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ABSTRACT 

This contribution reports the use of an organic gel, xerogel, as catalyst support for Cu. The xerogel was synthesized from 

the system tannin-formaldehyde at pH 3, using F-127 Pluronic as surfactant. The surface area values were higher than 

900 m2/g even after the Cu (10%, wt) impregnation. The morphological analysis by SEM-FEG revealed the presence of 

spheres arranged in a tridimensional structure. XRD diffractograms showed the presence of CuO and Cu2O crystalline 

phases combined with the amorphous structure of the porous carbon. From XRD analysis it is possible to infer the Cu 

species are heterogeneously dispersed on the support with the co-existence of small and larger clusters, which is in 

agreement with Raman spectroscopy. Raman study also indicated a highly defect/disorder structure of the xerogel deriva-

tives, ensuing the short-range structural order of the carbonic structure and oxygen groups decorating the carbon surface. 

XPS results corroborate with XRD and Raman results, detecting the presence of CuO and Cu2O. In addition to the men-

tioned Cu species, XPS also detected Cu0 which may be originated from the chemical interaction between the electron 

oxygen groups with the Cu precursor. The high surface area and the thermal stability (~ 300 oC) of Cu/XCTF envisages 

its feasibly for relevant catalytic applications.  

Keywords: Carbon xerogels, tannin, renewable process, catalyst support. 

 

1. INTRODUCTION 

Porous carbon-based structures appeared as a promising material with potential applications in several relevant 

knowledge fields as catalysis, purification, adsorption, energy storage, to mention few. The literature reports several 

kinds of porous carbon materials obtained from different raw materials and protocols synthesis [1]. Among them, carbon 

gels have a different porous structure consisting of a monolithic architecture [2], with a broad range of pores including 

micro, meso and macropores. The outstanding feature of the porous gels is the possibility of tailoring their physico-

chemical properties as pore size distribution and chemical surface by adjusting synthesis conditions [2]. Xerogels can be 

produced from cheap carbon sources as agriculture waste [3] and inexpensive coal [4, 5], meeting environmental and 

economical requirements [3, 4]. A potential precursor for carbon gels is the tannin which demonstrated to be efficient to 

provide a high surface area (up to 900 m2/g) along with high porosity, 99 % [6-8]. Tannin is natural biopolymer extracted 

from plants and based on polyphenolic compounds, the condensed flavonoids. These species are reactive with formalde-

hyde and responsible to the network tridimensional formation of the carbon xerogel [9]. Besides, this biosourced com-

pound is a non-toxic and low-price compared to synthetic phenolics, as resorcinol and phenol, used for the same purpose 
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[6, 7, 9].The synthesis of xerogels comprises the polycondensation reaction with subsequent drying under subcritical 

conditions. The system-resorcinol-formaldehyde is the mostly monomers used for the organic gel synthesis, allowing the 

design of the desired properties of the final solid. All the steps involved in the xerogel production affect directly the final 

characteristics of the resulting solid. Nevertheless, the pH of the precursor solution and the concentration of the reactants 

have a predominant role over the carbon gel properties, where changes in these parameters can lead to a highly porous gel 

or a completely non-porous carbon [10]. 

Xerogels have some special properties as high surface area, controllable pores size and chemical surface which 

make them appropriate to be employed as support for metallic nanoparticles [11]. The high concentration of oxygen-

containing groups can act as a nucleation center or anchoring sites for the metallic particles providing an enhanced metal-

lic dispersion and, preventing sintering [11, 12]. The incorporation of oxygen groups (carboxylic anhydrides, lactones, 

phenol/ether and carbonyl/quinone groups) takes place during the carbonization stage [13]. 

Thus, the use of xerogel as catalysts support can be a strategy for promoting a high metallic dispersion and stabil-

ity toward sintering. Moreover, the metal particles recovering by the support burning is another potential advantage relat-

ed to carbon materials. Therefore, the objective of this research was to design a xerogel from the tannin-formaldehyde 

system with a high surface area aiming at improving the metallic dispersion of Cu, with a narrow distribution of particle 

sizes.  

