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RESUMO 

O “arranjo seco” de um composto cimentício pode ser definido como a relação mássica ou volumétrica entre 

os materiais secos que o constitui. Por meio da fixação da espécie de material componente deste arranjo e do 

processo de produção do composto cimentício, é possível analisar de forma mais clara o processo de dosa-

gem de um composto cimentício qualquer. Para analisar o comportamento destes compostos pelas mudanças 

nas quantidades volumétricas dos seus componentes, tem-se os modelos básicos de empacotamento de partí-

culas, como é o caso do Modelo de Empacotamento de Funk e Dinger. O presente artigo tem como finalidade 

analisar as propriedades no estado fresco (índice de consistência) e endurecido (absorção de água, massa es-

pecífica e resistência à compressão axial) das argamassas produzidas a partir do modelo de empacotamento 

de partículas de Funk e Dinger. Neste modelo, as partículas de cimento foram consideradas como parte do 

“arranjo seco” (agregados), transformando em “matriz” (ou agente de separação) somente o volume de água, 

facilitando desta forma a definição do consumo de cimento. Os resultados demonstraram que é possível al-

cançar, pela alteração da quantidade volumétrica dos componentes, uma redução do consumo de cimento de 

aproximadamente 32% e ao mesmo tempo alcançar um aumento da resistência à compressão axial de apro-

ximadamente 59%, juntamente com a redução da absorção e o aumento da massa especifica dos corpos de 

prova. Contudo, foi verificado um decréscimo significativo na trabalhabilidade das argamassas produzidas. 

Palavras-chave: Modelo de empacotamento de Funk e Dinger; Cimento Portland; Agregados; Argamassa. 

ABSTRACT 

The “dry arrangement” of a cementitious compound can be defined as the mass or volumetric relationship 

between the dry materials that constitute it. By fixing the kind of material that makes up this arrangement and 

the cement compound production process, it is possible to more clearly analyze the dosage process of any 

cement compound. To analyze the behavior of these compounds in regard to the changes in volumetric quan-

tities of their components, it is known the basic particle packing models, such as Funk and Dinger Particle 

Packing Model. The present article aims to analyze the properties in fresh (consistency index) and hardened 

state (water absorption, specific mass and axial compressive strength) of mortars produced with the Funk and 

Dinger Particle Packing Model. In this model, the cement particles were considered as part of the “dry ar-

rangement” (aggregates), assuming only the water volume as the “matrix” (or separation agent), thus simpli-

fying the definition of cement consumption. Results demonstrated that it is possible to achieve, by changing 

the volumetric quantity of the components, a reduction in cement consumption of approximately 32% and at 

the same time achieve an increase in axial compressive strength of approximately 59%, a reduction in ab-

sorption and an increase in the specific mass of the specimens. However, a significant decrease in the worka-
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bility of the produced mortars was verified. 

Keywords: Funk and Dinger Packing Model; Portland cement; Aggregates; Mortar. 

1. INTRODUCTION 

Mortars are cementitious compounds characterized according to predefined properties that must meet per-

formance and durability requirements, depending on their use in civil construction, according to the current 

standard [1]. Moreover, cementitious materials have numerous characteristics that may influence their per-

formance and durability, as their behavior is directly associated with dosage, type of component material, and 

production process used [2]. 

The concept of particle packing is based on the adequate proportioning of certain particle sizes, aim-

ing to achieve compact mixtures with control of their density. In other words, when using fractions of parti-

cles of different sizes, where the smaller particles fill the voids generated between the larger ones, succes-

sively to smaller sizes, a system can be generated where these voids are significantly reduced, increasing the 

mixture density [3, 4]. Thus, the behavior of mortars and concretes depends on its components characteristics 

and partly on their interactions [4]. 

