Estudo de Caso de Sistemas Meteorológicos em Altos Níveis Sobre a América do Sul: Análise Sinótica

Authors

  • André Becker Nunes Universidade Federal de Pelotas, Programa de Pós-Graduação em Meteorologia.

DOI:

https://doi.org/10.11137/2017_1_70_82

Keywords:

vórtices ciclônicos de altos níveis, Alta da Bolívia, vento térmico, Palmén, Palmer

Abstract

O Vórtice ciclônico de altos níveis (VCAN) sobre o nordeste brasileiro (NeB) e a Alta da Bolívia (AB) são os típicos sistemas de pressão em altos níveis (250 hPa) da América do Sul, especialmente nas estações mais quentes. Somados a eles, também pode-se considerar o VCAN extratropical, de característica transiente e encontrado o ano todo. Neste trabalho, é apresentada uma análise sinótica, baseada na literatura especializada, de um caso observado em 01 de fevereiro de 2005 em que os três sistemas ocorreram simultaneamente. Algumas características encontradas na literatura foram observadas nos sistemas deste caso. O campo de temperatura mais associado ao sistema extratropical foi o de 500 hPa, e não o de 250 hPa. Os movimentos verticais mais relevantes foram encontrados somente no sistema extratropical: intensos movimentos ascendentes à sotavento do eixo do cavado em altos níveis. Não se encontrou um sistema em superfície especificamente associado ao VCAN do NeB, enquanto que se observou a baixa continental (ou Baixa do Chaco) associada à Alta da Bolívia e um intenso ciclone extratropical associado ao VCAN extratropical. Tal ciclone em superfície acarretou em vento sul e consequente resfriamento da camada, o que pôde ser observado pela amplitude do cavado em altos níveis, o que é raro para esta época do ano.

References

Avila, V.D.; Nunes, A.B.; Alves, R.C.M. & Rodrigues, B.D. 2015. Analysis of a bombogenesis in South Atlantic summer using Ertel potential vorticity. In: SIMPÓSIO INTERNACIONAL DE CLIMATOLOGIA, 6, 2015, Natal-RN Proceedings. Natal: SBMet, 2015.

Bluestein, H.B. 1993. Synoptic-Dynamic Meteorology in Midlatitudes. Volume II: Observations and theory of weather systems. Oxford University Press. Oxford. 594p.

Bluestein, H.B. & Speheger, D.A. 1995. The dynamics of an upper-level trough in the baroclinic westerlies: Analysis based upon data from a wind profiler network. Monthly Weather Review, 123: 2369-2383.

Bonner, W.D. 1968. Climatology of the low level jet. Monthly Weather Review, 96: 833-850.

Carlson, T.N. 1967. Structure of a steady-state cold low. Monthly Weather Review, 95: 763-777.

Chen, T-C.; Weng, S-P. & Schubert, S. 1999. Maintenance of austral summertime upper-tropospheric circulation over tropical South America: The Bolivian High-Nordeste low system. Journal of the Atmospheric Sciences, 56: 2081-2100.

Cossetin, F.; Nunes, A.B. & Teixeira, M.S. 2016. Análise do movimento vertical sob duas configurações de altos níveis da troposfera. Ciência e Natura, 38: 484-490.

DeMaria M. 1985. Linear response of a stratified tropical atmosphere to convective forcing. Journal of the Atmospheric Sciences, 42: 1944-1959.

Djuric D. 1969. Note on estimation of vertical motion by the omega equation. Monthly Weather Review, 97: 902-904.

Escobar, G.C.J. & Seluchi, M.E. 2012. Classificação sinótica dos campos de pressão atmosférica na América do Sul e sua relação com as baixas do Chaco e do noroeste argentino. Revista Brasileira de Meteorologia. 27: 365-375.

Evans, J.L.; Braun, A. 2012. A climatology of subtropical cyclones in the South Atlantic. Journal of Climate, 25: 7328-7340.

