Sedimentary Dynamic and Composition of a Tidal Channel in a Tropical Hot Semi-Arid Environment, NE Brazil

Authors

  • Ian Cerdeira de Oliveira Souza Universidade Estadual de Campinas, Instituto de Geociências, Departamento de Geologia e Recursos Naturais
  • Guilherme Augusto Mendonça Maia Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Departamento de Geologia
  • Narelle Maia de Almeida Universidade Federal do Ceará, Centro de Ciências, Departamento de Geologia
  • João Capistrano Abreu Neto Universidade Federal do Ceará, Centro de Ciências, Departamento de Geologia
  • George Satander Sá Freire Universidade Federal do Ceará, Centro de Ciências, Departamento de Geologia

DOI:

https://doi.org/10.11137/2020_4_144_155

Keywords:

Sedimentology, Tidal Flat, Icapuí

Abstract

Tidal channels comprise a peculiar and dynamic environment. This paper aims to recognize the sedimentary distribution and composition of a tidal channel located in a semi-arid climate area in order to understand the sedimentary dynamics of the region. This region has economic and environmental importance considering that several activities are developed in the area such as; salt industry and aquaculture with shrimp farming. The results and discussion presented here on the Barra Grande Port tidal channel are based on 43 superficial samples distributed in the area, in which we analyzed the grain-size distribution and the calcium carbonate and organic matter contents. The data enabled the characterization and compartmentalization of the tidal channel on five sections and the interpretation of the sedimentary dynamics of the area. The sections present an important variation in the composition and selection. The section 1 is located in supratidal zone while sections 02, 03, 04 and 05 are in intertidal zone. The grain-size mean has a tendency to decrease toward the end of the channel as well as the gravel percentage, and the carbonate and organic matter contents. Differently, the mud content and the sorting increase toward the end of the channel and the skewness becomes more positive. In a general way, the carbonate content is high throughout the tidal channel ranging from 20 to 98% while the organic matter content is low ranging from 0 to 3%. This sedimentary distribution occurs due to the development of a hydraulic dam on section 3, causing a morphological growth of this sand bar, which acts as a natural hydraulic dam, hampering the access of the tide and consequently reducing the effectiveness of the transport, resulting in the deposition of fine sediments in the sheltered areas of the channel (sections 04 and 05). The high temperatures and low rainfall of the tropical hot semi-arid climate allowed the development of carbonate sedimentation as well as the development of anthropic activities such as salt extraction in artificial salt pans which may have influenced the low levels of organic matter.

References

Abreu Neto, J.C. 2012. Análise textural e geoquímica dos argilominerais do talude continental do oeste do Ceará. Programa de Pós-graduação em Geologia, Universidade Federal do Ceará, Dissertação de Mestrado, 77p.

Adams, P. 1997. Absence of creeks and pans in temperate Australian salt marshes. Mangroves Salt Marshes, 1: 239-241.

Allen, J.R.L. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19: 1155-1231.

Allen, J.R.L. & Duffy, M.J. 1998. Temporal and spatial depositional patterns in the Severn Estuary, Southwestern Britain: intertidal studies at spring-neap and seasonal scales, 1991–1993. Marine Geology, 146: 147-171.

Ashley, G. 1980. Channel morphology and sediment movement in a tidal river Pitt River British Columbia. Earth Surface Process and Ladforms, 5: 347-368.

Barros, E.L. 2018. Erosão Costeira no Litoral do Município de Icapuí-CE na última década: Causas, consequências e perspectivas futuras. Programa de Pós-graduação em Ciências Marinhas Tropicais, Universidade Federal do Ceará, Tese de Doutorado, 254p.

Barletta, M. & Costa, M.F. 2009. Living and Non-living Resources Exploitation in a Tropical Semi-arid Estuary. Journal of Coast Research, 56: 371-375.

Braga, H. & Medeiros W.D.A. 2015. Percepção do avanço do mar na Praia da Barrinha, Icapuí/CE. Geotemas, 5: 49-62.

Burger, J.; Mizrahi D.; Jeitner, C.; Tsipoura, N.; Mobley, J. & Gochfeld, M. 2019. Metal and metalloid levels in blood of semipalmated sandpipers (Calidris pusilla) from Brazil, Suriname, and Delaware Bay: Sentinels of exposure to themselves, their prey, and predators that eat them. Enviromental Research, 173: 77-86.

Carlos, C.J.; Fedrizzi, C.E., Campos, A.A.; Matthews-Cascon, H.; Barroso, C.X.; Rabay, S.G.; Bezerra, L.E.A.; Meirelles, C.A.O.; Meireles, J. & Thiers, P.R.L. 2010. Migratory Shorebird Conservation and Shrimp Farming in NE Brazil. Final Report.

