological reactions 

[16] and different mechanisms of contamination. The earthworms are organisms of the soil macrofauna be-

longing to the class Oligochaeta, with size between 4 to 200 mm [17, 18]. 

In Brazil, for example, there is no specific legislation to evaluate the toxic effect of nanoparticles in 

soils, and their potential contamination is evaluated using the normative n. 84 of IBAMA from October 15, 

1996, in its Annex IV [19]. The Resolution of CONAMA n. 460/2013 provides for soil quality guiding crite-

ria on the presence of chemicals, establishing criteria for the environmental management of these substances 

in the environment and the acute toxicity tests (earthquake) with earthworms as standards for the evaluation 

of these substances with the use of natural and artificial soils [20]. 

This work was carried out to contribute with information about the potential effects of NPs-MgO con-

sidering the lack of toxicity data on the edaphic fauna, particularly Eisenia andrei worms, considered a bio-

indicator organism of soil quality and model for toxicity studies with nanoparticles [21]. Although Brazilian 

law requires lethality tests to be used for contamination risk assessments, it is suggested that studies of toxici-

ty with soil organisms be expanded, evaluating other parameters of ecological relevance, such as reproduc-

tion and bioaccumulation tests. 

In this context, NPs-MgO) were synthesized and characterized and the toxicological effects evaluated in 

the Eisenia andrei on soil. Toxicological studies of the NPs-MgO were carried out on earthworms of the Ei-

senia andrei species and on natural tropical soils. 

2. MATERIALS AND METHODS 

2.1 Synthesis of the NPs-MgO 

Magnesium acetate Mg(CH3COO)2, tartaric acid (C4H6O6), both from Neon, and cetyl trimethyl ammonium 

bromide (CTAB), from Dinâmica, were used for the production of magnesium oxide nanoparticles. The syn-

thesis process followed the procedure already studied by MASTULI et al. [22]. 

The amount of 10.0 g of magnesium acetate was dissolved in 100.0 ml of deionized water of a 0.001 M 

aqueous solution of CTAB and ethanol until the solution became clear. The pH of the solution was adjusted 

to 5 by slowly adding a 1 M solution of tartaric acid and ethanol. The solution was stirred until a gel was 

formed. The gel was allowed to stand for 1 day and subsequently filtered and washed with water and ethanol. 

The gel was subjected to the drying process with controlled temperature of 100.0
o
C in a vacuum oven for 24 

h. The dried material was calcined at 600.0°C with ambient atmosphere for 6 h.  

2.2 Morphological and structural characterization of the NPs-MgO 

In order to evaluate the physical and chemical properties of the NPs-MgO the techniques of X-Ray Diffrac-

tion (XRD), Surface Area Analysis (BET), Transmission Electron Microscopy (TEM), Scanning Electron 

Microscopy (SEM-FEG) and Energy Dispersive X-ray Spectroscopy (EDS) were used. 

The x-ray spectra were obtained on a Shimadzu-type LabX XRD-6000 scanning equipment with a 

scanning speed of 5 degrees/min, using copper target and 2Theta range between 10.0 and 80.0 degrees. 

The tests to determine the surface area by the BET procedure were performed using the Autosorb 1C 

automatic adsortometer, Quantachrome, in the fisistion mode. The samples were previously dried at tempera-

tures between 100.0 and 300.0°C under vacuum (10
-7

 torr) and then the nitrogen gas adsorption was meas-
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ured at 77 K in relative pressure values between 0 and 1.0. The BET surface area was determined using the 

volume values of adsorbed gas in the range of relative pressures of 0.05 to 0.25. 

Electron transmission microscopy analyses were performed using the JEM-1011 TEM equipment with 

maximum beam acceleration voltage of 100 kV. The samples were initially dispersed in ethanol solution and 

then sonicated for 10 min before being placed in the grid for analysis. 

The SEM-FEG and EDS assays were performed on a scanning electron microscope of the JEOL brand, 

model JSM-6390 LV with Thermo branded EDS probe, model 6733A-1NES-SN. 

2.3 Toxicity characterization of the NPs-MgO 

The NPs-MgO toxicity evaluation experiment was conducted in the soil laboratory of the Community Uni-

versity of the Region of Chapecó - Unochapecó. Two soils were used: an Entisol Typic Quartzipsamments, 

collected in the municipality of Araranguá - SC and an Oxisol collected in the municipality of Chapecó - SC, 

both with no history of agricultural use and collected in the 0 - 20 cm depth. The evaluation of the physical-

chemical parameters of the soils were performed and is presented in Table 1. 

 

Table 1: Physical-chemical parameters of the typical orthodontic oxisol and entisol evaluated at depth 0-20 cm. 

[1]
Analyzed according to Tedesco et al. (1995) and Embrapa (1997). 

[2]
OM - Organic Matter. 

[3]
CTC - Cation 

exchange capacity at pH 7.0. 

 

 

 The soils were sieved in 2 mm mesh and defaunated with 2 cycles of freezing and thawing 24/24 h. 