Within the concept of particle packing, a mortar mixture, for example, can be understood as a “dry ar-

rangement” of aggregate particles, whose voids are filled with cement paste or “matrix”. As this matrix is 

more expensive and usually less resistant and durable than a natural rock, the basic dosing strategy is to 

achieve a granular mixture with a minimum porosity between aggregates [5], thus leaving few voids to be 

filled with the matrix, resulting in a lower absorption in hardened state and theoretically in a lower workabil-

ity in fresh state.  

For mortars, two different separation possibilities can be considered between the “dry arrangement” 

and the “matrix”: the first one considers separation matrix as the paste (cement and water) and particles as the 

small aggregates; and the second considers separation matrix to be water and particles to be small aggregates 

(like natural or industrial sand), cement and mineral additions. The first option is the researchers’ most ac-

cepted and used analysis, and one of their justifications is that cement paste (water + cement) would be re-

sponsible for controlling the cementitious compound flowability, by dispersing and lubricating aggregate 

particles.  

Thus, the matrix must be more than sufficient to fill the voids between aggregate particles, and this 

means that it must exist excess matrix to obtain a thin layer of paste surrounding each particle to lubricate the 

mixture [6]. With low matrix content, the contact between particles will predominate (these are called stable 

mixtures), making the compaction difficult. With high matrix content, the contact between the particles de-

creases and the flowability is determined by the matrix viscosity (called fluid mixtures), facilitating the com-

paction [7]. By turning only water volume and not cement paste into a "matrix", water is the factor that will 

control the paste flowability.  

Figure 1 shows the volume occupied by stable particles (a) and particles in fluid mixtures (b) in which 

the matrix is represented by water. 

 

Figure 1: Volume occupied by stable particles (a) and particles in fluid mixtures (b) [8]. 
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For the elaboration of the “dry arrangement” proportioning it can be used Funk and Dinger Particle 

Packing Model. This model is an improvement on Furnas (1929) and Andreasen and Andersen (1930) mod-

els, and shows that, in reality, both are two distinct ways of expressing the same result [9]. 

The purpose of Funk and Dinger model was to introduce the concept of minimum particle size into the 

Andreasen and Andersen equation, and to mathematically review Furnas model. After comparative analysis 

between these two models, Funk and Dinger proved in 1980 that, mathematically, the equations of the two 

models converge to Equation 1 [7]. 

 (1) 

Where: 

CPFT = accumulated percentage of particles smaller than size D; 

DP = particle diameter; 

DL = diameter of the system largest particle; 

DS = diameter of the system smallest particle; 

q = distribution coefficient. 

 

Funk and Dinger equation is a particle packing model suitable for real (practical) systems [10] once its 

equation deals with a low number of variables, as it only works the particle size composition of the mixture. 

More elaborate models with a greater number of variables have also been developed, but Funk and Dinger 

model can still be considered as the simplest model to be applied to concrete and mortar.  

Through computational simulations, Funk and Dinger determined that to maximize packing, the value 

of the distribution coefficient (q) should be 0.37 [11,12]. However, this value is quite questionable regarding 

the representation of the optimal packing, since the concept of optimization must be correlated with compac-

tion energy. 

In general, the lower the “q” value, the lower the ratio between large and small aggregates and the 

greater the amount of paste to fill the voids between particles [13-15]. Thus, it is possible to state that the 

distribution coefficient is related to concrete and mortar workability [15]. 

Similarly, OLIVEIRA [7] also states that “q” values smaller than 0.37 increase the flowability of con-

cretes by allowing the existence of a greater distance between aggregate particles, increasing the amount of 

matrix. On the other hand, distribution coefficients smaller than 0.2 may decrease flowability due to exces-

sive increase in the specific surface of the system. In other words, the volume of smaller particles exceeds the 

void index between larger particles [7]. 

BROUWERS and RADIX [16], and HUNGER and BROUWERS [17] recommend a “q” between 

0.22 and 0.25 for self-compacting concretes. However, OLIVEIRA et. al. [04] use, in their studies on self-

compacting concrete, distribution coefficients “q” equal to 0.29. Also, WANG et. al. [18] recommend a “q” 

between 0.23 and 0.29 for the same type of concretes. For dry concretes, Schmidt and Stutech apud 

HÜSKEN and BROUWERS [14] recommend “q” values between 0.35 and 0.4. 

