Use of Machine Learning Algorithms in the Classification of Forest Species

Authors

DOI:

https://doi.org/10.11137/1982-3908_2023_46_50490

Keywords:

Remote sensing, Spectroradiometry, Vegetation indices

Abstract

Optimization in the process of managing forest resources seeks alternatives that make data collection possible. One of them alternatives is spectroradiometry, which consists of measuring the spectral response, having as product the response of the target in relation to the incident radiation along the electromagnetic spectrum, and that, using machine learning, with pre-selected models, makes it possible to identify. Given the above, the study aimed to use machine learning algorithms to classify species by vegetation indices from reflectance data. The study was developed at the Federal University from Santa Maria, working with the species Ficus benjamina, Inga marginata, Handroanthus chrysotrichus, Psidium cattleianum, Salix humboldtiana, Corymbia citriodora and Myrcianthes pungens, and spectral readings of the leaves were taken using the FieldSpec®3 spectroradiometer connected to RTS-3ZC3 integrating  sphere. The reflectance values with wavelength ranged in amplitude from 350 ƞm to 2,500 ƞm and spectral resolution of 1 ƞm. Vegetation indices were calculated using the software R Studio, being: NDVI, SAVI, RVI, GNDVI, NDWI, NDWI2, GEMI, DVI, TVI, RVI, MSAVI, WDVI. The algorithms used to develop machine learning were: Random Forest (RF), k-Nearest Neighbors (K-NN), Naive Bayes (NB) and Support Vector Machine (SVM). RF proves to be the most appropriate for data validation, with 85% global accuracy, followed by SVM, with 71%, K-NN with 64% and NB with 35%. The indices with the best performance to point the species were NDWI and SAVI. 

References

Alvares, C.A, Stape, L.J, Sentelhas, C.P., Gonçalves, M.L.J. & Sparovek, G. 2013, ‘Köppen’s climate classification map for Brazil’, Meteorologisch e Zeitschrift, vol. 22, no. 6, pp. 711-28, DOI:10.1127/0941-2948/2013/0507.

Breiman, L. 2001, ‘Random forests’, Machine Learning, vol. 45, no. 1, pp. 5–32, DOI: 10.1023/A:1010933404324.

Deering, D. W. & Rouse J. 1975, ‘Measuring “Forage Production” of Grazing Units From Landsat MSS Data’, Proceedings of the 10th International Symposium on Remote Sensing of Environment, Ann Arbor, pp. 1169-78.

Demarez, V. & Gastellu-etchegorry, J.P. 2000, ‘A modelling approach for studdying forest chlorophyll content’, Remote Sensing of Environment, vol. 71, no. 2, pp. 226-38, DOI:10.1016/S0034-4257(99)00089-9.

Gaiad, N.P., Martins P.A., Debastiani, A., Corte, P.A. & Sanquetta, R.C. 2017, ‘Uso e cobertura da terra apoiados em algoritmos baseados em aprendizado de máquina: o caso de Mariana - MG’, Enciclopédia Biosfera, vol. 14, no. 25.

Gao, B. 1996, ‘NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space’, Remote Sensing of Environment, vol. 58, no. 3, pp. 257-66, DOI:10.1016/S0034-4257(96)00067-3.

Gitelson, A.A., Kaufman, Y. & Merzlyak, M.N. 1996, ‘Use of a green channel in remote sensing of global vegetation from EOS-MODIS’, Remote Sensing Environment, vol. 58, no. 3, pp. 289-98, DOI:10.1016/S0034-4257(96)00072-7.

Gonçalves, W.G, De Sá, J.A.S. & Ribeiro, H.M.C. 2017, ‘Aplicação de máquinas de vetores de suporte na classificação automática de tipologias florestais’, Revista Seminário Estadual de Água e Floresta.

Huete, A.R. 1988, ‘A soil-adjusted vegetation index (SAVI)’, Remote sensing of environment, vol. 25, no. 3, pp. 295-309, DOI:10.1016/0034-4257(88)90106-X.

Inmet - Instituto Nacional de Meteorologia 2018, Análise do Tempo e do Clima, viewed 21 November 2018, <http://www.inmet.gov.br/sonabra/pg_dspDadosCodigo_sim.php?QTgwMw>.

Inpe - Instituto Nacional de Pesquisas Espaciais 2013, viewed 4 December 2018, <https://www.gov.br/inpe/pt-br>.

Inza, I., Calvo, B., Armañanzas, R., Bengoetxea, E., Larrañaga, P. & Lozano, A.J. 2010, ‘Machine learning: an indispensable tool in bioinformatics’, Bioinformatics methods in clinical research, vol. 593, pp. 25-48.

Jordan, C.F. 1969, ‘Derivation of leaf-area index from quality of light on the forest floor’, Ecology, vol. 50, no. 4, pp. 663-6, DOI:10.2307/1936256.