Before the beginning of the test, the chemical parameters of the natural soils were determined: pH in H2O 

(ratio 1: 1 [w: v]), percentage of organic matter, cation exchange capacity (CTC), macro and micronutrients 

level, according to the methodology described by TEDESCO et al. [23]. 

 The experimental design was completely randomized with six replicates for each concentration tested. 

The treatments were composed of the following concentrations of NPs-MgO applied to natural soils: 1.06; 

2.12; 4.24; 8.48 and 16.96 μg NPs-MgO/kg soil plus the control treatment. These concentrations values were 

defined According to preliminary germination tests that have been carried out with seeds treated in the labor-

atory with magnesium oxide nanoparticles. For the tests, the pH of the natural soils was corrected to 6.0 ± 0.5 

with addition of CaCO3 and the humidity adjusted to 60% of the maximum water retention capacity (CRA) 

[24]. 

 The lethality test with the Eisenia andrei earthworm species followed the recommendations of ISO 

11268-1 (ISO, 2012) [25]. Each replica was composed of a circular plastic container with a mass capacity of 

1 kg, which received 500 g of contaminated dry soil and 10 adult cloned earthworms weighing between 250 

Physical-chemical  
parameters

1 Oxisol 
Entisol Typic  

Quartzipsamments 

MO
2
 (%) 2.90 0.90 

CTC
3
 10.47 4.92 

pH (H2O) 4.60 5.80 

P (mg dm
-3

) 5.80 6.70 

K (mg dm
-3

) 60.00 34.00 

Ca (cmolc dm
-3

) 1.30 2.00 

Mg (cmolc dm
-3

) 0.30 0.83 

Al (cmolc dm
-3

) 0.70 0.00 

H + Al (cmolc dm
-3

) 8.71 2.00 

Cu (mg dm
-3

) 3.50 1.50 

Zn (mg dm
-3

) < 0.20 1.00 

Fe (mg dm
-3

) < 5.00 72.50 

Mn (mg dm
-3

) 12.50 2.10 

Clay
3
 (%) 63.00 4.00 
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and 600 mg and aged between two months and one year. The tests were kept in an environment with a tem-

perature of (20 ± 2)°C and photoperiod of 12:12 h (light/dark). The moisture of the experiment was adjusted 

every 7 days with distilled water and the organisms were fed at the beginning of the test and every 14 days 

with 5 g of equine waste moistened with distilled water. After 28 days of assay assembly, adult individuals 

were counted for the number of survivors. 

 Survival data were submitted to analysis of variance (ANOVA One-way), followed by the Dunnett 

test (M <control, p <0.05). The normality and homogeneity of the data were verified through the Kolmogo-

rov-Smirnov test, when the assumptions were not fulfilled the data were transformed. 

3. RESULTS AND DISCUSSIONS 

3.1 Morphological and structural characterization of the NPs-MgO 

Figure 1 shows images obtained with Transmission Electron Microscopy of NPs-MgO. The images confirm 

the formation of nanoparticles with dimensions between 20 and 50 nanometers. The formation of NPs-MgO 

agglomerates with varying shapes with dimensions greater than 100 nm is observed, Figure 1 (a). It is also 

observed the formation of regular faces in the NPs-MgO, due to its high degree of crystallinity and the great 

susceptibility of the nanoparticles to form large agglomerates, in some situations coalesce, possibly due to 

their high polarity and surface area. It is also observed the formation of regular faces in the NPs-MgO due to 

their high degree of crystallinity and also the great susceptibility of the nanoparticles to form large agglomer-

ates, in some situations coalition, possibly due to their high polarity and surface area, Figure 1(b). Similar 

results were obtained by GANGULY et al. [26] and BALAKRISHNAN et al. [27] that studied the catalytic 

properties of MgO nanoparticles synthesized with dimensions of 10 nm and 26-37 nm, respectively. 

 

  
Figure 1: Images obtained by Transmission Electron Microscopy for the magnesium oxide nanoparticles. (a) 

agglomerates with varying shapes with dimensions greater than 100 nm and (b) NPs-MgO with regular faces. 

  

Figure 2 shows images obtained by Scanning Electron Microscopy (SEM-FEG) of the NPs-MgO 

structures. The images show clusters with flat and regular faces, typical of structures with a high degree of 

crystallinity, Figure 2(a). With magnification of 10000 times it is possible to observe the formation of ag-

glomerates of fibrous structures of NPs-MgO with micrometric dimensions, Figure 2(b).  

The Energy Dispersive Spectroscopy by x-ray fluorescence (EDS) results show that the structures 

formed by the nanoparticles are composed of oxygen and magnesium, a strong indicator of the formation of 

magnesium oxide (NPs-MgO) nanoparticles, Figure 3. Peaks evident in the spectrum at 0.5 keV correspond 

to the electronic transitions of the oxygen elements and at 1.25 keV the transitions of the elements of magne-

sium. The peak at 2.1 keV corresponds to the transitions of the carbon element present in the conductive tape 

used for the fixation and electrical contact of the sample in the stub. 