2. MATERIALS AND METHODS 

 

2.1. Catalyst synthesis 

The organic xerogel was synthesized using tannin as a precursor following the detailed procedure described elsewhere [7], 

[14]. Briefly, 3 g of the surfactant F-127 Pluronic® (BASF) (~12600 g/mol) was dissolved in 40.84 mL (36 g) of etha-

nol/water solution (1:1) followed by the gradual addition of tannin powder (6 g). Then, 11 mL (12g) of an aqueous solu-

tion of formaldehyde (37%) was poured into the system. After, the pH of the reaction medium was adjusted to 3.0 with 

concentrated sulfuric acid (98%) in order to avoid dilution issues. The gelation of the material was carried out in a sealed 

container at 85 °C, for 5 days. In the subsequent step, the material was dried at room temperature for 5 days (subcritical 

drying). The pyrolysis step of the xerogel was performed in a tubular oven under an argon atmosphere at 900 ºC for 2 h 

[2, 7]. The pyrolysis temperature was reached using a heating rate of 10 °C/min.  

The catalyst was prepared through the incipient wetness impregnation using an aqueous solution of Cu(NO3)2.3H2O 

(2.14 mol/L). The nominal Cu load was 10%, wt. After impregnation, the sample was dried at 120 ºC, for 12 hours. The 

samples were thermally treated under the N2 flow at 300 ºC (heating rate of 5° C/min), for 2 hours. 

Samples of carbon xerogel and carbon xerogel impregnated were labeled as XCTF and Cu/XCTF, respectively. 

 

2.2. Catalyst characterization 

XRD patterns were recorded on the X-Pert Pro diffractometer from Panalytical using Cu-K radiation (Ni filter, λK1 = 

1.5406 Å). The diffraction patterns were obtained at room temperature in the 2 range from 5 to 70 withstep of 0.02°.  

Thermal analysis was carried out in a TA analyzer (STA 443 Jupiter/Netzsch) by heating the sample from room 

temperature to 800 °C (heating rate of 5 °C/min) under air flow (100 mL/min).  

The N2 adsorption measurements were carried out at low temperature of liquid N2 (-196 C) on ASAP 2020 Plus 

instrument, from Micromeritics. Before the adsorption-desorption experiments, the samples were outgassed under vacu-

um at 200 C for 48 h.  

The morphological study of the samples was carried out using a Scanning Electron Microscopy equipped with a 
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field emission gun TESCAN, operating at 5.0 kV. The samples were analyzed without metallic coating. All the Energy 

Dispersive Spectra (EDS) were collected using an EDS system (Oxford Instruments, model X-MaxN 50) integrated to the 

microscope.  

The backscattered Raman spectra were collected using a Horiba Scientific spectrometer (Laboram HR Evolution 

model) under an excitation laser light wavelength of 514 nm.  

XPS analyses were performed with a Kratos Axis Ultra DLD spectrometer equipped with a monochromatic X-ray 

source of Al Kα (1486.6 eV) at a power of 120 W (operating about at 30µA and 12 kV). All the analysis was realized in a 

high vacuum analytical chamber maintained below 7 x 10­9 torr during spectral acquisition. A charge neutralizer system 

was used during spectral acquisition. Prior to measurements, the samples were outgassing in the sample treatment cham-

ber (STC) before insertion into the sample analysis chamber (SAC). The survey spectrum was obtained in the binding 

energy range from 0 to 1200 eV at pass energy of 160 eV. High-resolution scans of the O1s, C1s, and Cu2p regions were 

collected at pass energy of 40 eV. The XPS data were analyzed through CasaXPS software (version 2.3.16). A standard 

Shirley background subtraction was used for binding energy quantitative analysis. All XPS spectra were deconvoluted 

with Gaussian Lorentzian mixed function. Atomic concentration was calculated using peak areas from the survey spectra. 

