Climatological Features of the Vento Norte Phenomenon in the Extreme South of Brazil

Authors

DOI:

https://doi.org/10.11137/1982-3908_2023_46_52599

Keywords:

Downslope Winds, Regional Advection, Local Topography

Abstract

Downslope windstorm known as Vento Norte (VNOR; Portuguese for “North Wind”) is a common phenomenon that occurs in southern Brazil during the winter season. Hence, this study attempted to investigate the climatological characteristics of VNOR using seventeen years (2004–2020) of hourly observations collected at seven meteorological stations distributed over the central region of Rio Grande do Sul State. The VNOR windstorm episodes are identified by intense wind gusts and warm air advection from the northern direction. They were selected from the data set obtained during the winter in the city of Santa Maria (SM). Statistical analysis showed that the detected VNOR events were characterized by mean wind gusts ≈15 m.s-1, mean wind direction of 350° and mean air temperature of 27 °C. Average duration of the events was about 9 h, with the longest event lasting 21 h. Characteristics and effects of this phenomenon were compared with those in other locations (meridional and zonal sections). Average values of wind gusts from the northern direction presented a significant increase of ≈200% for the winter period in SM. Nonetheless, a less significant increase in wind gusts was recorded in the meridional (28%) and zonal (41%) sections away from SM. The central location of SM has favorable topographic characteristics for this amplification, with a sharp altitude difference caused by the plateau- plain interface of ≈300 m. Our findings showed that the VNOR phenomenon mainly affects the climate of the southern region of Brazil, with a local amplification in the city of SM.

References

Abatzoglou, J.T., Barbero, R. & Nauslar, N.J. 2013, 'Diagnosing santa ana winds in southern California with synoptic-scale analysis', Weather and Forecasting, vol. 28, no. 3, pp. 704–10, DOI:10.1175/WAF-D-13-00002.1.

Abatzoglou, J.T., Hatchett, B.J., Fox-Hughes, P., Gershunov, A. & Nauslar, N.J. 2021, 'Global climatology of synoptically-forced downslope winds', International Journal of Climatology, vol. 41, no. 1, pp. 31–50, DOI:10.1002/joc.6607.

Arbage, M.C.A., Degrazia, G.A., Welter, G.S., Roberti, D.R., Acevedo, O.C., de Moraes, O.L.L., Ferraz, S.T., Timm, A.U. & Moreira, V.S. 2008, 'Turbulent statistical characteristics associated to the north wind phenomenon in southern Brazil with application to turbulent diffusion', Physica A: Statistical Mechanics and its Applications, vol. 387, no. 16–17, pp. 4376–86, DOI:10.1016/j.physa.2008.02.068.

Arrillaga, M.J., Yagüe, A.C., Román, C., Sastre, M., Jiménez, M.A., Maqueda, B.G. & Vilà-Guerau, J. 2019, 'From weak to intense downslope winds: origin, interaction with boundary-layer turbulence and impact on CO2 variability', Atmospheric chemistry and physics, vol. 19, no. 7, pp. 4615–35, DOI:10.5194/acp-19-4615-2019.

Ashbaugh, L.L., Malm, W.C. & Sadeh, W.Z. 1985, 'A residence time probability analysis of sulfur concentrations at Grand Canyon National Park', Atmospheric Environment, vol. 19, no. 8, pp. 1263–70, DOI:10.1016/0004-6981(85)90256-2.

Carslaw, D.C. & Ropkins, K. 2012, 'Openair-an R package for air quality data analysis', Environmental Modelling & Software, vol. 27–28, no. 1, pp. 52–61, DOI:10.1016/j.envsoft.2011.09.008.

Cooke, L.J., Rose, M.S. & Becker, W.J. 2000, 'Chinook winds and migraine headache', Neurology, vol. 54, no. 2, pp. 302–7, DOI:10.1212/WNL.54.2.302.

Cruz, M.G., Alexander, M.E., Fernandes, P. M., Kilinc, M. & Sil, A. 2020, 'Evaluating the 10% wind speed rule of thumb for estimating a wildfire’s forward rate of spread against an extensive independent set of observations', Environmental Modelling & Software, vol. 133, no. 1, pp. 104818–33, DOI:10.1016/j.envsoft.2020.104818.

da Rosa, C.E., Stefanello, M., Facco, D.S., Roberti, D.R., Rossi, F.D., Nascimento, E.L. & Degrazia, G.A. 2022, 'Regional- scale meteorological characteristics of the Vento Norte phenomenon observed in southern Brazil', Environmental Fluid Mechanics, vol. 22, no. 4, pp. 819–37, DOI:10.1007/s10652-022-09855-4.

