Direct Radiative Forcing Due to Aerosol Properties at the Peruvian Antarctic Station and Metropolitan Huancayo Area

Authors

  • Julio Miguel Angeles Suazo Universidad Nacional Intercultural de la Selva Central Juan Santos Atahualpa. Vicepresidencia de Investigación. Av. Perú 612, Pampa del Carmen,12856 Chanchamayo, Perú. Universidad Tecnológica del Perú. Facultad de Ingeniería Civil. Av. Circunvalación 449, 12002 El Tambo, Huancayo, Perú. https://orcid.org/0000-0001-8327-9032
  • Luis Suarez Salas Instituto Geofísico del Perú, Calle Badajoz, 169,15498 Urb. Mayorazgo IV Etapa, – Ate, Lima, -Perú
  • Alex Rubén Huaman De La Cruz Universidad Nacional del Centro del Perú, Instituto General de Investigación, Av. Mariscal Castilla N° 3909, El Tambo, Huancayo, Perú. Universidad Católica los Ángeles de Chimbote, Instituto de Investigación, Jirón Tumbes N 247, Chimbote, Perú
  • Roberto Angeles Vasquez Universidad Nacional del Centro del Perú, Instituto General de Investigación, Av. Mariscal Castilla N° 3909, El Tambo, Huancayo, Perú.
  • Georgynio Rosales Aylas Universidade Federal do Espíirito Santo, Engenheria Ambiental, Vitoria, Av. Fernando Ferrari, 514- Goiabeiras, Vitoria-Brasil
  • Alicia Rocha Condor Universidad Alas Peruanas. Escuela Profesional de Ingeniería Ambiental,. Av. Tacna 399, 12006, - Pilcomayo, Huancayo, Perú.
  • Edilson Requena Rojas Laboratorio de Dendrocronología, Universidad Continental. Av. San Carlos 1980 Huancayo Perú
  • Felipa Muñoz Ccuro Universidad Nacional Federico Villareal, Posgrago de Derecho, Jr. Carlos Gonzáles 285 Urb. Maranga - San Miguel-Perú
  • Jose Luis Flores Rojas Instituto Geofísico del Perú, Calle Badajoz, 169,15498 Urb. Mayorazgo IV Etapa, – Ate, Lima, -Perú
  • Hugo Abi Karam Universidade Federal do Rio de Janeiro, - Instituto de Geociências, – Departamento de Meteorologia, . Rua Athos da Silveira Ramos 274, . Cidade Universitária, – Ilha do Fundão, –21.941-916, . Rio de Janeiro, -RJ, Brasil

DOI:

https://doi.org/10.11137/2020_4_404_412

Keywords:

Aerosol, Radiative Forcing, Antarctic

Abstract

Descrevemos os resultados do estudo da profundidade ótica do aerossol (POA) e do Forçamento Radiativo Direto (FRD) no topo da atmosfera (TOA), obtidos durante a campanha de medição e monitoramento, XXI Expedição Antártica do Peru, entre os meses de janeiro e fevereiro de 2013, e na área metropolitana de Huancayo (AMH) entre os meses de junho e julho de 2019. Na Estação Antártica Peruana Machu Picchu utilizou-se um fotômetro solar SP02-L. Tal instrumento possui 4 canais: 412 nm, 500 nm, 675 nm e 862 nm, permitindo realizar medições diretas do espectro de radiação visível. Na AMH usamos o sensor BF5, que mede a radiação direta, difusa e global em comprimento de onda curta. Os cálculos de AOD em latitudes polares variaram entre 0,0646 e 0,1061. Na AMH apresenta valor máximo de 0,58 (11 de junho) e mínimo de 0,19 (12 de junho). Determinou-se o coeficiente de Angstrom variando de 0 a 0,07, esses valores indicam a presença de partículas grandes. Na AMH varia de 0 a 1,8, que indica a presença de  aerossóis de fonte de queima de biomassa e industrial. As propriedades óticas observadas foram usadas para estimar a forçante radiativa direta por aerossóis (FRDA) no topo da atmosfera. Os resultados indicam que no King George Island, o FRDA, está entre -2 e 4 W/m2; já para a AMH a forçante radiativa direta de aerossol está entre 0 e 20 W/m2.

References

Ångström, A. 1964. The parameters of atmospheric turbidity. Tellus, 16: 64-75.

Braun, M.; Saurer, S.; Vogt, J.; Simoes, C. & Gobmann, H. 2001. The influence of large-scale atmospheric circulation on the surface energy balance of the King George Island ice cap. International Journal of Climatology, 21: 21–36.

Cachorro, V.; Vergaz, R. & Frutos, A. 2001. A quantitative comparison of a-Angstrom turbidity parameter retrieved in different spectral ranges based on spectroradiometer solar radiation measurements. Atmospheric Environment, 35: 5117– 5124.

Castro, T.; Madronich, S.; Rivale, S.; Muhlia, A. & Mar, B. 2001. Influence of aerosols on photochemical smog in Mexico City. Atmospheric Environment, 35: 1765-1772.

Charlson, R.; Schwartz, S.; Hales, J.; Cess, R.; Coakley, J.; Hanses, J. & Hofmann, D. 1992. Climate forcing by anthropogenic aerosols. Science, 255: 423–430.

Eck, T.; Holben, B.; Reid, J.; O’Neill, N.; Schafer, J.; Dubovik, O.; Simimov, A.; Yamasoe, M. & Artaxo, P. 2003. High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophysical Research Letters, 30(20): 2035-2044.

Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.; Slutsker, I. & Kinne, S. 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Resesearch, 104(31): 333– 349.

