Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual

Maria de Souza Custodio, Luiz Felippe Gozzo, Jeferson Prietsch Machado

Abstract


O objetivo deste estudo foi avaliar o desempenho das simulações acopladas e atmosféricas dos modelos da família HadGEM1.2 em capturar o sinal da variabilidade interanual (IA) dos eventos extremos de precipitação sobre a região da Amazônia. As séries temporais de precipitação foram filtradas na escala interanual usando a transformada rápida de Fourier e os extremos foram calculados utilizando a técnica dos percentis. A análise das composições das anomalias interanuais de precipitação no verão e inverno austral, em geral, mostra que as simulações acopladas e atmosféricas representam satisfatoriamente o padrão espacial desses eventos. Para os extremos secos, o padrão espacial das simulações foi muito semelhante. De uma forma geral, o padrão espacial das simulações apresenta menor viés no extremo chuvoso. A análise dos limiares de extremos secos e úmidos mostra que, tanto na Amazônia Norte (AMN) como na Amazônia (AMZ), as simulações representam o sinal da escala IA, com destaque para a região AMZ onde o viés em relação ao CMAP (ClimatePrediction Center – Merged Analysis of Precipitation) é menor. Embora apresentando diferenças, tanto as simulações acopladas como as atmosféricas, apresentam padrão semelhante e portanto, representam o sinal da escala interanual nos subdomínios da Amazônia aqui analisados.


Keywords


Extremos; Precipitação; Amazônia

References


Cavalcanti, I.F.A.; Marengo, J.A.; Satyamurty, P.; Nobre, C.A.; Trosnikov, I.; Bonatti, J.P.; Manzi, A.O.; Tarasova, T.; Pezzi, L.P.; D'Almeida, C.; Sampaio, G.; Castro, C.C.; Sanches, M.B. & Camargo, H. 2002. Global climatological features in a simulation using the CPTEC– COLA AGCM. Journal of Climate, 15: 2965–2988.

Carvalho, L.M.V.; Jones, C. & Liebmann, B. 2004. The South Atlantic Convergence Zone: intensity, form, persistence, relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate, 17: 88–108.

Custodio, M.S.; da Rocha, R.P. & Vidale, P.L. 2012. Analysis of precipitation climatology simulated by high resolution coupled global models over the South America. Hydrological Research Letters,6: 92–97.

Custodio, M.S.; da Rocha, R.P.; Ambrizzi, T. & Vidale, P.L. 2016. Avaliação da climatologia na região Amazônica nos modelos da família HiGEM. Ciência e Natura, 38(2): 1054-1063.

Custodio, M.S.; da Rocha, R.P.; Ambrizzi, T.; Vidale, P.L. & Demory, M-E. 2017. Impact of increased horizontal resolution in coupled and atmosphere-only models of the HadGEM1 family upon the climate patterns of South America. Climate dynamics, 48(9-10): 3341-3364.

Druyan, L.M.; Fulakeza, M. & Lonergan, P. 2002. Dynamic downscaling of seasonal climate predictions over Brazil. Journal of Climate, 15: 3411-3426.

Fisch, G.; Marengo, J.A. & Nobre, C.A. 1998. Uma revisão sobre o clima da Amazônia. Acta Amazonica, 28(2): 101-126.

Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J. & Vidale, P.L. 2006. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models, Journal of Geophysical Research, 111: D06105.

Gandu, A.D. & Silva Dias, P.L. 1998. Impact of tropical heat sources on the South America tropospheric upper circulation and subsidence. Journal of Geophysical Research, 03: 6001–6015. doi:10.1029/97JD03114.

Grimm, A.M. 2003. The El Niño impact on the summer monsoon system in Brazil: regional process versus remote influences. Journal of Climate, 16: 263-280.

Johns, T.C.; Durman, C.F.; Banks, H.T.; Roberts, M.J.; McLaren, A.J.; Ridley, J.K.; Senior, C.A.; Williams, K.D.; Jones, A.; Rickard, G.J.; Cusack, S.; Ingram, W.J.; Crucifix, M.; Sexton, D.M.H.; Joshi, M.M.; Dong, B-W.; Spencer, H.; Hill, R.S.R.; Gregory, J.M.; Keen, A.B.; Pardaens, A.K.; Lowe, J.A.; Bodas-Salcedo, A.; Stark, S. & Searl, Y.2006. The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations. Journal of Climate, 19(7):1327-1353.

Kodama, Y-M. 1992. Large-scale common features of sub-tropical precipitation zones (the Baiu Frontal Zone, the SPCZ, and the SACZ). Part I: characteristics of subtropical frontal zones. Journal of the Meteorological Societyof Japan, 70: 813-835.

Kousky, V.E. 1985. Atmospheric circulation changes associated with rainfall anomalies over Tropical Brazil. Monthly Weather Review, 113: 120-128.

Li, J-L.F.; Martin, K.; Farrara, J.D. & Mechoso, C.R. 2002. The impact of stratocumulus cloud radiative properties on surface heat fluxes simulated with a general circulation model. Monthly Weather Review, 130:1433–1441.