da Rosa, C.E., Stefanello, M., Maldaner, S., Facco, D.S., Roberti, D.R., Tirabassi, T. & Degrazia, G.A. 2021a, 'Employing spectral analysis to obtain dispersion parameters in an atmospheric environment driven by a mesoscale downslope windstorm', International Journal of Environmental Research and Public Health, vol. 18, no. 24, pp. 13027–38, DOI:10.3390/ijerph182413027.

da Rosa, C.E., Stefanello, M., Nascimento, E.L., Rossi, F.D., Roberti, D. R. & Degrazia, G.A. 2021b, 'Meteorological observations of the Vento Norte phenomenon in the central region of Rio Grande do Sul', Revista Brasileira de Meteorologia, vol. 36, no. 3, pp. 367–76, DOI:10.1590/0102-77863630141.

dos Reis, N.C.S., Boiaski, N.T. & Ferraz, S.E.T. 2019, 'Characterization and spatial coverage of heat waves in subtropical Brazil', Atmosphere, vol. 10, no. 5, pp. 284–99, DOI:10.3390/atmos10050284.

Efimov, V. & Komarovskaya, O. 2018, 'The Novaya Zemlya Bora: Analysis and numerical modeling', Izvestiya, Atmospheric and Oceanic Physics, vol. 54, no. 1, pp. 73–85, DOI:10.1134/S000143381801005X.

Hang, C., Nadeau, D., Gultepe, I., Hoch, S., Román-Cascón, C., Pryor, K., Fernando, H., Creegan, E., Leo, L., Silver, Z. & Pardyjak, E.R. 2016, 'A case study of the mechanisms modulating the evolution of valley fog', Pure and Applied Geophysics, vol. 173, no. 9, pp. 3011–30, DOI:10.1007/s00024-016-1370-4.

Heldwein, A.B., Streck, N.A., Buriol, G.A., Sandri, M.A., Trentin, G., Spohr, R.B., Silva, J., Alberto, C.M. & Faria, N. 2003, 'Freqüência de ocorrência de ventos fortes em Santa Maria, RS', Revista Brasileira de Agrometeorologia, vol. 11, no. 2, pp. 285–91.

Iratxe, U.T. & Carslaw, D.C. 2014, 'Conditional bivariate probability function for source identification', Environmental modelling & software, vol. 59, no. 1, pp. 1–9, DOI:10.1016/j.envsoft.2014.05.002.

Jensen, D.D., Nadeau, D.F., Hoch, S.W. & Pardyjak, E.R. 2017, 'The evolution and sensitivity of katabatic flow dynamics to external influences through the evening transition', Quarterly Journal of the Royal Meteorological Society, vol. 143, no. 702, pp. 423–38, DOI:10.1002/qj.2932.

Láska, K., Chládová, Z. & Hošek, J. 2017, 'High-resolution numerical simulation of summer wind field comparing WRF boundary-layer parametrizations over complex arctic topography: case study from central spitsbergen', Meteorologische Zeitschrift, vol. 26, no. 4, pp. 391–408, DOI:10.1127/metz/2017/0796.

Lehner, M., Whiteman, C.D., Hoch, S.W., Jensen, D., Pardyjak, E.R., Leo, L.S., Di Sabatino, S. & Fernando, H. J. 2015, 'A case study of the nocturnal boundary layer evolution on a slope at the foot of a desert mountain', Journal of Applied Meteorology and Climatology, vol. 54, no. 4, pp. 732–51, DOI:10.1175/JAMC-D-14-0223.1.

Li, J., Sun, J., Zhou, M., Cheng, Z., Li, Q., Cao, X. & Zhang, J. 2018, 'Observational analyses of dramatic developments of a severe air pollution event in the Beijing area', Atmospheric Chemistry and Physics, vol. 18, no. 6, pp. 3919–35, DOI:10.5194/acp-18-3919-2018.

