Optimal Site Selection Using Geographical Information System (GIS) Based Multi-criteria Decision Analysis (MCDA): A Case Study To Concentrated Solar Power Plants (CSP) In Brazil

Authors

DOI:

https://doi.org/10.11137/1982-3908_2023_46_48188

Keywords:

Analytic Hierarchy Process (AHP), Map algebra, Geospatial data

Abstract

Optimal site selection using multi-criteria decision analysis (MCDA) is an important step to support decision makers to locate places that benefit the maximum potential of technology's preconditions. As a new, emerging and renewable technology in Brazil, concentrated solar power (CSP) plays an important role in power generation mix, and it’s crucial to indicate the viability of Brazilian regions to CSP power plants. To achieve this goal, a detailed workflow of multi-criteria analysis based on geographic information system (GIS based AHP) is set in free software, in which criteria are selected from literature, acquired as geospatial data, weighted with parity matrices through online questionnaires filled by experts, processed on QGIS with weighted linear combination (WLC), and the results validated by its AHP consistency, thematic accuracy and comparative analysis with VIKOR and TOPSIS methodologies. As a product, sites are mapped according to viability indices, with higher values in most of Northeast, Central-west and Southeast regions of Brazil, showing good stability by its validation. Thereby, the workflow with free software allows the methodology to be replicated to support decision makers in locating viable and restrictive places for technologies.

References

ANA ‒ Agência Nacional de Águas e Saneamento Básico 2013, Disponibilidade hídrica superficial, Catálogo de Metadados da ANA, viewed 20 May 2018, <http://metadados.ana.gov.br/geonetwork/srv/en/resources.get?id=307&fname=SNIRH_DispHidricaSuperficial.zip&access=private>.

ANEEL − Agência Nacional de Energia Elétrica 2019, Boletim de informações gerenciais, Ministério de Minas e Energia, viewed 2 January 2020, <http://www.aneel.gov.br/informacoes-gerenciais>.

Azevêdo, V.W.B., Candeias, A.L.B. & Tiba, C. 2017, ‘Location study of solar thermal power plant in the state of Pernambuco using geoprocessing technologies and multiple-criteria analysis’, Energies, vol. 10, no. 7, 1042, DOI:10.3390/en10071042.

Broesamle, H., Mannstein, H., Schillings, C. & Trieb, F. 2001, ‘Assessment of solar electricity potentials in North Africa based on satellite data and a geographic information system’, Solar Energy, vol. 70, no. 1, pp. 1–12, DOI:10.1016/S0038-092X(00)00126-2.

CGIAR 2020, Shuttle Radar Topography Mission (SRTM) - version 4, SRTM Data, viewed 20 May 2018, <http://srtm.csi.cgiar.org/srtmdata/>.

Clifton, J. & Boruff, B.J. 2010, ‘Assessing the potential for concentrated solar power development in rural Australia’, Energy Policy, vol. 38, no. 9, p. 5272–80, DOI:10.1016/j.enpol.2010.05.036.

DNIT – Departamento Nacional de Infraestrutura de Transportes 2019, SNV – Rodovias, DNIT Cloud, viewed 20 May 2020, <https://servicos.dnit.gov.br/dnitcloud/index.php/s/oTpPRmYs5AAdiNr>.

Effat, H. 2016, ‘Mapping solar energy potential zones, using SRTM and spatial analysis, application in Lake Nasser Region, Egypt’, International Journal of Sustainable Land Use and Urban Planning, vol. 3, no. 1, pp. 1–14, DOI:10.24102/ijslup.v3i1.551.

EPE – Empresa de Pesquisa Energética 2019, Geoportal - Linhas de transmissão e subestações, Webmap EPE, viewed 19 March 2019, <https://gisepeprd.epe.gov.br/webmapepe/>.

Fluri, T.P. 2009, ‘The potential of concentrating solar power in South Africa’, Energy Policy, vol. 37, no. 12, pp. 5075–80, DOI:10.1016/j.enpol.2009.07.017.

FUNAI – Fundação Nacional do Índio 2016, Reservas indígenas, Ministério da Justiça e Segurança Pública, viewed 19 March 2019, <http://www.funai.gov.br/index.php/shape>.

Greene, R., Devillers, R., Luther, J.E. & Eddy, B.G. 2011, ‘GIS-based multiple-criteria decision analysis’, Geography Compass, vol. 5, no. 6, pp. 412–32, DOI:10.1111/j.1749-8198.2011.00431.x.

IBGE ‒ Instituto Brasileiro de Geografia e Estatística 2017, Manual técnico de Geociências: avaliação da qualidade dos dados geoespaciais, IBGE, Rio de Janeiro, viewed 4 November 2019, <https://biblioteca.ibge.gov.br/visualizacao/livros/liv101152.pdf>.

