Análise Comparativa de Imagens Sentinel-2A (MSI) e Landsat-8 (OLI) Aplicadas ao Mapeamento Geológico, Região de Itataia, Santa Quitéria, CE

Mateus de Paula Miranda, Cynthia Romariz Duarte, Daniel Dantas Moreira Gomes, Cassiano Dias de Souza, Cláudio Ângelo da Silva Neto

Abstract


Satélites equipados com sensores multiespectrais, tais como os da série Landsat (TM, ETM+, OLI), tem um importante papel em aplicações geológicas, em especial os sensores que possuem faixas espectrais no infravermelho de ondas curtas, pois é nessa região do espectro que grupos minerais, como o das argilas, apresentam picos de refletância. Os satélites da missão Sentinel-2, pertencentes ao programa Corpernicus da Agência Espacial Europeia (ESA –European Spatial Agency) possuem como finalidade dar continuidade a missões como Landsat e SPOT. A província fósforo-uranífera da região de Itataia, objeto deste estudo, está localizada no município de Santa Quitéria (CE) e inserida no contexto geológico do Domínio Ceará Central (DCC) da Província Borborema (PB). O objetivo deste trabalho foi efetuar a comparação das imagens dos sensores MSI Sentinel-2 e do OLI Landsat-8, por meio de parâmetros estatísticos, como o coeficiente de Pearson, e analisar suas aplicações para o mapeamento geológico. Para tanto, foram selecionadas as bandas correlatas de ambos os sensores, pré-processadas para um conjunto de dados compatível para comparação. Posteriormente, foram gerados os coeficientes entre os pares de bandas correlatas, e também razões de bandas para análise dos dados. As imagens Sentinel-2, analisadas nesse trabalho, apresentaram forte correlação com as imagens do Landsat-8, com coeficientes de Pearson variando entre 0.857 e 0.930, e as razões de bandas apresentaram um coeficiente variando entre 0.772 e 0.910. As maiores correlações foram entre as bandas do infravermelho de ondas curtas (SWIR), sendo coeficientes de Pearson de 0.935 entre as bandas 6 (OLI) e 11 (MSI), 0.926 para as bandas 7(OLI) e 12(MSI) e a razão com maior coeficiente foi a 6/7 (OLI) e 11/12(MSI). Essa forte correlação entre as bandas do SWIR demonstram o potencial das imagens Sentinel-2 para trabalhos em geologia, uma vez que muitos grupos minerais possuem picos de refletância nessa faixa espectral.

Keywords


Sensoriamento remoto; Mapeamento geológico; Província Boborema



DOI: https://doi.org/10.11137/2019_2_366_377

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.