Estevan, R.; Martínez, D.; Suarez, L.; Moya, A. & Silva, Y. 2019. First two and a half years of aerosol measurements with an AERONET sunphotometer at the Huancayo Observatory, Peru. Atmospheric Environment, 3: 1-13.

El-Shobokshy, M. & Al-Saedi, Y. 1993. Atmospheric turbidity and transmittance of solar radiation in Riyadh, Saudi Arabia. Atmospheric Environment, 27(4): 401–411.

Ferron, F.; Simões, J.; Aquino, F. & Setzer, A. 2004. Air temperature time series for King George Island, Antarctica. Pesquisa Antártica Brasileira, 4: 155-169.

Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D. W.; Haywood, J.; Lean, J.; Lowe, D. C.; Myhre, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M. & Van Dorland, R. 2007. Changes in Atmospheric Constituents and Radiative Forcing, In: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.

Haywood, K. & Shine, K. 1995. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters, 22(5): 603-606.

Haywood, J. & Boucher, O. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Reviews of Geophysics, 38(4): 513-543.

Instituto Nacional de Estadística e Informática. 2007. Perfil sociodemográfico de la provincia de Huancayo. Disponible en: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1136/libro.pdf. Acceso en 2 de febrero de 2020 y 1 de junio de 2020.

Houghton, J.; Mereira, L.; Callander, B.; Harris, N.; Kattenberg, A. & Maskell, K. 1995. Climate Change 1995: The Science of Climate Change, The Contribution of Working Group I to the Second Assessment Report of the IPCC. New York, Cambridge University Press, 572p.

Liou, K. 2007. An introduction to atmospheric radiation. New York 2nd Ed., Academic Press, 583p.

Mazzola, M.; Stone, R.S.; Herber, A.; Tomasi, C.; Lupi, A.; Vitale, V.; Lanconelli, C.; Toledano, C.; Cachorro, V.; O’Neill, N.; Shiobara, M.; Aaltonen, V.; Stebel, K.; Zielinski, T.; Petelski, T.; Ortiz de Galisteo, J.; Torres, B.; Berjon, A.; Goloub, P.; Li, Z.; Blarel, L.; Abboud, I.; Cuevas, E.; Stock, M.; Schulz, K. & Virkkula, A. 2011. Evaluation of sun photometer capabilities for retrievals of aerosol optical depth at high latitudes: The POLAR-AOD intercomparison campaigns. Atmospheric Environment, 52: 4-17.

Myhre, G. & Shindell, D. 2013. Anthropogenic and Natural radiative Forcing. Intergovernmental Panel of Change Climate, p. 659-740.

Middleton Solar. 2004. SP02 y SP02-L Sunphotometer user’s guide, Victoria, pag. 9.

Mitchell, R. & Forgan, B. 2003. Aerosol measurement in the Australian outback: intercomparison of sun photometers. Journal of Atmospheric and Oceanic Technology, 20: 54-66.

Otero, L.; Ristori, P.; Holben, B. & Quel, E. 2006. Espesor óptico de aerosoles durante el año 2002 para diez estaciones pertenecientes a la red AERONET – NASA. Óptica Pura y Aplicada, 39(4): 355-364.

Shaw, G. 1982. Atmospheric turbidity in the Polar regions. Journal of Applied Meteorology, 21: 1080– 1088.

Shifrin, K. 1995. Simple Relationships for the Angstrom parameter of disperse systems. Applied Optical, 34: 4480 – 4485.

Simoes, J.; Bremer, U.; Aquino, F. & Ferron, F. 1999. Morphology and variations of glacial drainage basins in the King George Island ice field, Antarctica. Annals of Glaciology, 29: 220–224.

Stone, R.S. 2002. Monitoring aerosol optical depth at Barrow, Alaska and South Pole; Historical overview, recent results, and future goals. In: COLACINO, M. (ED.), Proceedings of the 9th Workshop Italian Research on Antarctic Atmosphere, Rome, Italy, 22-24 October 2001. Italian Physical Society, Bologna, Italy, pp. 123-144.

Tomasi, C.; Caroli, E. & Vitale, V. 1983. Study of the relationship between Ångström’s wavelength exponent and Junge particle size distribution exponent. Journal of Climate and Applied Meteorology, 22: 1707-1716.

Tomasi, C.; Vitale, V.; Lupi, A.; Di Carmine, C.; Campanelli, M.; Herber, A.; Treffeisen, R.; Stone, R.; Andrews, E.; Sharma, S.; Radionov, V.; von Hoyningen-Huene, W.; Stebel, K.; Hansen, G.H.; Myhre, C.; Wehrli, C.; Aaltonen, V.; Lihavainen, H.; Virkkula, A.; Hillamo, R.; Ström, J.; Toledano, C.; Cachorro, V.; Ortiz, P.; de Frutos, A.; Blindheim, S.; Frioud, M.; Gausa, M.; Zielinski, T.; Petelski, T. & Yamanouchi, T. 2007. Aerosols in polar regions: a historical overview based on optical depth and in situ observations. Journal of Geophysical Research, 112: 1-28.

Volz, F. 1959. Photometer mit Selen-Photoelement zur spektralen messing der Soonenstrahlung and zur Bestimmung der wellenlangenabhangigkeit der Dunsttrubung. Archiv fur Meteolologie Geophysik und Bioklimatologie, 10: 100-131.

World Meteorology Organization. 2005. WMO/GAW Experts Workshop on a Global Surface-based Network for Long Term Observations of Column Aerosol Optical Properties. Switzerland, 153 p.

Downloads

Published

2020-12-18

Issue

Section

Article