Particle packing mathematical models of simple calculation can facilitate, enhance and even lower the 

costs of mass production of cementitious compounds. A numerical parameter that can, at the same time, op-

timize packing degree and cement consumption and still serve as a flow control parameter is desirable, as it 

can be a simple and practical way to develop the compositions between mortar and concrete components.  

Applying cement as part of the “dry arrangement” in a particle packing model can facilitate the deter-

mination of optimal cement consumption, mainly because the fine content (particles <150 mm) have a signif-

icant impact on the properties of cementitious compounds as well as on the packing degree of cement mix-

tures [15]. 

Thus, this work aims to analyze the behavior of mortars dosed from a particle packing model, with 

cement particles being considered as part of the “dry arrangement”, assuming as the "matrix" only the vol-

ume of water. It is intended to analyze the results of each mixture, in relation to their cement consumption, 

fines content percentage, paste (cement + water) percentage and the particles surface area, contrasting this 

with the results of consistency index (admitting the results of the Flow Table test) in fresh state, and specific 

mass, water absorption and axial compressive strength on hardened state. 
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2.  MATERIALS AND METHODS 

2.1 Materials 

As binder it was used cement CPII-F-32, with specific mass equal to 3.11 g/cm³. The reason for this choice is 

related to the continuity of this cement granulometry in relation to the aggregate used. This is because Funk 

and Dinger Particle Packing Model requires a particle size regularity for its numerical application. To obtain 

the cumulative percentage of particles smaller than size D (CPFT), the smaller particle diameter must always 

be half the larger particle size. Thus, in order to include cement as a particle in the calculation of this model, 

it is necessary to have a particle size of approximately half the size of the smallest aggregate particle used 

(0.075 mm).  

Results obtained by AGUIAR test [19] (as shown in Figure 2) showed that 90% of CPII-F-32 cement 

particles are smaller than 0.04594 mm and 10% of particles are smaller than 0.00319 mm. These fractions are 

appropriate to make the cement particle size distribution as continuous as possible in relation to the aggregate 

particle size distribution. This would be more difficult with a finer cement such as CP V ARI, for example.  

 

Figure 2: Laser Cement Granulometry CPII-F-32 [19] 

Thus, due to the impossibility of its experimental subdivision, the particle size distribution of CP II-F-

32 cement was considered continuous. To include the cement in packing calculation, it was subdivided into 

particle size ranges of 0.038 mm, 0.019 mm, 0.009 mm, 0.005 mm and 0.002 mm, which were later added to 

obtain the total amount of cement to be used in each mixture. 

For the preparation of mortar mixtures produced by Funk and Dinger Packing Model, the aggregate 

employed was industrial sand, with a specific mass equal to 2.941 g/cm³, obtained according to NBR NM 52 

[20] with the aid of a Specific Gravity Flask (Chapman). Its use is mainly due to its more continuous particle 

size distribution when compared to a natural sand, a factor that optimized the sand screening process and the 

obtainment of the desired particle size fractions. 

For this study, the normal series particle size ranges (2.4 mm, 1.2 mm, 0.6 mm, 0.3 mm, 0.15 mm and 

0.075 mm) were adopted, and the fractions were obtained through mechanical screening, according to the 

tests standardized by NBR NM 248 [21] and NBR NM 46 [22]. Thus, it was respected the prescriptions of 

the packing model by assuring that the diameter of the particle of smaller size would be half the size of the 

particle of larger size. 

Aggregates may generally have uniform, continuous or discontinuous particle size distributions. Uni-

form particle size distribution occurs when all particles belong to only one particle size range; continuous 

particle size distribution occurs when particle size increases continuously and proportionally; and discontinu-

ous particle size distribution occurs when a certain particle size is absent [9]. In general, a continuous particle 

size distribution tends to have a better packing index than uniform and discontinuous distributions [23], since 

they present proportional quantities between aggregate fractions. 