Liebmann, B.; Kiladis, G.N.; Vera, C.S.; Saulo, A.C. & Carvalho, L.M.V. 2004. Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. Journal of Climate, 17: 3829–3842.

Marengo, J.A.; Soares, W.R.; Saulo, C. & Nicolini, M. 2004. Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP–NCAR Reanalyses: Characteristics and Temporal Variability. Journal of Climate, 17: 2261-2280.

Martin, G.M.; Ringer, M.A.; Pope, V.D.; Jones, A.; Dearden, C. & Hinton, T.J. 2006. The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. Journal of Climate, 19: 1274–1301.

Nobre, C.A.; Marengo, J.A & Artaxo, P. 2009. Understanding the Climate of Amazonia: Progress From LBA. In: KELLER, M.; BUSTAMANTE, M.; GASH, J. & SILVA DIAS (orgs.). Amazonia and Global Change. Geophysical Monograph Series, vol. 186. Washington, D.C.: American Geophysical Union Books, 145-147.

Nobre, P.; Siqueira, L.; Almeida, R.; Malagutti, M.; Giarolla, E.; Castelão, G.P.; Bottino, M.J.; Kubota, P.; Figueroa, S.N.; Costa, M.C.; Baptista, M.; Irber, L. & Marcondes, G.G. 2013 Climate simulation and change in the Brazilian climate model. Journal of Climate 26: 6716–6732.

Planton, S.; Déqué, M.; Chauvin, F. & Terray, L. 2008. Expected impacts of climate change on extreme climate events. Comptes Rendus Geoscience, 340(9-10): 564-574.

Samanta, D.; Karnauskas, K.B. & Goodkin, N.F. (2019). Tropical Pacific SST and ITCZ biases in climate models: Double trouble for future rainfall projections? Geophysical Research Letters, 46: 2242– 2252. https://doi.org/10.1029/2018GL081363.

Satyamurty, P.; Costa, C.P.W. & Manzi, A.O. 2013. Moisture source for the Amazon Basin: a study of contrasting years. Theoretical and Applied Climatology, 111(1-2):195-209.

Seth, A.; Rojas, M. & Rauscher, S.A. 2010. CMIP3 projected changes in the annual cycle of the South American Monsoon. Climate Change, 98(3–4):331.

Seluchi, M.E.; Saulo, A.C.; Nicolini, M. & Satyamurty,P. 2003. The Northwestern Argentinean Low: a study of two typical events. Monthly Weather Review, 131: 2361-2378.

Shaffrey, L.C.; Stevens, I.; Norton, W.A.; Roberts, M.J.; Vidale, P.L.; Harle, J.D.; Jrrar, A.; Stevens, D.P.; Woodage, M.J.; Demory, M.; Donners, J.; Clark, D.B.; Clayton, A.; Cole, J.W.; Wilson, S.; Connolley, W.M.; Davies, T.M.; Iwi, A.; Johns, T.C.; King, J.C.; New, A.L.; Slingo, J.M.; Slingo, A.; Steenman-Clark, L. & Martin, G. 2009. U.K. HiGEM: The New U.K. High-Resolution Global Environment Model: Model Description and Basic Evaluation. Journal of Climate, 22(8): 1861-1896.

Silva, G.A.M.; Ambrizzi, T. & Marengo, J.A. 2009. Observational evidences on the modulation of the South American Low Level Jet east of the Andes according the ENSO variability. In ANNALES GEOPHYSICAL: ATMOSPHERES, HYDROSPHERES AND SPACE SCIENCES, 27, 2, p. 645.

Trenberth, K.E.; Fasullo, J.T. & Shephered, T.G. 2015. Attribution of climate extreme events. Nature Climate Change, 5(8): 725-730.

Uvo, C.R.B. & Nobre, C.A. 1989. A Zona de Convergência Intertropical (ZCIT) e a precipitação no norte do Nordeste do Brasil. Parte I: A Posição da ZCIT no Atlântico Equatorial. Climanalise, 4(07): 34 – 40.

Vera, C.; Silvestri, G.; Liebmann, B & González, P. 2006. Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophysical Research Letter, 33:L13707.

Wehner, M.F. 2004. Predicted twenty-first-century changes in seasonal extreme precipitation events in the parallel climate model, Journal of Climate, 17: 4281– 4290.

Wilks, D.S. 1995. Statistical methods in the Atmospheric Sciences. Academic Press: New York, 468p.

Xie, P. & Arkin, P.A. 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78: 2539 - 2558.




DOI: https://doi.org/10.11137/2020_4_350_363

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexers and Bibliographic Databases

Social Media

SCImago Journal & Country Rank
0.6
 
 
22nd percentile
Powered by  Scopus
ISSN
ROAD
Diadorim
DOAJ
DRJI
GeoRef
Google Scholar
Latindex
Oasisbr
Twitter
Instagram
Facebook
 Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.