3. RESULTS AND DISCUSSION 

The materials phase compositions were assessed by X-Ray Diffraction (Figure 1). The diffraction pattern acquired for the 

XCTF support exhibited peaks at 2θ = 25.3° and 2θ = 44.3°, characteristics of the basal planes of graphite [15], with a 

striking broadening resulting from the disordered carbon phase.  It is worth to notice that even after the carbonization 

treatment at 900 °C, the character amorphous of the xerogel structure was kept. This behavior is interesting since, during 

the carbonization process, most of the volatile compounds and moisture are removed which could result in shrinkage 

leading to a modification in the porous structure. The diffraction pattern obtained for the Cu/XCTF catalyst exhibited, in 

addition to the amorphous carbon phase, diffraction lines corresponding to copper oxides. The peaks at 2θ =  36.56° and 

42.39° are attributed to the planes (111) and (200) of the cubic phase of Cu2O [16], respectively. The peak at 2θ = 29.78° 

corresponding to the plane (110 ) of Cu2O can not be clearly identified due to the peak overlapping with the carbon plane. 

 

Figure 1: Diffraction patterns for XCTF and Cu/XCTF.  

The peaks at 2θ = 35.5°, 38.7°, 61.5° and 66,2° are associated to the planes (11-1), (111), (11-3) and (31-1) of CuO 

[17].  The shape of all the peaks related to Cu species indicates higher structural order than carbon support, presenting a 

slightly higher intensity. Furthermore, it is noticeable a broadening at the base of these peaks, suggesting a heterogeneous 

crystallite sizes, with the co-existence of small and large Cu aggregates.  

The thermal stability of catalysts has a critical role since catalytic reactions are performed under high temperature 

and distinct atmosphere as H2, CO2, O2, etc. Thus, the thermal stability of the Cu/XCTF sample under air flow was inves-
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tigated by TGA analysis, as depicted in Figure 2. The loss weight profile presents two thermal events one at 67 °C, corre-

sponding to the elimination of physisorbed H2O. The second thermal comprises a broad range of temperature, beginning 

at 270 °C and finishing around 500 °C, with a shoulder at 289 °C. The shoulder can be attributed to the decomposition of 

unstable groups decorating the xerogel surface as hydroxyl, epoxy, carbonyl and carboxyl groups [18]. The second stage 

of of the peak can be associated to the carbon lattice burning, as evidenced by similar carbon structures, whose mass 

spectra of the TGA effluent revealed only the presence of H2O and CO2 [12]. The remaining mass detected in weigh loss 

profile is around of 6 % and can be ascribed to Cu oxides. The thermal stability of the Cu/XCTF system make it a poten-

tial candidate for many relevant catalytic reactions, including the CO2 hydrogenation. 
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Figure 2: TGA, Loss weight and first derivative of the loss weight profiles of Cu/XCTF.   

 

The N2 isotherms adsorption/desorption of both samples were type I (Figure 3), according to the IUPAC classifica-

tion, showing a large microporosity related. Furthermore, the hysteresis indicates the presence of mesoporosity due to the 

capillary condensation phenomenon [19]. The textural parameters of those samples were calculated and are shown in 

Table 1.  All the samples showed elevated micropore volumes and slightly mesoporosity developed (Table 1). The XCTF 

presented a higher surface area value than the catalyst support, probably due to the presence of Cu on the carbon, which 

may lead to a pore blockage by the deposition of metallic particles. Nonetheless, the catalyst support still presented a 

developed surface area, suitable for catalytic reactions applications. The remarkable result presented here is the high sur-

face area value ( > than 900 m2/g) for the supported catalyst, which is crucial for the stabilization of Cu species at the 

nanoscale level.  

