Análise do Uso e Cobertura da Terra Utilizando Imagens Sentinel-2A e Inteligência Artificial

Matheus Frigo Wolfer, Juliana Marchesan, Elisiane Alba, Mateus Schuh, Dionatas Henrique Honnef, Helena Silva Oliveira, Rudiney Soares Pereira

Abstract


O objetivo do presente estudo consistiu em avaliar a eficiência dos algoritmos de aprendizado de máquina Random Forest (RF), Support Vector Machine (SVM) e Artificial Neural Network (ANN) na classificação supervisionada de usos e cobertura da terra utilizando imagens MSI/Sentinel-2A na bacia hidrográfica do Rio Pardo – RS. O processo de classificação foi conduzido por meio do software R utilizando o pacote caret. Os algoritmos foram avaliados utilizando os valores de acurácia de 30 repetições da validação cruzada. Para cada repetição foram atribuídos pesos para ordenamento dos algoritmos de acordo com a eficiência, de modo a verificar se os mesmos se diferiram estatisticamente utilizando o teste de Friedman e Nemenyi. O algoritmo RF apresentou o melhor resultado de acurácia média (0,9973) seguido do SVM (0,9937) e ANN (0,5628). Os algoritmos se diferiram estatisticamente entre si, sendo possível inferir que o RF pode ser utilizado de forma eficiente para classificação do uso e cobertura da terra, por meio de imagens MSI/Sentinel-2A. Neste contexto, o presente estudo demonstrou que os algoritmos de aprendizado de máquina aliados às imagens de média resolução espacial possibilitam adquirir resultados de boa precisão e confiabilidade, os quais poderão auxiliar em estudos ambientais futuros, permitindo a obtenção de resultados de forma rápida e eficiente.


Keywords


Aprendizado de máquina; Classificação supervisionada; Linguagem R

References


Abdi, A.M. 2019. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience & Remote Sensing, 57(1): 1-20.

Andrade, A.C.; Francisco, C.N. & Almeida, C.M. 2014. Desempenho de Classificadores Paramétricos e Não-Paramétricos Na Classificação Da Fisionomia Vegetal. Revista Brasileira de Cartografia, 66(2): 349-363.

Belgiu, M. & Drăgu, L. 2016. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24-31.

Bivand, R.S.; Keitt, T. & Rowlingson, B. 2018. rgdal: Bindings for the Geospatial Data Abstraction Library. R package v. 1.3-4. 2018. Disponível em: . Acesso em: 20 nov. 2019.

Breiman, L. 2001. Random Forests. Machine Learning, 45(1): 5-32.

Cortes, C. & Vapnik, V. 1995. Support-Vector Networks. Machine Learning, 20: 273-297.

Faceli, K.; Lorena, A.C.; Gama, J. & Carvalho, A.C.P.L.F. 2011. Inteligência Artificial - Uma Abordagem de Aprendizado de Máquina. Rio de Janeiro, LTC Editora, 394p.

Farda, N.M. 2017. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine. In: THE 5TH GEOINFORMATION SCIENCE SYMPOSIUM, 5, Yogyakarta, 2017. Resumo completo, Yogyakarta, 2017.

Farias, A.J. 2010. Atividade Florestal no Contexto da Fumicultura: Oportunidade de Desenvolvimento Regional, Diversificação, Geração de Emprego e Renda. Programa de Pós-graduação em Engenharia Florestal, Universidade Federal de Santa Maria, Tese de Doutorado, 168p.

Freires, E.V.; Silva Neto, C.A.; Cunha, D.S.R.; Duarte, C.R.; Veríssimo, C.U.V. & Gomes, D.D.M. 2019. Comparação de Imagens OLI/Landsat-8 e MSI/Sentinel-2 no Mapeamento de Cobertura e Uso da Terra no Maciço de Uruburetama, Ceará. Anuário do Instituto de Geociências, 42(4): 427-442.

Friedman, M.A. 1940. Comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 11: 86-92.

Gaiad, N.P.; Martins, A.P.M.; Debastiani, A.B.; Dalla Corte, A.P. & Sanquetta, C.R. 2017. Uso e Cobertura da Terra Apoiados em Algoritmos Baseados em Aprendizado de Máquina: O Caso de Mariana – MG. Enciclopedia Biosfera, 14(25): 1211-1220.

Ge, G.; Shi, Z.; Zhu, Y.; Yang, X. & Hao, Y. 2020. Land Use/Cover Classification in an Arid Desert-Oasis Mosaic Landscape of China Using Remote Sensed Imagery: Performance Assessment of Four Machine Learning Algorithms. Global Ecology and Conservation, 22: e00971.