Another factor that corroborates the improvement in particle packing is the increased particles disper-



 HERMANN, A.; BILCATI, G.K; AMES, I. et al., Matéria magazine, v.25, n4, 2020. 

sion [9], either through compacting, vibration, vibrocompaction or even through the use of plasticizers or 

superplasticizers.  

Chemical additives, whether plasticizers or superplasticizers, help to reduce porosity, improving the 

durability of concrete [24], since reducing friction between particles makes them more easily dispersed, fur-

ther improving the mixture density. After all, it is known that for application, a concrete mixture needs much 

more water than needed for cement hydration, which results in porosity in hardened concrete, reducing the 

potential of its mechanical properties and facilitating degradation of this material [9].  

The incorporation of plasticizing additives acts positively in the production of high packing mortars, 

once it promotes greater fluidity without increasing the water/cement ratio. They also act to reduce the for-

mation of fine agglomerates, which tends to create regions of high porosity in mortars. 

In order to reduce the interference of fines agglomeration on the packing of the produced mortars, a 

chloride-free concentrated plasticizing additive was used, whose basic composition is obtained from natural 

resins. Its density is 1.03 g/cm³. 

2.2 Methods 

First, the cumulative percentage of particles smaller than “D” (CPFT) was calculated using Funk and Dinger 

packing model, according to the Equation 1, with the 4.8 mm diameter being used as the largest particle di-

ameter (DL) and the diameter of 0.002 mm as the smallest particle (DS). It also was used the distribution coef-

ficient (q) ranging from 0.1 to 0.6, with q = 0.6 being the maximum value adopted due to previous practical 

experiments that had shown that mixtures produced with distribution coefficient (q) between 0.7 and 1.0 lead 

to the obtainment of extremely dry mortars, situation that could cause difficulties at fixing the water/cement 

ratio. 

Then, the volume retained in each sieve (4.800 mm, 2.400 mm, 1.200 mm, 0.600 mm, 0.300 mm, 

0.150 mm, 0.075 mm, 0.038 mm, 0.019 mm, 0.009 mm, 0.005 mm and 0.002 mm) was calculated by the 

difference between the volume that had passed through the previous sieve (DP+1) and the volume that had 

passed through the sieve under analysis (DP). It was considered a single retained volume in relation to cement, 

as the total cement volume corresponds to the sum of the retained volumes in the range from 0.038 mm to 

0.002 mm, once it is not feasible the separation of cement particles into size fractions. 

The amount of plasticizing additive used was 0.2% in relation to the total amount of fines content 

(cement + sand fraction between 0.150 mm and 0.075 mm), according to the manufacturer's recommenda-

tions and also taking into account the agglomeration of particles with a smaller diameter than 0.150 mm. 

Subsequently, the mixture design in relation to the cement volume was calculated by taking the re-

tained volume in each particle range and dividing by the cement volume. The mass ratio of the mixture de-

sign was obtained by multiplying the volume of each fraction by the aggregate specific mass, dividing by the 

volume of cement and multiplying by cement specific mass. Table 1 presents the mass ratio of the mixture 

designs calculated for each distribution coefficient, and presents some characteristics of each mixture design 

such as cement consumption, fines percentage, paste percentage, water consumption, fineness modulus and 

particle surface area. 

