Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará

Eduardo Viana Freires, Cláudio Ângelo da Silva Neto, Dominick Sávio Rocha Cunha, Cynthia Romariz Duarte, César Ulisses Vieira Veríssimo, Daniel Dantas Moreira Gomes

Abstract


Imagens orbitais da série Landsat têm sido sistematicamente empregadas no mapeamento de cobertura e uso da terra. Porém, algumas áreas, devido às características de relevo ou a forte influência antrópica, impõem dificuldades nesta caracterização. O maciço de Uruburetama, no estado do Ceará, representa uma área com tais particularidades. Na tentativa de gerar melhores resultados na identificação e delimitação das diferentes classes de cobertura e uso da terra no maciço, este trabalho compara imagens dos sensores orbitais OLI/ Landsat-8 e MSI/Sentinel-2, a fim de definir qual produto pode ser melhor empregado em estudos desta finalidade. A metodologia partiuda obtenção de imagens orbitais da área, passando por etapas de pré-processamento, geração de NDVI, segmentação por crescimento de regiões, classificação supervisionada, validação da classificação e produção dos mapas temáticos. Os produtos NDVI apresentaram correlação positiva muito forte, evidenciando compatibilidade espectral entre os sensores. Na etapa de segmentação, percebeu-se a influência da melhor resolução espacial do sensor MSI com a criação de quase oito vezes mais polígonos e uma área média correspondente a 12,5% a medida do sensor OLI. A classificação supervisionada utilizando o algoritmo Bhattacharya possibilitou mapear os dois produtos em sete classes temáticas de cobertura e uso da terra do maciço de Uruburetama: Mata Úmida; Mata Seca; Caatinga Arbustiva Densa; Caatinga Arbustiva Aberta; Urbano/Solo Exposto; Corpos D’água e Cultivos. A validação das classificações atestou a melhor acurácia do produto MSI/Sentinel-2 por meio dos índices Kappa e exatidão global. Os resultados demonstram que a imagem MSI/Sentinel-2, devido a sua melhor resolução espacial, permite um maior detalhamento dos alvos, e maior acurácia na classificação, o que possibilita a sua aplicação em estudos com maiores escalas de análise. Por sua vez, a imagem OLI/Landsat-8, demonstrou ser mais adequada a estudos com menores níveis de detalhes, ou com alvos mais homogêneos.

Keywords


cobertura e uso da terra; NDVI; segmentação por regiões; classificação supervisionada



DOI: https://doi.org/10.11137/2019_4_427_442

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexers and Bibliographic DatabasesFollow us
SCImago Journal & Country Rank
ISSN
ROAD
Clarivate
Diadorim
DOAJ
DRJI
GeoRef
Google Scholar
Latindex
REDIB
Oasisbr
Twitter
Instagram
Facebook
All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0).