 

 

Figure 3: Nitrogen adsorption–desorption isotherms at 77 K (full and open symbols, respectively) of both samples.  
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Table 1: Textural parameters of samples: BET surface area (SBET), total pore volume at p/p0 = 0.99 (Vtotal 0.99), micropore 

(VDR) and mesopore (Vmeso) volumes, and micropore and mesopore fractions. t-plot values are also presented: micropore 

volume (Vu), and micropores (Smicro) and external (Sext) surface areas. 

 Dubinin method (DR) t-plot 

Sample 
SBET                                        

(m
2
 g

-1
) 

Vtotal 0.99                                        

(cm
3
 g

-1
) 

VDR                                        

(cm
3
 g

-1
) 

Vmeso                                        

(cm
3
 g

-1
) 

VDR /      

V0.99 

Vmeso  /   

V0.99 

Vu            

(cm
3
 g

-1
) 

Smicro             

(m
2
 g

-1
) 

Sext            

(m
2
 g

-1
) 

XCTF 1158 0.45 0.44 0.01 0.99 0.01 0.40 1026 132 

Cu/XCTF 934 0.43 0.39 0.04 0.91 0.09 0.29 756 178 

 

The pore size distribution, calculated from DFT (Density Functional Theory) method, is given in Figure 4. The 

original sample XCTF was essentially microporous, showing pores smaller than 1 nm. After the impregnation and calci-

nation, the sample presented micropores between 1 nm and 1.4 nm and mesoporosity in the range from 5 to 18 nm and, 

thus, present-ing a bimodal pores distribution. Although the main contribution for the high surface area stems from the 

high microporosi-ty, the bimodal pores distribution is important for catalysis applications. The pores size in catalytic 

reactions is connected with molecule accessibility to the active sites inside the pores. The internal part of the micropores 

will be accessible only for small molecules, whereas it will be blocked for higher compounds. Taking account that cata-

lytic phenomena are driven by mass transport, intra-particle diffusion limitation can take place mainly in micropores [20]. 

Thus, the development of catalysts with bimodal pore sizes distribu-tion is crucial to ensure the mass transport inside the 

pores for higher molecules. 

The pore sizes is related to the sites accessibility and mass transport diffusion.  

 

Figure 4: The pore size distribution, calculated from DFT (Density Functional Theory) method. 

 

The morphological analysis of the samples XCTF and Cu/XCTF were evaluated by Scanning Electron Microscopy 

(SEM/FEG), Figure 5. The sample XCTF images exhibited spherical nodules arranged in a tridimensional structure, typi-

cal of carbon xerogels from tannin-formaldehyde [9]. The size of the nodules is related to the tannin concentration and 

especially to the initial pH in the reaction medium [9]. All these factors control the final properties of the XCTF after the 

carbonization process. With regarding the catalyst Cu/XCTF, the spherical nodules are still present though their distribu-

tion is more heterogeneous. In addition, a white texture can be observed on the surface matrix, suggesting a Cu deposition 

over the morphological structure. 
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Figure 5: SEM-FEG images of XCTF and Cu/XCTF samples, at 250x, 850x and 5000x magnifications. 

EDS mapping was performed to show the distribution of Cu structures on the surface of the carbonaceous material 

(XCTF). The Cu element distribution is shown in Figure 6. Table 2 compiles the semiquantitative results of the EDS 

analysis. Although EDS is a punctual analysis and may not reflect all the heterogeneous catalyst surface, the amount of 

Cu is within an acceptable level with relation the nominal content of Cu (10 %, wt). 

 

Figure 6: EDS mapping of Cu/XCTF sample. 

 

Table 2: EDS data for the Cu/XCTF sample. 