Table 1: Mass ratio of mixtures for each distribution coefficient (q) and its characteristics 

FRACTIONS 

MASS RATIO OF MIXTURES 

Q (DISTRIBUTION COEFFICIENT) 

0.1 0.2 0.3 0.4 0.5 0.6 

Industrial sand 

4.800<g<2.400 0.3 0.6 1.0 1.6 2.7 4.5 

2.400<g<1.200 0.3 0.5 0.8 1.2 1.9 2.9 

1.200<g<0.600 0.3 0.4 0.6 0.9 1.3 1.9 

0.600<g<0.300 0.3 0.4 0.5 0.7 1.0 1.3 

0.300<g<0.150 0.2 0.3 0.4 0.5 0.7 0.8 

0.150<g<0.075 0.2 0.3 0.3 0.4 0.5 0.6 

Cement 0.075<g<0.002 1.0 1.0 1.0 1.0 1.0 1.0 

Cement consumption (kg/m³): 731 611 491 379 283 204 

Fines percentage (<0.150mm): 46% 37% 29% 22% 16% 12% 
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Percentage of paste (cement + water): 47% 38% 29% 22% 16% 11% 

Water consumption (g): 413.5 345.7 277.7 214.6 159.9 115.6 

Fineness Modulus: 1.61 1.88 2.12 2.32 2.48 2.60 

Particles surface area (m²): 53.3 46.5 39.4 32.5 26.2 20.9 

 

It was verified that the cement consumption decreased due to the increase of the distribution coeffi-

cient, from 731kg/m³ with a distribution coefficient of 0.1 to 204 kg/m³ with a distribution coefficient of 0.6. 

Similarly, there was a decrease in the fines content (<0.150mm) that includes, in addition to cement, percent-

age of fines in industrial sand, which went from 46% to 12%.  This fact justified the increase of particles sur-

face area, since when there is a higher concentration of fines, there is also a larger specific area of the parti-

cles, which causes an increase in the water consumption necessary to cover the particles. Moreover, this de-

crease in the fines percentage in the mixture design as the distribution coefficient increases, is mainly due to 

the reduction of cement along the distribution coefficients. The percentage of paste was similarly reduced as 

the distribution coefficient increased. 

To calculate cement consumption of each mixture mass ratio, the IPT/EPUSP dosing method was 

adopted. The percentage of incorporated air was neglected in these calculations as it is considered a small 

value. According to some authors this value is around 2% [25].  

The fines percentage was calculated by the ratio between mass quantities of the fraction smaller than 

0.150 mm and the total mass of all fractions. 

The percentage of paste was calculated by the ratio between the amount of the cement and water (in 

grams) and the total mass of all mixtures components. 

The water/cement ratio was set at 0.48 for all mixtures and was adopted primarily to meet the criterion 

for determining the compressive strength of Portland cement, according to NBR 7215 [26]. However, it was 

fundamental to analyze the influence of different dosages between aggregates on mortars compressive 

strength, since water/cement ratio is proven to be a factor of great influence on cementitious compounds 

strength [27].  

The particles surface area was calculated considering all particles as spherical particles of average di-

ameter. In other words, the surface areas of all the particles needed to produce a mortar volume were summed, 

and their diameter was considered as the arithmetic mean of each particle size fraction. 

The fineness modulus was calculated considering the sum of the retained percentages accumulated in 

mass of an aggregate, in the sieves of the normal series (4.800 mm, 2.400 mm, 1.200 mm, 0.600 mm, 0.300 

mm, 0.150 mm) according to the NBR NM 248 [21], divided by 100. 

Mortars were made according to the procedures described by NBR 7215 [26] with the exception that 

all steps were developed at low speed of the mechanical mixer, because there was an overflow of material 

when high speed was used. Thus, to avoid material loss, only low speed was used. 

To perform the tests, six cylindrical specimens with dimensions 50 mm x 100 mm were molded. After 

the molding process, the specimens were sent to a humid chamber, where they remained for 24 hours. After 

24 hours, the specimens were kept for 27 days completely immersed in water also inside the humid chamber, 

remaining there until the tests were performed. 

The tests performed on the mortar specimens were, on the fresh state: the Flow Table test (consistency 

index) [28]; and on the hardened state: the water absorption test and specific mass absorption test at 27 and 

28 days of age [29] and the axial compressive strength test [26], at 28 days of age. 

