Caracterização de Suscetibilidade ao Colapso por Análise Estrutural e Geofísica em Área Cárstica no Município de Sete Lagoas - MG
DOI:
https://doi.org/10.11137/2020_2_76_86Keywords:
Carste, eletrorresistividade, perfis azimutaisAbstract
Problemas geotécnicos, como colapsos, são comuns em ambientes cársticos e na cidade de Sete Lagoas (MG) inúmeros casos foram registrados nos últimos anos. Em consequência, estudos têm sido desenvolvidos com o intuito de delimitar áreas de maior suscetibilidade a este fenômeno, que está geralmente vinculado a presença de condutos ou cavidades subterrâneas, de desenvolvimento controlado pela estrutural. Entre os diversos métodos de caracterização de cavidades, um dos mais eficazes é a geofísica de superfície, em especial a eletrorresistividade, com a técnica de caminhamento. Uma técnica alternativa, menos conhecida, mas tida como eficiente para a detecção de direções de fraturas subverticais, é a aquisição elétrica azimutal, que consiste em rotacionar algum arranjo (e.g. Wenner, Dipolo Equatorial, Quadrático) em torno de um ponto. O objetivo principal deste trabalho foi definir a suscetibilidade ao colapso de uma área adjacente a uma lagoa no município de Sete Lagoas/MG por análise estrutural e eletrorresistividade. Objetivou-se, secundariamente, averiguar a eficácia da técnica de aquisição azimutal na detecção de fraturas verticais. Foram traçados lineamentos estruturais em imagens de sensores remotos, além de medidas em campo as atitudes do acamamento e das fraturas. O levantamento geofísico consistiu de linhas de caminhamento elétrico com arranjo dipolo-dipolo e de levantamentos azimutais com diversos arranjos e espaçamentos interletrodos. Foi possível identificar um antiforme vazado na área e uma cavidade ampla e rasa, conectada à lagoa. Além de fraturas paralelas ao acamamento, foram reconhecidas quatro famílias de fraturas subverticais, N20E (F1), E-W (F2), N50-70E (F3) e N30-50W (F4). A família F2 é a mais frequente e a F4 mais aberta, classificada como cavernosa. Com estas informações concluiu-se que o terreno estudado apresenta alta suscetibilidade ao colapso. A técnica azimutal se apresentou útil como complemento para identificar fraturas subverticais, uma vez que os resultados obtidos foram coerentes com os dados estruturais.References
Angeles, J.; Angeles, R.; Flores, J. & Karam, H. 2019. Estimación
de isla de calor urbana en el Área Metropolitana
de Iquitos/Perú. Anuario do Instituto de Geociencias,
:135-145.
Angeles J.; Flores, R.; Karam, H.; Arana, G. & Angeles, R.
Isla de calor urbana superficial en las areas metropolitanas
de Huancayo y Arequipa/Perú. Anuario do
Instituto de Geociencias, 2:197-207.
Adebayo, Y.R. 1987. Land-use approach to the spatial analysis
of the Urban Heat Island in Ibadan, Nigeria. Weather,
: 273–280.
Banco Mundial. 2012. Statistics South Africa, 2012. Population
Census 2011. Disponible en : https://microdata.worldbank.
org/index.php/catalog/2067. Acceso en: 1 de febrero
de 2019 y 30 de junio de 2019.
BNRCC. 2016. Building Nigeria’s Response to Climate Change.
Towards a Lagos State Climate Change Adaptation
Strategy. Disponible en: https://www.yumpu.com/en/
document/view/6688834/nigeria-ccastr-building-nigerias-
response-to-climate-change. Acceso en: 1 de febrero
de 2019 y 30 de junio de 2019.
Dousset, B. & Gourmelon, F. 2003. Satellite multi-sensor data analysis
of urban surface temperatures and land cover. Journal
of Photogrammetry and Remote Sensing, 58: 43-54.
El-Hattab M.; Amany S.M. & Lamia G.E. 2018. Monitoring and
assessment of urban heat islands over the Southern region
of Cairo Governorate, Egypt. The Egyptian Jornal
of Remote Sensing and Space Science, 21: 311-323.
