Influence of Land Use and Coverage Change on Continental Surface Temperature in the Urban Area of Belem-PA
DOI:
https://doi.org/10.11137/2020_2_07_19Keywords:
geoprocessing, urban climate, environmentAbstract
The objective of this work is to examine the spatial distribution of Continental Surface Temperature (CST) of the urban area of Belem / PA and the influence of the change of use and soil cover from remote sensing techniques. Products from Thematic Mapper (TM) and Thermal Infrared Sensor (TIRS) sensors coupled, respectively, to Landsat 5 and 8 satellites were used. The images acquired from the years 1994, 2008 and 2017 were processed, resampled (spatial resolution of 120 meters) and, finally, centroids were extracted with a total of 1252 points, using the Quantum GIS software. Subsequently, spectral indices, NDVI, NDBI and albedo were calculated, which represent, respectively, the presence of vegetation, exposed soil or built area and reflectivity rate. The results showed that CST showed an increase in all sectors of the study area, mainly between the years 2008 and 2017. The sector with the highest elevation of the CST was the urban center, as it presented values below 25.0 ºC in the image of 1994 and above 35.0 ºC in the 2017 image. In contrast, the ecological park sector showed the lowest increase in CST, from 20.0 ºC (1994) to 25.0 ºC (2017). According to the analysis of the spectral indices, the intensification of CST is directly associated with the strong territorial expansion, since from the NDVI values the degradation of the vegetation cover was noted. This degradation is observed in the comparisons of the images, in which it is possible to verify the decrease in the NDVI values in the entire study area, whose values represent the decrease in the vegetation cover. The sector with the greatest withdrawal of green areas was the northern zone, as it showed a drop in NDVI values, from 0.7 in 1994 to 0.3 in the 2017 image. It was also observed that the density of the constructed area was intensified, presenting increasing values of NDBI. Added to these NDVI and NDBI values, higher reflectivity rate values were noted, whose values in the urban center of Belem in 1994 were 0.1% and which exceeded 0.5% in the image for the year 2017, ratifying the impact of changes in land cover and the direct association between changes in the environment and CST. In general, the results indicate that the uncontrolled expansion of the urban process and the change in land cover cause the intensification of CST.References
Allen R.G.; Tasumi, M.; Trezza, R. & Bastiaanssen, W. 2002.
SEBAL (Surface Energy Balance Algorithms for Land),
Idaho Implementation: Advanced Training and User’s
Manual. NASA EOSDIS/Raytheon Company/Idaho
Department of Water Resources, 97p.
Almeida, D.N.O.; Oliveira, L.M.M.; Candeias, A.L.B.; Bezerra,
U.A. & Souza Leite, A.C. 2018. Uso e cobertura do solo
utilizando geoprocessamento em municípios do Agreste
de Pernambuco. Revista Brasileira de Meio Ambiente,
(1): 58-68.
Amorim, M. C. C. T.; Dubreuil, V. 2017. A interferência da precipitação
na intensidade e na distribuição espacial das
ilhas de calor de superfície nas estações do ano em ambiente
tropical. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO
REMOTO, XVIII, 1314-1320.
Bastiaanssen, W.G.M. 2000. SEBAL-based sensible and latent
heat fluxes in the irrigated Gediz Basin. Turkey. Journal
of Hidrology, 229:87-100.
Chen, X.L.; Zhao, H.M.; Li, P.X. & Yin, Z.Y. 2006. Remote sensing
image-based analysis of the relationship between
urban heat island and land use/cover changes. Remote
Sensing of Environment, 104 (2):133-146.
Cordeiro, M. C. 2016. Ilhas de calor urbanas no nordeste brasileiro:
Uma avaliação com base em imagens de satélite.
Programa de Pós-graduação em Meteorologia, Universidade
Federal de Campina Grande, Dissertação de Mestrado,
p.
Costa, E. C. P.; Augusto, R. C.; Seabra, V. S. 2017. Análise da
eficiência dos índices Built-up e NDBI para classificação
de áreas urbanas em imagens Landsat 8 OLI. In:
SIMPÓSIO BRASILEIRO DE SENSORIAMENTO
REMOTO, XVIII, 6632-6639.
