Statistical Variability of Severe Rainfall Events in Southeastern Brazil

Authors

  • Angelica Nardo Caseri Cemaden
  • Carlos Frederico Angelis Cemaden
  • Vinícius Banda Sperling Cemaden
  • Etienne Leblois Irstea

DOI:

https://doi.org/10.11137/2020_4_470_478

Keywords:

Extreme events, Statistical analysis, Spatio-temporal variability

Abstract

Extreme rainfall events are one of the natural phenomena that cause more damages. These events are known to be well localized, especially in tropical and subtropical climate regions such as southeastern Brazil. These events have high heterogeneity and the evolution of rain cells changes is quick, the forecast and knowledge of these extreme rainfall events still represent a challenge for the scientific community, such as the spatial variability of rainfall. For this, data from the weather radar installed in Campinas city were used, which generates new radar images every 10 minutes, and data from twenty-nine rain gauges located in the region. For this, 16 rainfall events were selected, located in the region of Campinas/SP, southeast of Brazil, a region that has already recorded many events. For this study, rain and intermittent zones were analyzed separately. This study helps to understand the main statistical characteristics of severe events, mainly located in the region of Campinas. In addition, the information extracted and the analyzes carried out in this study can be used as input data for models that generate possible rainfall scenarios, ensembles, such as, methods based on geostatistics or machine learning.

References

Amponsah, W.; Ayral, P.-A.; Boudevillain, B.; Bouvier, C.; Braud, I.; Brunet, P.; Delrieu, G.; Didon-Lescot, J.F.; Gaume, E.; Lebouc, L.; Marchi, L.; Marra, F.; Morin, E.; Nord, G.; Payrastre, O.; Zoccatelli, D. & Borga, M. 2018. Integrated High-Resolution Dataset of High-Intensity European and Mediterranean flash floods. Earth System Science Data, 10: 1783-1794.

Bastone, V.; Torre, C.H. & Garnier, Y. 2011. Etude préliminaire de l’impact du changement climatique sur les risques naturels à la Réunion. Public Report France. 135p.

Bonta, J.V. 2001. Characterizing and estimating spatial and temporal variability of times between storms. Transactions of the ASAE, 44(6): 1593-1601.

Borga, M.; Anagnostou, E.N.; Blöschl, G. & Creutin, J.D. 2010. Flash floods: Observations and analysis of hydro-meteorological controls. Journal of Hydrology, 394(2): 1-3.

Caseri, A.; Ramos, M.H.; Javelle, P. & Leblois, E. 2016. A space-time geostatistical approach for ensemble rainfall nowcasting. E3S Web of Conferences, 7:1-5.

Creutin, J-D.; Leblois, E. & Lepioufle, J-M. 2015. Unfreezing Taylor’s hypothesis for precipitation. Journal Hydrometeorology, 16(6): 2443-2462.

Diss, S.; Testud, J.; Lavabre, J.; Ribstein, P.; Moreau, E. & Chatelet, J. P. 2009. Ability of a dual polarized X-band radar to estimate rainfall. Advances in Water Resources, 32: 975–985.

Folha de São Paulo. 2016. Chuvas causam alagamentos em Campinas e região; erosão fecha pista. Disponível: <http://g1.globo.com/sp/campinasregiao/noticia/2016/06/campinas-sumare-e-santa-barbara-registram-alagamentos-aposchuvas.html>. Acesso em: 10 dezembro 2019.

Fukao, S. & Hamazu, K. 2014. Radar for Meteorological and Atmospheric Observations. Japan: Springer Japan. 537 p.

Guha-Sapir, D.; Hoyois, P.; Wallemacq, P. & Below, R. 2016. Annual Disaster Statistical Review 2016: The numbers and trends. Centre for Research on the Epidemiology of Disasters (CRED). Brussels, Belgium, p. 91.

Hlavčová, K.; Kohnová, S.; Borga, M.; Horvát, O.; Šťastný, P., Pekárová, P.; Majerčáková, O. & Danáčová, Z. 2016. Post-Event Analysis and Flash Flood Hydrology in Slovakia. Journal of Hydrology and Hydromechanics, 64: 304–15.

Isaaks, E.H. & Srivastava, R.M.1989. An Introduction to Applied Geostatistics. New York, Oxford University Press. 561 p.

Jonkman, S.N. & Vrijling, J.K. 2008. Loss of life due to floods. Journal of Flood Risk Management, 1(1): 43–56.

Jung, Y.; Shin, J.-Y.; Ahn, H. & Heo, J.-H. 2017. The Spatial and Temporal Structure of Extreme Rainfall Trends in South Korea. Water, 9(10): 809.

Leblois, E. & Creutin, J.-D. 2013. Space-time simulation of intermittent rainfall with prescribed advection field: Adaptation of the turning band method. Water Resources Research, 49(6): 3375–3387.

Lima, G.N.; Lombardo, M.A. & Magaña, V.O. 2018. Urban water supply and the changes in the precipitation patterns in the Metro-politan Area of Sao Paulo–Brazil. Applied Geography, 94: 223–229.

Loriaux, J.M.; Lenderink, G.; Roode, S.R. & Siebesma, A.P. 2013. Understanding Convective Extreme Precipitation Scaling Using Observations and an Entraining Plume Model. Journal of the Atmospheric Sciences, 70(11): 3641–55.