Casemiro, M.B. 2017. Análise do plano de intervenção na orla marítima de Icapuí-CE à luz dos sistemas ambientais e sociais: a área da Barra Grande e Barreiras de Sereia. Programa de Pós-graduação em Geografia, Universidade Estadual do Ceará, Dissertação de Mestrado, 173p.

Ciarlini, C. 2014. Aproveitamento Econômico de Explotação dos Recursos Minerais na Plataforma Continental no Município de Icapuí Ceará. Programa de Pós-graduação em Geografia, Universidade Estadual do Ceará, 114p.

Cleveringa, J. & Oost, A.P. 1999. The fractal geometry of tidalchanneltidal channel systems in the Dutch Wadden sea. Geologie en Mijnbouw, 78: 21–30.

Dalrymple R.W.; Makino, Y. & Zaitlin, B.A. 1991. Temporal and spatial patterns of rhythmite deposition on mud fl ats in the macrotidal, Cobequid Bay Salmon River estuary, Bay of Fundy, Canada. Clastic Tidal Sedimentology, 16: 137-160.

Fenies, H. & Faugères, J.C. 1998. Facies and geometry of tidal channel-fill deposits (Arcachon lagoon, SW France). Marine Geology, 150: 131-148.

French, J.R. & Stoddart, D.R. 1992. Hydrodynamics of salt marsh creek systems: implications for marsh morphological development and material exchange. Earth Surface Processes and Landforms, 17: 23-252.

FUNCEME. 2018. Fundação Cearense de Meteorologia e Recursos Hídricos – Mapas Temáticos. Disponível em: <http://www2.ipece.ce.gov.br/atlas/capitulo1/12/pdf/1.2.6_Tipos_Climaticos.pdf>. Acesso em: 12 jan. 2020.

Gabet, E.J. 1998. Lateral migration and bank erosion in a salt marsh tidal channel in San Francisco Bay, California. Estuaries, 4: 745-753.

Ginsberg, S.S. & Perillo, G.M.E. 2004. Characteristics of tidal channels in a mesotidal estuary of Argentina. Journal of Coastal Research, 20: 489-497.

Gomes, A.A.S.; Freire, G.S.S.; Aderaldo, J.F.; Rodrigues, A.S. & Santos, D.M. 2007. Análise química e textural dos sedimentos quaternários de Barra Grande e Gamboa, Icapuí – CE. In: XI Congresso da Associação Brasileira de Estudos do Quaternário, Belém, 2007, p. 1-13.

Hood, W.G. 2006. A conceptual model of depositional rather than erosional tidal channel development in the rapidly prograding Skagit River Delta (Washington USA). Earth Surface Processes and Landforms, 90: 94-118.

Hood, W.G. 2010. Tidal channel meander formation by depositional rather than erosional processes: examples from the prograding Skagit River Delta (Washington, USA). Earth Surface Processes and Landforms, 35:319–330.

Hughes, Z.J. 2012. Tidal channels and tidal flats and marshes. In: DAVIS Jr, R.A. & DALRYMPLE, R.W. (ed.). Principles of Tidal Sedimentology. Springer, New York, p. 270-300.

Krögel, F. & Flemming, B.W. 1998. Evidence for temperature-adjusted sediment distributions in the backbarrier tidal flats of the East Frisian Wadden Sea (Southern North Sea). Tidalites, 61: 31-41.

Lamas, F.; Irigaray, C.; Oteo, C. & Chacón, J. 2005. Selection of the most appropriate method to determine the carbonate content for engineering purposes with particular regard to marls. Engineering Geology, 81: 32-41.

Maia, A.O. 2017. Reconstrução ambiental e evolução sedimentar da região costeira de Icapuí-CE por meio de processamento digital de imagens e análise de fácies. Programa de Pós-graduação em Geologia, Universidade Federal do Ceará, Dissertação de Mestrado, 103p.

Maia, G.A.M.; Souza, I.C.O.; Abreu Neto, J.G.; Freire, G.S.S. & Medeiros, M.E. 2019. Estudo da Influência da Maré sob a remobilização do material em suspensão no período de enchente no canal do porto da barra grande, Icapuí-CE. Estudos Geológicos, 29: 211-220.

Marinho, R.A.; Maia, L.C.; Conceição, R.N.L. & Cascon, H.M. 2018. Determinação do indicador de estabilização da forma da concha (IEF) de Anomalocardia brasiliana em Icapuí (Ceará, Brasil). Revista Brasileira de Higiene e Sanidade Animal, 12(4): 510-519.

McLaren, P. & Bowles, D. 1985. The effects of sediment transport on grain-size distributions. Journal of Sedimentary Petrology, 55: 457-470.