IBGE ‒ Instituto Brasileiro de Geografia e Estatística 2018, Monitoramento do uso e cobertura da terra, IBGE, viewed 25 November 2019, <https://www.ibge.gov.br/geociencias/informacoes-ambientais/15831-cobertura-e-uso-da-terra-do-brasil.html?=&t=downloads>.

IBGE ‒ Instituto Brasileiro de Geografia e Estatística 2019, Portal de geoserviços – unidades de conservação, tribos indígenas, quilombolas, assentamentos rurais, IBGE, viewed 20 September 2019, <http://www.geoservicos.ibge.gov.br:80/geoserver/ows?SERVICE=WMS&>.

INCRA ‒ Instituto Nacional de Colonização e Reforma Agrária 2018, Quilombolas e assentamentos rurais, INCRA, viewed 25 November 2018, <http://acervofundiario.incra.gov.br/i3geo/geodownload/geodados.php>.

INFRAERO ‒ Empresa Brasileira de Infra-Estrutura Aeroportuária 2010, Terminal de carga, INFRAERO, viewed 19 November 2018, <http://www.infraero.gov.br/infraerocargo/>.

Küster, K.K., Penteado Neto, R.A., Oening, A.P.O. & Paschoalotto, L.A.C. 2021, Combustível solar: conceitos de geração termosolar e experiência de planta piloto no complexo de fontes renováveis da UHE Porto Primavera, 1st edn, Grafo Estúdio, Curitiba.

LABREN – Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia 2017, Dados do Atlas Solarimétrico de irradiação solar, LABREN, viewed 20 November 2017, <http://labren.ccst.inpe.br/atlas_2017.html#>.

Malczewski, J. 2000, ‘On the use of weighted linear combination method in GIS: common and best practice approaches’, Transactions in GIS, vol. 4, no. 1, pp. 5–22, DOI:10.1111/1467-9671.00035.

Malczewski, J. 2006, ‘GIS-based multicriteria decision analysis: A survey of the literature’, International Journal of Geographical Information Science, vol. 20, no. 7, pp. 703–26, DOI:10.1080/13658810600661508.

MI ‒ Ministério de Infraestrutura 2017, Ferrovias e Hidrovias, MI, viewed 19 November 2018, <https://antigo.infraestrutura.gov.br/bit.html/>.

MMA 2012, Unidades de conservação, MMA, viewed 25 November 2018, <http://mapas.mma.gov.br/i3geo/datadownload.htm#>.

Mokarram, M., Mokarram, M.J., Gitizadeh, M., Niknam, T. & Aghaei, J. 2020, ‘A novel optimal placing of solar farms utilizing multi-criteria decision-making (MCDA) and feature selection’, Journal of Cleaner Production, vol. 261, 121098, DOI:10.1016/j.jclepro.2020.121098.

Opricovic, S. & Tzeng, G.-H. 2004, ‘The compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS’, European Journal of Operational Research, vol. 156, no. 2, pp. 445–55, DOI:10.1016/S0377-2217(03)00020-1.

Pereira, E.M.D., Charbel, A., Aroreir, I. & Mesquita, L.C.S. 2014, Mapeamento básico das precondições gerais para tecnologias heliotérmicas no Brasil, Energia Heliotérmica, viewed 4 October 2019, <http://energiaheliotermica.gov.br/pt-br/especialistas/brasil-desafio-infraestrutura/precondicoes-para-tecnologia-heliotermica-no-brasil>.

Saaty, T.L. 2004, ‘Decision making – the Analytic Hierarchy and Network Processes (AHP/ANP)’, Journal of Systems Science and Systems Engineering, vol. 13, no. 1, pp. 1-35, DOI:10.1007/s11518-006-0151-5.

SIGEL – Sistema de Informações Geográficas do Setor Elétrico 2019, Portal de Geoprocessamento da ANEEL, SIGEL, viewed 20 September 2019, <https://sigel.aneel.gov.br/arcgis/services/PORTAL/Transmissão/MapServer/WMSSer >.

Solargis 2019, The World Bank Group - Global Solar Atlas 2.0, Global Solar Atlas, viewed 25 November 2018, <https://globalsolaratlas.info/download/brazil>.

Souza, L.E.V. & Cavalcante, A.M.G. 2017, ‘Concentrated solar power deployment in emerging economies: the cases of China and Brazil’, Renewable and Sustainable Energy Reviews, vol. 72, pp. 1094-103, DOI:10.1016/j.rser.2016.10.027.

Downloads

Published

2023-01-02

Issue

Section

Environmental Sciences