Machado, L.A.T.; Dias, M.A.F.S.; Morales, C.; Fisch, G.; Vila, D.; Albrecht, R.; Goodman, S.J.; Calheiros, A.J.P.; Biscaro, T.; Kummerow, C.; Cohen, J.; Fitzjarrald, D.; Nascimento, E.L.; Sakamoto, M.S.; Cunningham, C.; Chaboureau, J-P.,; Petersen, W.A.; Adams, D.K.; Baldini, L.; Angelis, C.F.; Sapucci, L.F.; Salio, P.; Barbosa, H.M.J.; Landulfo, E.; Souza, R.A.F.; Blakeslee, R.J.; Bailey, J.; Freitas, S.; Lima, W.F.A. & Tokay, A. 2014. The Chuva Project: How Does Convection Vary across Brazil? Bulletin of the American Meteorological Society, 95(9): 1365–80.

Mal, S.; Singh, R.B.; Huggel, C. & Grover, A. 2018. Introducing Linkages Between Climate Change, Extreme Events, and Disaster Risk Reduction. In: CLIMATE CHANGE, EXTREME EVENTS AND DISASTER RISK REDUCTION: TOWARDS SUSTAINABLE DEVELOPMENT GOALS. Sustainable Development Goals Series. Springer International Publishing.

Mälicke, M.; Hassler, S.K.; Weiler, M.; Blume, T. & Zehe, E. 2018. Exploring Hydrological Similarity during Soil Moisture Recession Periods Using Time Dependent Variograms. Hydrology and Earth System Sciences Discussions, 2018(1): 1–25.

Marengo, J.A.; Valverde, M.M.C. & Obregon, G.O. Observed and projected changes in rainfall extremes in the Metropolitan Area of São Paulo. 2013. Climate Research, 57(1): 61–72.

Mukherjee, S.; Aadhar, S.; Stone, D. & Mishra, V. 2018. Increase in extreme precipitation events under anthropogenic warming in India. Weather and Climate Extremes, 20: 45–53.

Nunes, L.H. 2011. An Overview of Recent Natural Disasters in South America. Bulletin des séances- Académie royale des sciences d'outre-mer, 57: 409-425.

Ootegem, LV.; Herck, K.V.; Creten, T.; Verhofstadt, E.; Foresti, L.; Goudenhoofdt, E.; Reyniers, M.; Delobbe L., Tuyls, D.M. & Willems, P. 2018. Exploring the Potential of Multivariate Depth-Damage and Rainfall-Damage Models. Journal of Flood Risk Management, 11: S916–29.

Pereira Filho, A.J.; Vemado, F. & Karam, H.A. 2019. Evidence of tornadoes and microbursts in São Paulo state, Brazil: a synoptic and mesoscale analysis. Pure and Applied Geophysics, 176: 5079–5106.

Rajeevan, M.; Bhate, J. & Jaswal, A.K. 2008. Analysis of Variability and Trends of Extreme Rainfall Events over India Using 104 Years of Gridded Daily Rainfall Data. Geophysical Research Letters, 35(18): 1-6.

Ramos, M.H. 2002. Analyse de la pluviométrie sous des systèmes nuageux convectifs. Étude de cas sur des données de la ville de Marseille et de la méthode ISIS de Météo-France. Université Joseph Fourier, LTHE, Grenoble, France, Dissertação de Doutorado. 169 p.

Rehbein, A.; Duta, L.M.M.; Ambrizzi,T.; Rocha, R.P.; Reboita, M. S.; Silva, G. A. M.;Gozzo, L. F.; Tomaziello, A. C. N.; Campos, J. L. P. S.; Mayta, V. R. C.; Crespo, N. M.;Bueno, P. G.;Nestares, V. J. A.;Machado, L. T.;Jesus, E. M. ; Pampuch, L. A.; Custódio, M.S. & Carpenedo, C.B. 2018. Severe weather events over southeastern Brazil during the 2016 Dry Season.Advances In Meteorology, v. 2018, 15 p.

Renard, B.; Kavetski, D.; Leblois, E.; Thyer, M.; Kuczera, G. & Franks, S.W. 2011. Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation. Water Resources Research, 47(11): 1-21.

Rodríguez-Solà, R.; Casas-Castillo, M.C.; Navarro, X. & Redaño, A. 2017. Study of the scaling properties of rainfall in spain and its appropriateness to generate intensity-duration-frequency curves from daily records. International Journal of Climatology, 37(2): 770–80.

Rysman, J.-F.; Lemaître, Y. & Moreau, E. 2016. Spatial and Temporal Variability of Rainfall in the Alps–Mediterranean Euroregion. Journal of Applied Meteorology and Climatology, 55(3): 655–71.

Saint-Martin, C.; Fouchier, C.; Javelle, P.; Douvinet, J. & Vinet, F. 2016. Assessing the exposure to flooding to implement a flood impact model for French Mediterranean basins. E3S Web of Conferences, 7: 1-11.

Silva Dias, M.A.; Dias, J.; Carvalho, L.M.V.; Edmilson, D.F. & Silva Dias, P.L. 2012. Changes in extreme daily rainfall for São Paulo, Brazil. Climatic Change, 1-21.SOS-CHUVA. Previsão Imediata de Tempestades Intensas e Entendimento dos Processos Físicos no Interior das Nuvens. Relatório. 2015. Relatório. Mimeografado. Disponível: <http://soschuva.cptec.inpe.br/soschuva/pdf/projeto-soschuva.pdf>. Acesso em: 5 janeiro 2020.

Sprissler, T. 2011. Flood risk in Brazil. Zurich: Swiss Re. 49 p.

Terranova, O.G. & Gariano, S L. 2014. Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy). Natural Hazards and Earth System Sciences, 14(9): 2423–2434.

Downloads

Published

2020-12-18

Issue

Section

Article