 

3. RESULTS AND DISCUSSION 

3.1 Consistency index (Flow Table) 

By considering cement as a granular material in the particle size distribution, its consumption reduces as the 

distribution coefficient of Funk and Dinger Packing Model increases. By fixing water/cement ratio, water 

consumption of the mortar also decreased, which means that the percentage of paste (cement + water) de-

creased with the increase of the distribution coefficient, directly influencing the workability of the mortar. 

The mortar consistency test (Flow Table) showed that mixture designs with distribution coefficients 

lower than 0.3 led to the production of more fluid mortars and that mixtures produced with distribution coef-
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ficients greater than 0.3 led to drier mortars, as shown in Figure 3.  

YOUSUF et al. [30], in their studies analyzing low cement concrete produced with different distribu-

tion coefficients (0.26, 0.31 and 0.37) and with constant water/cement ratios of 0.47 and 0.61, also found a 

reduction in slump test values and a density increase due to the increase in the distribution coefficient from 

0.26 to 0.37. 

For q = 0.1 and q = 0.2, the two mortars were cohesive and with little exudation, providing greater 

fluidity to the mixture. These results are similar to those recommenended by BROUWERS and RADIX [16] 

and Hunger and Brouwers [17] to self-compacting concretes.  

On the other hand, as the distribution coefficient increased, the percentage of water was increasingly 

insufficient to proceed with the Flow Table method analysis. This leads to the conclusion that mortars of this 

type need different compaction methods, such as vibrocompaction. Other tests such as VeBe test, intended 

for dry cementitious compounds could be used for a better analysis of mortars with higher distribution coeffi-

cients.  

In addition, for distribution coefficients greater than 0.4, difficulties were found regarding the molding 

of the specimens. In mortars with distribution coefficient equal to 0.6, the agglutination between materials 

occurred unevenly. 

Thus, it can be concluded that the mixture designs with distribution coefficients 0.1 and 0.2 presented 

a sufficient amount of free water to promote particle lubrication, while for “q” values equal to or greater than 

0.3, the amount of free water had become increasingly unable to promote proper cohesion and workability. 

Since, the greater the volume of excess water, the thicker the water films and the further apart the particles 

will be from each other, leading to less friction and interaction between the particles and, eventually, to a 

greater workability [31]. 

Particle distribution was important for mortar fluidity definition and the distribution coefficient can 

serve as a numerical parameter of flow control. An increase in the amount of water in certain “dry arrange-

ments” may not imply increased paste fluidity, but increased segregation and even mortar exudation. 

As also pointed out by Rizwan, et al., the fineness modulus of sand particle distribution increases with 

the distribution coefficient, which indicates that as the distribution coefficient increases, the sand particle 

distribution becomes coarser [32]. This result can be confirmed by the particles surface area of each mixture, 

which decreased with the increase of the distribution coefficient, since a volume of smaller particles has a 

larger surface area than an equal volume of larger particles.  When compared to the results of the consistency 

index (Flow Table test), both indicate that the increase in the distribution coefficient, in addition to providing 

less fluidity, provides mixtures with coarser particles. 
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Figure 3: Flow Table test for the different distribution coefficients of Funk and Dinger Packing Model 

3.2 Specific mass and absorption 

For the analysis of mortars in the hardened state, it was found experimentally that the highest value for spe-

cific mass and the lowest value for absorption was observed in the mortar with a distribution coefficient 

equal to 0.3. These results are statistically significant, as shown in the values in Figure 4.  

Lower absorption and higher specific mass leads to a greater particle packing, since there is less po-

rosity. The distribution coefficient found experimentally (q = 0.3) differs from that obtained by computer 

simulations (q = 0.37). However, it should be noted that, as already mentioned, obtaining a distribution coef-

ficient is quite questionable regarding the representation of the optimal packing, since the concept of optimi-

zation must be correlated with the compaction energy. It is possible that the compaction energy used in this 

work was not sufficient to locate all the particles in the specimen in the best way, especially for the mixture 

designs with larger distribution coefficients, such as 0.5 and 0.6. 
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Figure 4: Specific mass and water absorption in relation to distribution coefficient 

Similar results were found in Chu’s study [33], where tests were carried out on compacted and un-

compacted concretes according to the Standard BS 1881-107: 1983. In Chu’s study, uncompacted concretes 

presented higher densities with an increase in the cementitious paste volume, and compacted concretes 

showed higher densities with the reduction of the cementitious paste volume. 