Fedorova, N. & Silva, T.G. 2016. Vórtice ciclônico de médios níveis e sua influência no tempo do nordeste brasileiro. In: NUNES, A.B. & MARIANO, G.L. (Orgs.). Meteorologia em Tópicos: Volume 3. Clube dos Autores, p. 133-178.

Funatsu, N.M.; Gan, M.A. & Caetano, E. 2004. A case study of orographic cyclogenesis over South America. Atmosfera, 17: 91-113.

Gan, M.A. & Kousky, V.E. 1986. Vórtices ciclônicos da alta troposfera no oceano Atlântico Sul. Revista Brasileira de Meteorologia, 1: 19-28.

Gan, M.A. & Rao, V.B. 1991. Surface cyclogenesis over South America. Monthly Weather Review, 119: 1293-1302.

Gan, M.A. & Rao, V.B. 1994. The influence of the Andes Cordillera on transient disturbances. Monthly Weather Review, 122: 1141-1157.

Garreaud, R.D. & Wallace, J.M. 1998. Summertime incursions of midlatitude air into subtropical and tropical South America. Monthly Weather Review, 126: 2713-2733.

Garreaud, R.D. & Fuenzalida, H.A. 2007. The influence of the Andes on cutoff lows: a modeling study. Monthly Weather Review,135: 1596-1613.

Glickman, T.S.; Macdonald, N.J.; Sanders, F. 1977. New findings on the apparent relationship between convective activity and the shape of 500 mb troughs. Monthly Weather Review, 105: 1060-1061.

Godoy, A.A.; Possia, N.E.; Campetella, C.M. & Skabar, Y.G. 2011. A cut-off low in southern South America: Dynamic and thermodynamic processes. Revista Brasileira de Meteorologia, 26: 503-514.

Hodges, K.I.; Lee, R.W. & Bengtsson, L. 2011. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. Journal of Climate, 24: 4888-4906.

Hoskins, B.J.; McIntyre, M.E. & Robertson, A.W. 1985. On the use and significance of isentropic potential vorticity maps. Quarterly Journal of Royal Meteorolgical Society, 111: 877-946.

Hsieh, Y-P. 1949. An investigation of a selected cold vortex over North America. Journal of Meteorology, 6: 401-410.

Jones, C. & Horel, J.D. 1990. A circulação da Alta da Bolívia e a atividade convectiva sobre a América do Sul. Revista Brasileira de Meteorologia, 5: 379-387.

Kennedy, A.D.; Dong, X.; Xi, B.; Xie, S.; Zhang, Y. & Chen, J. 2011. A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. Journal of Climate, 24: 4541-4557.

Keshishian, L.G.; Bosart, L.F.; Bracken, W.E. 1994. Inverted troughs and cyclogenesis over interior North America: A limited regional climatology and case studies. Monthly Weather Review, 122:565-607.

Keyser, D. & Shapiro, M.A. 1986. A review of the structure and dynamics of upper-level frontal zones. Monthly Weather Review, 114: 452-499.

Kodama, Y. 1992. Large-scale commom features of subtropical precipitation zones (The Baiu frontal zone, the SPCZ, and the SACZ) Part I: characteristics of subtropical frontal zones. Journal of the Meteorological Society of Japan, 70: 813-835.

Kousky, V.E. & Ferreira, N.J. 1981. Interdiurnal surface pressure variations in Brazil: Their spatial distributions, origins and effects. Monthly Weather Review, 109: 1999-2008.

Kousky, V.E. & Gan, M.A. 1981. Upper tropospheric cyclone vortices in the tropical South Atlantic. Tellus, 33: 538-551.

Lenters, J.D. & Cook, K.H. 1999. Summertime precipitation variability over South America: Role of the large-scale Circulation. Monthly Weather Review, 127: 409--431.

Lourenço, M.C.M.; Ferreira, N.J. & Gan, M.A. 1996. Vórtices ciclônicos em altos níveis de origem subtropical. In: CPTEC (ed.) Climanálise Especial 10 anos. Disponível em: http://www.cptec.inpe.br/products/climanalise/cliesp10a/vociclo.html. Último acesso em 02/10/2015.

