Linkage of Normal Heights Obtained from GNSS and Refined XGM2019 GGM to Brazilian Vertical Data Using Different Approaches

Authors

DOI:

https://doi.org/10.11137/1982-3908_2023_46_51121

Keywords:

Brazilian normal heights, Global geopotential model, Vertical local datum linkage

Abstract

This work aimed to analyze the use of different approaches to link normal heights obtained via Global Navigation Satellite System (GNSS)/Global Geopotential Model (GGM) refined by the RTM technique to the Brazilian Vertical Data (Imbituba Brazilian Vertical Datum – IBVD and Santana Brazilian Vertical Datum – SBVD). Specifically, it analyzed approaches based on the weighted mean of discrepancies between height anomalies, the zero- level geopotential value, the Geodetic Boundary Value Problem (GBVP) solution, and the use of parametric modeling of a plane with a scale factor. For the numerical tests, two different study regions have been used, the first with heights referenced to IBVD and the second to SBVD. Using the first three approaches, the local modeling idea has been investigated in both regions. In this context, spatial cluster analysis of the outliers of differences between local and global height anomalies defined the sub-regions. In the fourth approach, the treatment of local modeling was initially considered. In the accuracy analysis of linkages, it has been verified that approaches based on the mean of the discrepancies between height anomalies and using zero- level geopotential value propose practically the same results. On the other hand, there were improvements at the centimeter level with the use of the GBPV solution-based approach compared to the first two, except for two worsening cases. With the approach based on parametric modeling, the accuracy results were mainly worse considering the approaches with local modeling. The most significant differences reached the decimeter level. 

References

Amante, C. & Eakins, B.W. 2009, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, Colorado, viewed 25 March 2021, <https://ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf>.

Amjadiparvar, B., Rangelova, E. & Sideris, M.G. 2016, 'The GBVP approach for vertical datum unification: recent results in North America', Journal of Geodesy vol. 90, no. 1, pp. 45–63, DOI:10.1007/s00190-015-0855-8

Bera, A.; Jarque, C. 1980, 'Efficient test for normality, heterocedasticity and serial independence of regression residuals'. Econometrics Letters, vol. 6, pp. 255–259.

Burša, M., Kouba, J., Raděj, K., True, S.A., Vatrt, V. & Vojtíšková, M. 1999, 'Determination of the geopotential at the tide gauge defining the North American Vertical Datum 1988 (NAVD88)', Geomatica, vol. 53, pp. 459−66.

De Freitas, S.R.C. 2015, 'SIRGAS-WGIII activities for unifying height systems in Latin America', Revista Cartográfica. Pan-American Institute of Geography and History, vol. 91, no. 1, p. 75–92.

Delgado, R.E. & Rodrigues, T.L. 2022, 'Use of GNSS and a refined GGM (XGM2019e) for determining normal heights in the Imbituba Brazilian Vertical Datum and International Height Reference System', Bulletin of Geodetic Sciences, vol. 28, no. 2, e2022009, DOI:10.1590/s1982-21702022000200009

Ferreira, V.G., De Freitas, S.R.C. & Heck, B. 2016, 'Analysis of the discrepancy between the Brazilian vertical reference frame and GOCE-based geopotential models', in C. Rizos & P. Willis (eds), IAG 150 years, International Association of Geodesy Symposia, Springer, Berlin, pp. 227–32.

Forsberg, R. & Tscherning, C.C. 1981, 'The Use of Height Data in Gravity Field Approximation by Collocation', Journal of Geophysical Research, vol. 86, no. B9, pp. 7843-54, DOI:10.1029/JB086iB09p07843

Gerlach, C. & Rummel, R. 2012, 'Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach', Journal of Geodesy, vol. 87, no. 1, pp. 57–67, DOI:10.1007/s00190-012-0579-y

Grombein, T., Seitz, K. & Heck, B. 2016, 'Height system unification based on the fixed GBVP approach', in C. Rizos & P. Willis (eds), IAG 150 years, International Association of Geodesy Symposia, Springer, Berlin, pp. 305–11.