Costa, A.C.L.; Cunha, A.C.; Uchoa, P.W.; Silva Junior, J.A. &
Feitosa, J.R.P. 2013. Variações termo-higrométricas e
influências de processo de expansão urbana em cidade equatorial de médio porte. Brazilian Geographical
Journal: geosciences and humanities research medium,
:615-632.
Espinoza, N.S. 2017. Avaliação da ilha de calor urbana em Manaus
com dados observados IN SITU e sensoriamento
remoto. Programa de Pós-graduação em Meteorologia,
Universidade Federal de Campina Grande, Dissertação
de Mestrado, 54p.
Gartland, L. 2010. Ilhas de calor: como mitigar zonas de calor
em áreas urbanas. São Paulo: Oficina de textos. 248p.
Huete, A.R.A. 1988. Soil-Adjusted Vegetation Index (SAVI).
Remote Sensing of Environment, 25(3):205-309.
Llopart, M.; Reboita, M.; Coppola, E.; Giorgi, F.; Rocha, R.
& Souza, D. 2018. Land use change over the Amazon
Forest and its impact on the local climate. Water, 10
(2):149p.
Luchiari, A. 2011. Identificação da cobertura vegetal em áreas
urbanas por meio de produtos de sensoriamento remoto
e de um sistema de informação geográfica. Revista do
Departamento de Geografia (USP), 14:47-58.
Markham, B.L. & Barker, J.L. 1987. Thematic mapper band
pass solar exoatmospherical irradiances. International
Journal of Remote Sensing, 8 (3):517-523.
Melos, N.D. 2018. Índice de qualidade urbana do município
de Uruguaiana–RS por análises de geoprocessamento.
Especialização em Geomática, Universidade de Santa
Maria. Trabalho de conclusão de curso, 50p.
Nichol, J. 2009. An emissivity modulation method for spatial
enhancement of thermal satellite images in urban heat
island analysis. Photogrammetric Engineering & Remote
Sensing, 75(5):547-556.
Oke, T.R. 1987. Boundary layer climates. 2. ed. [s.l.] Routledge.
p.
Oliveira, M.; Alves, W. S. 2013. A influência da vegetação no
clima urbano de cidades pequenas: um estudo sobre as
praças públicas de Iporá-GO. Revista Territorial, 2(2):
-77.
Polydoros, A.; Mavrakou, T.; Cartalis, C. 2018. Quantifying the
trends in land surface temperature and surface urban
heat island intensity in mediterranean cities in view of
smart urbanization. Urban Science, 2(1): 16p.
Pontes, A.K.S.; Silva, P.V.C.; Santos, J.T.S. & Sousa, A.M.L.
Temperatura em superfície urbanas usando sensor
TIRS-Landsat 5 e 8: estudo de caso em Belém-PA. Revista
Brasileira de Iniciação Científica, 4:118-132.
Purevdorj, T.S.; Tateishi, R.; Ishiyama, T. & Honda, Y. 1998.
Relationships between percent vegetation cover and vegetation
indices. International Journal of Remote Sensing,
:3519-3535.
Rouse, J.W.; Haas, R.H.; Schell, J.A. & Deering, D.W. 1973.
Monitoring vegetation systems in the Great Plains with
ERTS, In: 3RD EARTH RESOURCES TECHNOLOGY
SATELLITE SYMPOSIUM, 1:309-317.
Tasumi, M.; Allen, R.G.; Trezza, R. & Wright, J.L. 2008. Satellite-
Based Energy Balance to Assess Within-population
Variance of Crop Coefficient Curve. Journal of Irrigation
and Drainage Engineering, 131(1):95-108.
United States Geological Survey – USGS, 2019. Landsat 8 (L8)
Data Users Handbook. Disponível em: https://landsat.
usgs.gov/. Acesso 20 maio de 2019.
Zha, Y. & Gao, J.N.I.S. 2003. Use of normalized difference built-
up index in automatically mapping urban areas from
TM imagery. International Journal of Remote Sensing,
:583-594.
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.