Macdonald, N.J. 1976. On the apparent relationship between convective activity and the shape of 500 mb troughs. Monthly Weather Review, 104: 1618-1622.

Marengo, J.A.; Douglas, M.W. & Silva Dias, P.L. 2002. The South American low-level jet east of the Andes during 1999 LBA-TRMM and LBA-WET AMC campaign. Journal of Geophysical Research, 107: D20.

Marengo, J.A.; Soares, W.R.; Saulo, C. & Nicolini, M. 2004. Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: Characteristics and temporal variability. Journal of Climate, 17: 2261-2280.

Mishra, S.K.; Rao, V.B. & Gan, M.A. 2001. Structure and evolution of the large-scale flow and an embedded upper-tropospheric cyclonic vortex over Northeast Brazil. Monthly Weather Review, 129: 1673-1688.

Naud, C.M.; Booth, J.F. & Del Genio, A.D. 2014. Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. Journal of Climate, 27: 2109-2124.

Nieto, R.; Gimeno, L.; De La Torre, L., Ribera, P.; Gallego, D.; García-Herrera, R.; García, J.A.; Nuñez, M.; Redaño, A. & Lorente, J. 2005. Climatological features of cutoff low systems in the Northern Hemisphere. Journal of Climate, 18: 3085-3103.

Palmén, E. 1948. On the distribution of temperature and wind in the upper westerlies. Journal of Meteorology, 5: 20-27.

Palmén, E. & Nagler, K.M. 1949. The formation and structure of a large-scale disturbance in the westerlies. Journal of Meteorology, 6: 228-242.

Palmén, E. & Newton, C.W. 1969. Atmospheric Circulation Systems. Academic Press. London. 603p.

Pettersen, S. & Smebye, S.J. 1971. On the development of extratropical cyclones. Quarterly Journal of Royal Meteorolgical Society, 97: 457-482.

Pezza, A.B. & Ambrizzi, T. 2005. Cold waves in South America and freezing temperatures in São Paulo: Historical background (1888-2003) and cases studies of cyclone and anticyclone tracks. Revista Brasileira de Meteorologia, 20: 141-158.

Piva, E.D.; Gan, M.A. & Rao, V.B. 2008. An objective study of 500-hPa moving troughs in the Southern Hemisphere. Monthly Weather Review, 136: 2186-2200.

Piva, E.D.; Gan, M.A. & Rao, V.B. 2010. Energetics of winter troughs entering South America. 2010. Monthly Weather Review, 138: 1084-1103.

Posselt, D.J.; Jongeward, A.R.; Hsu, C-Y.; Potter, G.L. 2012. Object-based evaluation of MERRA cloud physical properties and radiative fluxes during the 1998 El Niño-La Niña transition. Journal of Climate. 25: 7313-7327.

Pyle, M.E; Keyser, D. & Bosart, L.F. 2004. A diagnostic study of jet streaks: Kinematic signatures and relationship to coherent tropopause disturbances. Monthly Weather Review, 132: 297-319.

Quadro, M.F.L.; Silva Dias, M.A.; Herdies, D.L. & Gonçalves, L.G.G. 2012. Análise climatológica da precipitação e do transporte de umidade na região da ZCAS através da nova geração de reanálises. Revista Brasileira de Meteorologia, 27: 152-162.

Ramirez, M.C.V.; Kayano, M.T. & Ferreira, N.J. 1999. Statistical analysis of upper tropospheric vortices in the vicinity of northeast Brazil during the 1980--1989 period. Atmósfera, 12: 75--88.

Rao, V.B. & Bonatti, J.P. 1987. On the origen of upper tropospheric cyclonic vortices in the South Atlantic Ocean and abjoining Brazil during the summer. Meteorology and Atmospheric Physics, 37: 11-16.

Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Gi-Kong, K.; Bloom, S.; Chen, J.; Collins, D.; Conaty, A.; Silva, A.; Gu, W.; Joiner, J.; Koster, R.D.; Lucchesi, R.; Molod, A.; Owens, T.; Pawson, S.; Pegion, P.; Redder, C.R.; Reichle, R.; Robertson, F.R.; Ruddick, A.G.; Sienkiewicz, M. & Woollen, J. 2011. MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24: 3624-3648.

Salio, P.; Nicolini, M. & Zipser, E.J. 2007. Mesoscale convective systems over South America and their relationship with the South American low-level jet. Monthly Weather Review, 135: 1290-1309.

Sanders, F.; Bosart, L.F. & Lai, C-C. 1991. Initiation and evolution of an intense upper-level front. Monthly Weather Review, 119: 1337-1367.

Satyamurty, P.; Nobre, C.A. & Silva Dias, P.L. 1998. Meteorology of the tropics: South America. In: KAROLY, D.J. & VINCENT, D.G. (eds.). Meteorology of Southern Hemisphere. Meteorological Monographs, 27(49): chapter 3A.

Seluchi, M.E. & Marengo, J.A. 2000. Tropical-midlatitude exchange of air masses during summer and winter in South America: Climatic aspects and extreme events. International Journal of Climatology, 20: 1167-1190.

Seluchi, M.E. & Satyamurty, P. 2000, A case study of a midtropospheric cold vortex in the subtropics of South America. In: CONGRESSO BRASILEIRO DE METEOROLOGIA, 11, Anais. Rio de Janeiro, 2000, CD-ROM.

Seluchi, M.E.; Saulo, A.C.; Nicolini, M. & Satyamurty, P. 2003. The Northwestern Argentinean Low: A study of two typical events. Monthly Weather Review, 131: 2361-2378.

Seluchi, M.E. & Saulo, A.C. 2010. Mecanismos físicos associados à formação da Baixa do Chaco. In: CONGRESSO BRASILEIRO DE METEOROLOGIA, 16, Proceedings. Belém, 2010, 1 CD-ROM.

Seluchi, M.E. & Saulo, A.C. 2012. Baixa do noroeste argentino e Baixa do Chaco:Características, diferenças e semelhanças. Revista Brasileira de Meteorologia, 27: 49-60.

Shapiro, M.A. 1970. On the applicability of the geostrophic approximation ot upper-level frontal-scale motions. Journal of the Atmospheric Sciences, 27: 408--420.

Silva Dias, P.L.; Schubert, W.H. & DeMaria, M. 1983. Large-scale response of the tropical atmosphere to transient convection. Journal of the Atmospheric Sciences, 40: 2689--2707.

Singleton, A.T. & Reason, C.J.C. 2007. A numerical model study of an intense cutoff low pressure system over South Africa. Monthly Weather Review, 135: 1128-1150.

Vera, C.S.; Vigliarolo, P.K. & Berbery, E. 2002. Cold season synoptic-scale waves over subtropical South America. Monthly Weather Review, 130: 684--699.

Vera, C.S.; Baez, J.; Douglas, M.; Emmanuel, C.B.; Marengo, J.A.; Meitin, J.; Nicolini, M.; Nogues-Peagle, J.; Peagle, J.; Penalba, O.; Salio, P.; Saulo, C.; Silva Dias, M.A.; Silva Dias, P. & Zipser, E. 2006. The South American low-Level Jet Experiment. Bulletin of American Meteorological Society, 87: 63-77.

Vernekar, A.D.; Kirtman, B.P. & Fennessy, M.J. 2003. Low-level jet and their effects on the South American summer climate as simulated by the NCEP Eta model. Journal of Climate, 16: 297-311.

Virji, H. 1981. A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Monthly Weather Review, 109: 599--610.

Wei, J.; Dirmeyer, P.A.; Wisser, D.; Bosilovich, M.G. & Mocko, D.M. 2013. Where does the irrigation water go? An estimate of the contribution of irrigation to precipitation using MERRA. Journal of Hydrometeorology,14: 275-289.

Published

2018-07-12

Issue

Section

Article