 

(a) (b) 
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Figure 2:  Images obtained by Scanning Electron Microscopy (TEM-FEG) of the structures obtained with NPs-MgO. 

Magnification of (a) 1000 times and (b) 10000 times. 

 

  

 
Figure 3:  EDS spectrum obtained for structures consisting of magnesium oxide (NPs-MgO) nanoparticles. 

 

(a) 

(b) 
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Figure 4 shows the x-ray diffraction (XRD) diffractogram obtained for the NPs-MgO. Comparing the 

diffractogram with the JCPDS No. 87-0653 [27] confirms the formation of magnesium oxide with high crys-

tallinity. 

 
Figure 4:  X-ray diffraction (XRD) diffractogram obtained for NPs-MgO. Comparing the diffractogram with the JCPDS 

No. 87-0653 [27] confirms the formation of NPs-MgO. 

 

 

The diffraction peaks indexed in (111), (200), (220), (311) and (222) correspond to the cubic structure 

magnesium oxide and the crystallite size, calculated by the method and Scherrer, presented the mean value of 

15.45 nm, indicating that the crystallites correspond to the structures of the NPs-MgO. 

Analysis of the surface area results via BET indicated that the surface area of the NPs-MgO structures 

has an average surface area of 118.7 m
2
/g, a pore volume of 0.3174 cm

3
/g and a mean pore diameter of 10.69 

nm. Although it has been obtained agglomerates constituted by NPs-MgO the value of the surface area for 

these nanostructures can be considered elevated. The agglomerates are formed by NPs-MgO, but the surface 

area is associated with the characteristics of the agglomerates, as well as the volume and dimensions of their 

pores. Thus, the high surface area is due to the structure of the porous agglomerates, which are formed by 

NPs-MgO with high crystallinity, according to the results of the XRD. 

3.2 Toxicity characterization of the NPs-MgO 

The lethality test of Eisenia andrei complied with the validation criteria in accordance with ISO 11268-1 

(ISO, 2012). The lethality rate did not exceed 10 % of the total control individuals (mean 98 % survival for 

the Oxisol and 100 % survival for the Entisol) and, for both soils, the coefficient of variation was < 30 % 

(CV = 1.38 % Oxisol; and 0 % Entisol). The soil worm survival was not affected in any of the concentrations 

evaluated for the natural soils tested (p> 0.05), Figure 5. 

The results demonstrate that the use of NPs-MgO, with different concentrations tested in soils, does not cause 

lethality in the worms of the Eisenia andrei species. There are no other studies evaluating the toxicological 

potential of the NPs-MgO in earthworms and other soil fauna organisms, mainly in natural soils, but it is pos-

sible to compare these results with results obtained for other types of nanoparticles. 

In addition, other nanoparticles dispersed in natural soils, such as zinc oxide (ZnO), studies have 

shown that the number of living specimens of Eisenia andrei and Eisenia fetida were not affected either [28-

29,12]. However, with silver nanoparticles (NPs-Ag), the work of Kwak and An (2016), it was observed the 

mortality of Eisenia Andrei juvenile worms when in soil contaminated with concentrations of 500 μg of NPs-

Ag/kg of soil, but considered too much concentration in practical applications. These studies also evaluated 

the transfer in the food chain of NPs-Ag in Lobella sokamensi, fed with dead worms contaminated at concen-

trations of 50, 200 and 500 μg of NPs-Ag/kg of soil. With the lowest concentration the negative effects were 

insignificant, but with the highest concentration the locomotion was inhibited. 

Although no terrestrial ecotoxicology research data, aquatic toxicity studies with the NPs-MgO in Dan-

io rerio zebrafish [7] and in the freshwater snail of the species Radix luteola with the concentration of NPs-
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MgO of 50, 100, 200 and 400 mg/l. Ali et al. (2016) demonstrated that these organisms are sensitive to the 

presence of these nanoparticles at the concentrations tested: 0, 10, 20, 40, 80, 120 and 200 µg/ml [30]. 

 In the concentrations tested in this work it is verified that the magnesium oxide nanoparticles are not harmful 

to earthworms of the Eisenia andrei species. These results are strong indicators that NPs-MgO is not toxic to 

the terrestrial environment, but it is suggested that similar studies continue for higher soil concentrations. 

 
Figure 5:  Average live individuals of Eisenia andrei earthworms in soils contaminated with increasing concentrations of 

Magnesium Oxide nanoparticles (NPs-MgO). (┬) Standard deviation (n = 6). 

 

4. CONCLUSIONS 

In this work, NPs-MgO were obtained with dimensions in the order of 20-50 nm and with high crystallinity. 

The agglomerates were formed with a surface area of 118 m2/g and with a pore volume of 0.3174 cm3/g and 

with dimensions in the order of 10.69 nm. 

The tested concentrations of NPs-MgO added to the oxisol and entisol had no effect on the survival of 

the Eisenia andrei earthworms. However, it is recommended to carry out further studies evaluating other 

ecological studies in tropical soils, as well as the use of other fauna organisms in different concentrations, for 

a better understanding of the response of the activity of this nanoparticle in the environment. 
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