Sample 
Composition (wt.%) 

Cu O C 

Cu/XCTF 13.6 18.1 68.3 

 

The samples were also investigated by Raman Spectroscopy with the purpose of evaluating their structural integrity 

(Figure 7). Both spectra exhibited features characteristics of carbon structure as the defect-induced D band and first-order 

Raman active G band at 1350 cm-1 and 1600 cm-1, respectively. The presence of the D-band and its blue shift in compari-

son with the band in the defects absence (1580 cm-1) denotes a rich defective structure, resulting from the short-range 

XCTF 

Cu/XCTF 
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structural order of the porous carbon structure and surface oxygen. The catalyst Cu/XCTF spectrum also exhibited bands 

attributed to CuO (294, 345 and 633 cm-1). The appearance of such features in the spectrum is a strong indicative of some 

CuO aggregates deposited on the catalyst support [21]. Indeed, XRD pattern evidences the co-existence of small and 

large particles in the catalyst.  

 

Figura 7: Raman spectra of the samples XCTF (A) and Cu/XCTF (B). 

The XPS survey spectrum, Figure 8, exhibited two peaks, related to the elements, C(1s) and O(1s) at binding ener-

gy 286.4 eV and 531 eV respectively, for the sample XCTF (A). The same can be observed for the sample Cu/XCTF (B), 

however, for the latter, there are observed also peaks from the Cu 2p element, at binding energy 950 eV. For both sam-

ples, the analyses were carried out with prolonged exposure time. 

 

 

Figure 8: XPS Survey spectrum for the sample XCTF (A), and for the same sample after the impregnation process with 

Cu,  Cu/XCTF (B).   

Figure 9 presents a high-resolution XPS spectrum of Cu 2p to obtain more insight into the chemical composition of 

Cu/XCTF. The presence of two majors peak, at binding energy 934.54 eV and 954.39 eV, are associated with the typical 

Cu 2p3/2 and Cu 2p1/2. The relative intensities of the doublet peaks for p subshells are equal to ½.  The factor two relative 

to the difference between intensities comes from the ratio of their respective degeneracies [22]. The binding energy sepa-

ration between the peaks is 19.85 eV, indicating the presence of oxidation states of Cu, and in good agreement with the 

values reported in the literature. Besides, the existence of a strong satellite peak, which is caused by electron shake-up 

process, at 943.97 eV indicates that Cu predominantly exists as Cu2+ [23]. It is important to notice that existence of satel-

lite peaks is characteristic of CuO [22]. This result may be corroborated by Raman active modes at 294, 345 and 633 cm-1, 

which is identified as the first order phonon scattering [24]. The fitted Cu 2p3/2 is relatively complex with different com-

ponents corresponding to various chemical states. The presence of a shoulder at 933.04 eV may be associated to Cu metal 
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and the other two peak profile at 934.64 and 936.51 eV are relatively broad, which may suggest the presence of other Cu 

species.  

 
Figure 9: XPS High-resolution spectrum of Cu(2p). 

It worth pointing out that the presence of the reduced Cu in the catalysts, which can be associate to a chemical in-

teraction with the electron oxygen groups present in the xerogel surface. In addition to Cu0, copper oxide was also present 

suggesting different interactions degree between oxygen surface groups and metal.  

4. CONCLUSION 

The synthesis of xerogel from tannin is a promising route in order to provide a carbon gel with high surface area. The 

high surface area combined with the good thermal stability envisages the xerogel as potential support for catalytic appli-

cations. Moreover, different Cu species were distributed on the support indicating distinct interaction between Cu precur-

sor salt and oxygen functionalities. Indeed, Raman spectroscopy of the samples under investigation was rich defective 

structures due to the presence of oxygen groups attached to the xerogel surface.  

The presence of such chemical groups is beneficial under the catalysis perspective, which may become the solid 

surface unstable, facilitating the interaction reactant catalyst. XRD and Raman gave indications of a heterogeneous Cu 

particles sizes distribution on the support. Additional studies are already being conducted with the purpose of optimizing 

the physical-chemical properties of the support and consequently increase the distribution and, stabilizing the Cu particles. 
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