Hasenack, H. & Weber, E. 2010. Base cartográfica vetorial contínua do Rio Grande do Sul. Porto Alegre: UFRGS Centro de Ecologia. Escala 1:50.000. Disponível em: . Acesso em: 16 set. 2019.

Hijmans, R.J. 2017. raster: Geographic Data Analysis and Modeling. R package v. 2.6-7. Disponível em: . Acesso em: 20 nov. 2018.

IBGE. 2018. Instituto Brasileiro de Geografia e Estatística. Cidades. Produção Agrícola: Lavoura Temporária. Disponível em: Acesso em: 04 mar. 2020.

Jamali, A. 2019. Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: a case study of the northern region of Iran. SN Applied Science, 1: 1-10.

Kuhn, M. 2018. caret: Classification and Regression Training. R package version 6.0-81. Disponível em: . Acesso em: 07 nov. 2019.

Li, C.; Wang, J.; Wang, L.; Hu, L. & Gong, P. 2014. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 6(2): 964-983.

Merschmann, L.H.C. 2007. Classificação Probabilística Baseada Em Análise de Padrões. Programa de Pós-Graduação em Computação, Universidade Federal Fluminense, Tese de Doutorado, 103p.

Miranda, E.E. 2005. Brasil em Relevo. Embrapa Monitoramento por Satélite. Disponível em: . Acesso em: 15 abr. 2019.

Monjezi, M.; Bahrami, A. & Varjani, A. Y. 2010. Simultaneous Prediction of Fragmentation and Flyrock in Blasting Operation Using Artificial Neural Networks. International Journal of Rock Mechanics and Mining Sciences, 47(3): 476-80.

Nemenyi, P.B. 1963. Distribution-free multiple comparisons. Universidade de Princeton, Tese de doutorado, 254p.

Niemeyer, J.; Rottensteiner, F. & Soergel, U. 2014. Contextual classification of lidar data and building object detection in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87: 152-165.

Phiri, D. & Morgenroth, J. 2017. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sensing, 9(9): 1-25.

R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. 2018.

Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M. & Rigol-Sanchez, J.P. 2012. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1): 93-104.

Rosa, M.R. 2018. Classificação do Padrão de Ocupação Urbana de São Paulo Utilizando Aprendizagem de Máquina e Sentinel 2. Revista do Departamento de Geografia, Volume Especial: 15-21.

Seabra, V.S.; Xavier, R.A.; Damasceno, J. & Dornellas, P.C. 2015. Análise das mudanças de uso e cobertura da terra na bacia do rio Taperoá-PB entre os anos de 1990 e 2009. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 16, João Pessoa, 2015. Resumo completo, São José dos Campos, INPE, p. 108-115.

SEMA. 2003. Secretaria do Meio Ambiente e Infraestrutura. Inventário florestal contínuo. Porto Alegre: UFSM / SEMA – RS, 2003. Disponível em: . Acesso em: 04 mar. 2020.

SEMA. 2019. Secretaria do Meio Ambiente e Infraestrutura. Bacia Hidrográfica do Rio Pardo. Disponível em: . Acesso em: 12 set. 2019.

Shao, Z. & Zhang, L. 2016. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China. Sensors, 16(6): 1-16.

Song, J.; Gao, S.; Zhu, Y. & Ma, C. 2019. A Survey of Remote Sensing Image Classification Based on CNNs. Big Earth Data, 3(3): 232-54.

USGS. 2019. United States Geological Survey. Earth Explorer. Disponível em: . Acesso 16 set. 2019.

Vaeza, R.F.; Filho, P.C.O.; Maia, A.G. & Disperati, A.A. 2010. Uso e ocupação do solo em Bacia Hidrográfica urbana a partir de imagens orbitais de alta resolução. Floresta e Ambiente, 17(1): 23-29.

Young, C.F. 2006. Desmatamento e desemprego rural na Mata Atlântica. Floresta e Ambiente, 13(2): 75-88.

Zhu, W.; Sun, Z.; Peng, J.; Huang, Y.; Li, J.; Zhang, J.; Yang, B. & Liao, X. 2019. Estimating maize above-ground biomass using 3D point clouds of multi-source unmanned aerial vehicle data at multi-spatial scales. Remote Sensing, 11(22): 1-22.

Zhu, X. & Liu, D. 2015. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 102: 222-231.




DOI: https://doi.org/10.11137/2020_4_395_403

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexers and Bibliographic Databases

Social Media

SCImago Journal & Country Rank
0.6
 
 
22nd percentile
Powered by  Scopus
ISSN
ROAD
Diadorim
DOAJ
DRJI
GeoRef
Google Scholar
Latindex
Oasisbr
Twitter
Instagram
Facebook
 Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.