Grombein, T., Seitz, K. & Heck, B. 2017, 'On High‐Frequency Topography‐Implied Gravity Signals for a Height System Unification Using GOCE‐Based Global Geopotential Models', Surveys in Geophysics, vol. 38, no. 2, pp. 443‐77, DOI:10.1007/s10712-016-9400-4

Heck, B. & Seitz, K. 2007, 'A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling', Journal of Geodesy, vol 81, pp. 121–36, DOI:10.1007/s00190-006-0094-0

Hirt, C., Featherstone, W.E. & Marti, U. 2010, 'Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasi-geoid computations in mountainous areas devoid of gravity data', Journal of Geodesy, vol 84, pp. 557–67, DOI:10.1007/s00190-010-0395-1

IBGE - Instituto Brasileiro de Geografia e Estatística 2019, Reajustamento da rede altimétrica com números geopotenciais, 2nd edn, IBGE, Coordenação de Geodésia, Diretoria de Geociências, Rio de Janeiro.

Ihde, J., Sánchez, L., Barzaghi, R., Drewes, H., Foerste, C., Gruber, T., Liebsch, G., Marti, U., Pail, R. & Sideris, M. 2017, 'Definition and Proposed Realization of the International Height Reference System (IHRS)', Surveys in Geophysics, vol. 38, no. 3, pp. 549-70, DOI:10.1007/s10712-017-9409-3

Kasenda, A. 2009, 'High precision geoid for modernization of height system in Indonesia', PhD dissertation, University of New South Wales.

Kotsakis, C., Katsambalos, K. & Ampatzidis, D. 2012, 'Estimation of the zero-height geopotential level W0 LVD in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands', Journal of Geodesy, vol. 86, no. 6, pp. 423–39, DOI:10.1007/s00190-011-0530-7

Rapp, R.H. 1989, 'The treatment of permanent tidal effects in the analysis of satellite altimeter data for sea surface topography', Manuscripta Geodaetica, vol. 14, no. 6, pp. 368–72.

Rülke, A., Liebsch, G., Sacher, M., Schaëfer, U., Schirmer, U. & Ihde, J. 2012, 'Unification of European height system realizations', Journal of Geodetic Science, vol. 2, no. 4, pp. 343–54, DOI:10.2478/v10156-011-0048-1

Rummel, R. & Teunissen, P. 1988, 'Height datum definition, height datum connection and the role of the geodetic boundary value problem', Journal of Geodesy, vol. 62, pp. 477–98, DOI:10.1007/BF02520239

Sánchez, L. & Sideris, M.G. 2017, 'Vertical datum unification for the International Height Reference System (IHRS)', Geophysical Journal International, vol. 209, no. 2, pp. 570–86, DOI:10.1093/gji/ggx025

Sánchez, J.L.C., De Freitas, S.R.C. & Barzaghi, R. 2018, 'Offset Evaluation of the Ecuadorian Vertical Datum Related to the IHRS', Bulletin of Geodetic Sciences, vol. 24, no. 4, pp. 503–24, DOI:10.1590/s1982-21702018000400031

Shapiro, S. S.; Wilk, M. B. 1965, 'An Analysis of Variance Test for Normality (Complete Samples)'. Biometrika Trust, vol. 52, pp. 591–609.

Tozer, B., Sandwell, D.T., Smith, W.H.F., Olson, C., Beale, J.R. & Wessel, P. 2019, 'Global Bathymetry and Topography at 15 Arc Sec: SRTM15+', Earth and Space Science, vol. 6, no. 10, pp. 1847–64, DOI:10.1029/2019EA000658

Xu, P. 1992, 'A quality investigation of global vertical datum connection', Geophysical Journal International, vol. 110, no. 2, pp. 361–70, DOI:10.1111/j.1365-246X.1992.tb00880.x

Zhang, P., Bao, L., Guo, D., Wu, L., Li, Q., Liu, H., Xue, Z. & Li, Z. 2020, 'Estimation of Vertical Datum Parameters Using the GBVP Approach Based on the Combined Global Geopotential Models', Remote Sensing, vol. 12, no. 24, e4137, DOI:10.3390/rs12244137

Zingerle, P., Pail, R. & Gruber, T. 2020, 'The combined global gravity field model XGM2019e', Journal of Geodesy, vol. 94, no. 66, pp. 1–12, DOI:10.1007/s00190-020-01398-0

Downloads

Published

2023-05-31

Issue

Section

Geography