Kovacs, J.M., Wang, J. & Flores Verdugo, F. 2005, ‘Mapping mangrove leaf area index at the species level using IKONOS and LAI 2000 sensors for the Agua Brava Lagoon, Mexican Pacific’, Estuarine, Coastal and Shelf Science, vol. 62, no. 1-2, pp. 377-84, DOI:10.1016/j.ecss.2004.09.027.

Liaw, A. & Wiener, M. 2002, ‘Classification and Regression by RandomForest’, R News, vol. 2-3, pp. 18-22.

Longhi, S.J., Araújo, M.M., Kelling, B.M., Hoppe, J., Muller, I. & Borsoi, A.G. 2000, ‘Aspectos fitossociológicos de fragmento de floresta estacional decidual, Santa Maria, RS’, Ciência Florestal, vol. 10, no. 2, pp. 59-74, DOI:10.5902/19805098471.

Mcfeeters, S.K. 1966, ‘The use of normalized difference water index (NDWI) in the delineation of open water features’, International Journal of Remote Sensing, vol. 17, no. 7, pp. 1425-32, DOI:10.1080/01431169608948714.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C. & Lin, C.C. 2018, e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), version 1.7-0, viewed 10 September 2018, <https://cran.r-project.org/package=e1071>.

Mitchell, T. 1997, Machine Learning, McGraw Hill, New York.

Monteiro, F.P. 2015, ‘ClasSIS: uma metodologia para classificação supervisionada de imagens de satélite em áreas de assentamento localizados na Amazônia’, PhD thesis, Universidade Federal Pará, Belém.

Oshiro, T.M. 2013, ‘Uma abordagem para a construção de uma única árvore a partir de uma Random Forest para classificação de bases de expressão gênica’, PhD thesis, Universidade de São Paulo, Ribeirão Preto.

Paula Filho, P.L. 2013, ‘Reconhecimento de espécies florestais através de imagens macroscópicas’, PhD thesis, Universidade Federal do Paraná, Curitiba.

Pinty, B. & Verstraete, M.M. 1992, ‘GEMI: A non-linear index to monitor global vegetation from satellites’, Vegetation, vol. 101, no. 1, pp. 15-20, DOI:10.1007/BF00031911.

Qi, J., Chehbouni, A., Huete, A., Kerr, Y.H. & Soroosshian, S. 1994, ‘A Modified Soil Adjusted Vegetation Index’, Remote Sensing and the Environment, vol. 48, no. 2, pp. 119-26, DOI:10.1016/0034-4257(94)90134-1.

R Core Team 2014, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Austria, viewed 21 November 2018, <http://www.R-project.org/>.

Rezende, S.O. 2003, Sistemas inteligentes: fundamentos e aplicações, Manole, Barueri.

Richardson, A.J. & Wiegand, C.L. 1977, ‘Distinguishing vegetation from soil background information’. Photogrammetric Engineering and Remote Sensing, vol. 43, no. 12, pp. 1541-52.

Rouse, J.W., Haas, R.H., Schell, J.A. & Deering, D.W. 1974, Monitoring the vernal advancement retrogradation of natural vegetation, Final Report Type III, NASA/GSFC, Greenbelt.

Santacruz, A. 2015, Image Classification with RandomForests in R (and QGIS), viewed 2 December 2018, <http://amsantac.co/blog/en/2015/11/28/classificationr.html>.

Santos, K.N. 2016, Utilização de técnicas de aprendizado de máquina para predição de crises epiléticas, PhD thesis, Universidade Federal do Rio Grande do Norte, Natal.

Souza, B.F.S., Teixeira, S.A., Silva, F.T.A.F., Andrade, M.E. & Braga, S.P.A. 2010, ‘Avaliação de classificadores baseados em aprendizado de máquina para a classificação do uso e cobertura da terra no bioma Caatinga’, Revista Brasileira de Cartografia, vol. 62, pp. 385-99, DOI:10.14393/rbcv62n0-43717.

Souza, C.G., Carvalho, L., Aguiar, P. & Arantes, B.T. 2016, ‘Algoritmo de aprendizagem de máquina e variáveis de Sensoriamento Remoto para o mapeamento da cafeicultura’, Boletim de Ciências Geodésicas, vol. 22, no. 4, pp. 751-73, DOI:10.1590/S1982-21702016000400043.

Souza, J.F. & Kai, P.M. 2014, ‘Classificação de folhas usando medidas invariantes’, PhD thesis, Universidade Estadual de Mato Grosso do Sul, Campo Grande.

Tan, P., Steinbach, M. & Kumar, V. 2009, Introdução ao datamining: mineração de dados, Editora Ciência Moderna, Rio de Janeiro.

Usda - United States Department of Agriculture 2003, Keys to Soil Taxonomy, 9th edn, USDA, Washington.

Vapnik, V. 1995, The nature of statistical learning theory, Springer-Verlag.

Venables, W.N. & Ripley, B.D. 1992, Modern Applied Statistics with S, 4th edn, Springer, New York.

Downloads

Published

2023-03-08

Issue

Section

Environmental Sciences