Meireles, A.J.A. 1991. Mapeamento geológico/geomorfológico da planície costeira de Icapuí, extremo leste do Estado do Ceará. Programa de Pós-graduação em Geologia, Universidade Federal de Pernambuco, 178p.

Meireles, A.J.A.; Gorayeb, A.; Silva, D.F.R. & Lima, G.S. 2013. Socio-environmental impacts of wind farms on the traditional communities of the western coast of Ceará, in the Brazilian Northeast. Journal of Coastal Research, 65: 81-86.

Meireles, A.J.A.; Silva, J.A. & Souza, W.F.A. 2017. Área de proteção ambiental (APA) da Barra Grande em Icapuí - CE: caminhos para a sustentabilidade. Revista Conexão Científica e Tecnológica, 11: 90-100.

Monteiro Neto, C.; Andrade, C.F.E.; Carvalho, N.M.; Araújo, M.E.; Lucena, R.I. & Leite, B.G.M. 2003. Analysis of the marine ornamental fish trade at Ceará State, Northeast Brazil. Biodiversity and Conservation, 12: 1287-1295.

Moraes, M.V.A.R.; Freire, G.S.S. & Manso, V.A.V. 2015. Morfologia e sedimentologia da plataforma continental interna do município de Acaraú – Ceará – Brasil. Revista de Geociências do Nordeste, 1: 1-15.

Morrissey, E.M.; Gillespie, J.L.; Morina, J.C. & Franklin, R.B. 2014. Salinity affects microbial activity and soil organic matter contente in tidal wetlands. Global Change Biology, 20: 1351-1362.

Mudd S.M.; D’alpaos, A. & Morris, J.T. 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research, 115: 1-14.

Nogueira, L.M.M. 2012. Catadoras de molusco em Icapuí: saberes e práticas de pesca. Programa de Pós-graduação em Ciências Marinhas Tropicais, Universidade Federal do Ceará, 129p.

Portela, J.P.; Freire, G.S.S.; Moraes, M.V.A.R. & Silva, C.A. 2014. Evolução da morfologia costeira do litoral oeste de Icapuí – CE. Revista Geonorte, 5: 89-93.

Rieu, R.; Van Heteren, S. Van der Spek, A.J.F. & De Boer, P.L. 2005. Development and preservation of a mid-Holocene tidal channel network offshore the western Netherlands. Journal of Sedimentary Research, 75: 409-419.

Rinaldo, A.; Fagherazzi, S.; Lanzoni, S.; Marani, M. & Dietrich, W.E. 1999. Tidal networks: 3 Landscape-forming discharges and studies in empirical geomorphic relationships. Water Resources Research, 35: 3919-3929.

Settlemyre, J.L. & Gardner, R.L. 1977. Suspended sediment flux though a salt marsh drainage basin. Estuarine Coastal Marine Science, 5: 653–663.

Shinn, E.A. 1983. Tidal Flat. In: PETER, A.S.; DON, G.B. & CLYDE, H.M. (ed.). Carbonate Depositional Environments. Oklahoma, AAPG Memoir, 33. p. 171-210.

Shi, Z.; Lamb, H.F. & Collins, R.L. 1995. Geomorphic change of salt marsh tidal creek network in the Dyfi Estuary Wales. Marine Geology, 128: 73-83.

Silva, J.A. 2012. Manguezal do estuário Barra Grande em Icapuí-CE: da degradação ao processo de recuperação e mudança de atitude. Programa de Pós-graduação em Geografia, Universidade Federal do Ceará, 149p.

Silva, J.A. 2020. Alguns aspectos da diversidade biológica (fauna e flora) do manguezal da barra grande em icapuí-ce. Memória Viva dos Povos do Mar de Icapuí. Disponível em: <http://www.brasilcidadao.org.br/museu/artigos_02.php> Acesso em: 26 de março de 2020.

Souza, I.C.O.; Maia, G.A.M; Almeida, N.M.; Abreu Neto, J.C.; Freire, G.S.S.; Albuquerque, L.N. & Silveira, A.D.S. 2020. Fácies e estratigrafia do canal de maré do porto da barra grande, Icapuí – CE. Revista de Geociências do Nordeste, 6(1): 49-55.

Tomczak, M. 1998. Spatial Interpolation and its Uncertainty Using Automated Anisotropic Inverse Distance Weighting (IDW) – Cross-Validation/Jacknife Approach. Journal of Geography Information and Decision Analysis, 2: 18-30

Vital, H.; Neto, F.S. & Plácido Junior, J.S. 2008. Morfodinâmica de um canal de maré tropical: Estudo de caso na costa norte rio grandense, nordeste do Brasil. Revista de Gestão Costeira Integrada, 8: 113-126.

Walkley, A. & Black, J.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.

Wentworth, C.A. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30: 377-392.

Downloads

Published

2020-12-18

Issue

Section

Article