Fasona, M.; Omojola, A.; Odunuga, S.; Tejuoso, O. & Amogu,
N. An appraisal of sustainable water management solutions
for large cities in developing countries through
GIS: The case of Lagos, Nigeria. In: SYMPOSIUM
S2 HELD, 7, Foz do Iguacu, 2005. Articulo, Foz do
Iguacu, p.49–57.
Flores, J.; Pereira, A.; & Karam, H. 2016. Estimation of long
term low resolution surface urban heat intensities for
tropical cities using modis remoste sensing data. Urban
Climate, 17: 32-66.
Hardy, C.H.; Nel A.L. 2015. Data and techniques for studying
the urban heat island effect in Johannesburg. In: SYMPOSIUM
ON REMOTE SENSING OF ENVIRONMENT,
, Berlin, 2015. Article, The international
archives of the Photogrammetry, remote sensing and
spatial information, p. 203-206.
Lai, L.W. & Cheng, W.L. 2009. Air Quality Influences by Urban
Heat Island Coupled with Synoptic Weather Patterns.
Science of the Total Environment, 407: 2724-2733.
Nkeki, F.N. & Ojeh, V.N. 2014. Flood risks analysis in a littoral
African city: Using geographic information system.
Geographic Information Systems (GIS): Techniques,
Applications and Technologies, 34: 279–316.
Oke,T.R. 1976. The distinction between canopy and boundary
layer urban heat islands. Atmosphere, 14: 268–277.
Oke, T.R. 2006. Initial Guidance to Obtain Representative Meteorological
Observations at Urban Sites. In: IOM REPORT
NO.81, WMO/TD. No. 1250. World Meteorological
Organization, Geneva, p. 1-47.
Robaa, S.M. 2003. Urban-Suburban/Rural Differences over
Greater Cairo, Egypt. International Journal of Atmosfera,
(3): 157-171.
Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.;
Georgakis, C.; Argiriou, A. & Assimakopoulos, D.N.
On the Impact of Urban Climate to the Energy
Consumption of Buildings. Solar Energy, 70: 201-
Disponible en: http://dx.doi.org/10.1016/S0038-
X(00)00095-5. Acceso en: 1 de febrero de 2019 y 30
de junio de 2019.
Schneider, A.; Friedl, M.; Mclver, D. & Woodcock, C. 2002.
Mapping urban areas by fusing multiple sources of
coarse resolution remotely sensed data. Photogramm.
Eng.Remote Sens. 69: 1377-1386.
Simwanda, M; Ranagalage, M.; Estoque, R. & Mu, Y. 2019.
Spatial Analysis of Surface urban heat islands four
rapidly growing African Cities. Remote Sensing,
:1645-1664.
Streutker, D. 2002. Satellite-measured growth of the urban heat
island of Houston, Texas. International Journal of Remote
Sensing, 23: 2595- 2608.
United Nations. 2010. World Population Prospects: The 2010
Revision. Disponible en:http://esa.un.org/unpd/wpp/
unpp/panel_indicators.htm. Acceso en: 1 de febrero de
y 30 de junio de 2019.
United Nations Population Division (UNPD). 2002. World Urbanization
Prospects: The 2001 Revision: Data Tables
and Highlights; United Nations: New York City, NY,
USA.
United Nations Organization. 2010. World Population Prospects:
The 2010 Revision. Disponible en: http://esa.
un.org/unpd/wpp/unpp/panel_indicators.htm. Acceso
en: 1 de febrero de 2019 y 30 de junio de 2019.
United Nations Organization. 2012. World Urbanization Prospects:
The 2011 Revision; United Nations: New York
City, NY, USA.
United Nations Organization. 2018. World Urbanization Prospects;
United Nations: 2018 Revision.
Vereda, J. & Davies, C. 2007. A Case Study of Urban Heat islands
in the Carolinas. Environmental Hazards, 7: 353-359.
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.