However, it can be said that when the coarse/fine aggregate ratio increased (which represents an in-

crease in the fineness modulus shown in Table 1), even though the specific mass of the combined aggregates 

showed a downward tendency, the percentage of voids showed an increasing tendency. The same result was 

also found in the literature [34]. 

3.3 Axial compressive strength 

The results obtained from the compressive strength test can be analyzed in Figure 5. As for the specific mass 

and absorption results, the mixtures produced with a distribution coefficient equal to 0.3 were the ones that 

presented the highest results concerning axial compressive strength.  

Results very similar to that are found in the literature where the packing density of sand mixtures in-

creases with the distribution coefficient and the optimal packing degree occurs at the distribution coefficient 

of 0.35, after which it starts decreasing, or more realistically when “q” is the range of 0.3 – 0.4 [32]. 

For a distribution coefficient 0.3, there was a 32.83% reduction in cement consumption compared to 

the highest cement consumption (731kg/m³) generated by the distribution coefficient 0.1. Even so, the aver-

age axial compressive strength increased 58.70%, from 27.99 MPa (for the mixture generated by q = 0.1) to 

44.42 MPa (for the mixture generated by q = 0.3).  

Similarly, for a distribution coefficient 0.4, even with a considerable reduction in cement consumption 

(48.15%), there was no significant reduction in axial compressive strength. Thus, it was observed that, even 

though cement consumption decreased, the axial compressive strength was maintained, a fact that can be 

attributed to the better packing and dispersion of the particles, since water/cement ratio was fixed at 0.48. 

For values greater than 0.4 there was a significant decrease in the axial compressive strength of the 

specimens, which was mainly due to the high reduction of cement consumption. However, more effective 

compaction energy (on the specimens molding), could increase this strength, and this increase would be due 

to the increased particle packing. 
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Figure 5: Cement consumption and axial compressive strength in relation to distribution coefficient 

4. CONCLUSIONS 

After applying the packing model and performing the experiments it is possible to conclude: 

 For mortar consistency test, distribution coefficients lower than 0.3 produced more fluid and homoge-

neous mortars, whereas distribution coefficients greater than 0.3 led to drier and less homogeneous 

mortars, evidencing the need of evaluating the influence of a different compaction energy on the 

analysis of the packing index. 

 The results obtained for higher specific mass and lower absorption values were found for mortar with 

distribution coefficient of 0.3. It is possible that the compaction energy used in this work was not 

sufficient to locate all the particles in the specimen in the best way, especially for mixture designs 

with larger distribution coefficients, such as 0.5 and 0.6. 

 It is possible to achieve a reduction in cement consumption in the mixtures produced with distribution 

coefficients between 0.1 and 0.3, with an increased axial compressive strength, reduced absorption 

and increased specific mass. Only by changing the volumetric quantity of the components, it could 

be achieved a reduction in cement consumption of approximately 32% be achieved while at the 

same time it could be achieved an increase in axial compressive strength of approximately 59%, to-

gether with a reduction in absorption and an increase in the specimen specific mass. However, there 

is a significant decrease in mortar workability. 

 The increased packing between aggregate particles is one of the main reasons for reducing cement 

consumption and absorption and increasing the compressive strength of the produced mortar. 

 Thus, it can be concluded that the use of Funk and Dinger Particle Packing Model with the incorpora-

tion of cement as part of the “dry arrangement” facilitates its dosing in cementitious materials and, 

using different distribution coefficients of the same model, facilitates the desired workability. 
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