Lothon, M., Lohou, F., Pino, D., Couvreux, F., Pardyjak, E., Reuder, J., Vilà-Guerau de Arellano, J., Durand, P., Hartogensis, O., Legain, D., Augustin, P., Gioli, B., Lenschow, D.H., Faloona, I., Yagüe, C., Alexander, D.C., Angevine, W.M., Bargain, E., Barrié, J., Bazile, E., Bezombes, Y., Blay-Carreras, E., van de Boer, A., Boichard, J.L., Bourdon, A., Butet, A., Campistron, B., de Coster, O., Cuxart, J., Dabas, A., Darbieu, C., Deboudt, K., Delbarre, H., Derrien, S., Flament, P., Fourmentin, M., Garai, A., Gibert, F., Graf, A., Groebner, J., Guichard, F., Jiménez, M. A., Jonassen, M., van den Kroonenberg, A., Magliulo, V., Martin, S., Martinez, D., Mastrorillo, L., Moene, A.F., Molinos, F., Moulin, E., Pietersen, H. P., Piguet, B., Pique, E., Román-Cascón, C., Rufin-Soler, C., Saïd, F., Sastre-Marugán, M., Seity, Y., Steeneveld, G.J., Toscano, P., Traullé, O., Tzanos, D., Wacker, S., Wildmann, N. & Zaldei, A. 2014, 'The bllast field experiment: boundary-layer late afternoon and sunset turbulence', Atmospheric chemistry and physics, vol. 14, no. 20, pp. 10931–60, DOI:10.5194/acp-14-10931-2014.

MacDonald, M.K., Pomeroy, J.W. & Essery, R.L. 2018, 'Water and energy fluxes over northern prairies as affected by chinook winds and winter precipitation', Agricultural and Forest Meteorology, vol. 248, no. 1, pp. 372–85, DOI:10.1016/j.agrformet.2017.10.025.

Mass, C.F. & Ovens, D. 2019, 'The northern California wildfires of 8–9 October 2017: The role of a major downslope wind event', Bulletin of the American Meteorological Society, vol. 100, no. 2, pp. 235–56, DOI:10.1175/BAMS-D-18-0037.1.

Math, F.A. 1934, 'Battle of the chinook wind at Havre, mont', Monthly Weather Review, vol. 62, no. 2, pp. 54–7, DOI:10.1175/1520-0493(1934)62<54:BOTCWA>2.0.CO;2.

Moore, G. 2013, 'The Novaya Zemlya bora and its impact on Barents sea air-sea interaction', Geophysical research letters, vol. 40, no. 13, pp. 3462–67, DOI:10.1002/grl.50641.

Nascimento, E.D.L. & Chamis, M.L. 2012, 'Atmospheric conditions associated with the windstorm “vento norte”', in Croation-USA Workshop on Mesometeorology, Zagreb, pp. 32-3, viewed 03 November 2022, <https://www.pmf.unizg.hr/_download/repository/2_Collection_Participant_Abstracts%5B2%5D.pdf>.

Norte, F.A. 2015, 'Understanding and Forecasting Zonda Wind (Andean Foehn) in Argentina: A Review', Atmospheric and Climate Sciences, vol. 5, no. 3, pp. 163–93, DOI:10.4236/acs.2015.53012.

Otero, F. & Araneo, D. 2021, 'Zonda wind classification using machine learning algorithms', International Journal of Climatology, vol. 41, no. S1, pp. 342–53, DOI:10.1002/joc.6688.

Pereira, H.R., Reboita, M.S. & Ambrizzi, T. 2017, 'Características da atmosfera na primavera austral durante o El Niño de 2015/2016', Revista Brasileira de Meteorologia, vol. 32, no. 2, pp. 293–310, DOI:10.1590/0102-77863220011.

Raphael, M. 2003, 'The Santa Ana winds of California', Earth Interactions, vol. 7, no. 8, pp. 1–13, DOI:10.1175/1087-3562(2003)007%3C0001:TSAWOC%3E2.0.CO;2.

Richner, H. & Hächler, P. 2013, 'Understanding and forecasting Alpine Foehn', in F. Chow, S. de Wekker & B. Snyder (eds), Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, Springer, Dordrecht, pp. 219–60, DOI:10.1007/978-94-007-4098-3_4.

Román-Cascón, C., Yagüe, C., Mahrt, L., Sastre, M., Steeneveld, G.-J., Pardyjak, E., Boer, A. & Hartogensis, O. 2015, 'Interactions among drainage flows, gravity waves and turbulence: a bllast case study', Atmospheric Chemistry and Physics, vol. 15, no. 15, pp. 9031–47, DOI:10.5194/acp-15-9031-2015.

Samuelsen, E.M. & Graversen, R.G. 2019, 'Weather situation during observed ship-icing events off the coast of northern Norway and the Svalbard archipelago', Weather and Climate Extremes, vol. 24, no. 1, e100200, DOI:10.1016/j.wace.2019.100200.

Sartori, M.G.B. 2003, 'Gênese e características do vento norte regional em Santa Maria/RS', X Simpósio brasileiro de geografia física e aplicada, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, viewed 03 November 2022, <http://www.cibergeo.org/XSBGFA/eixo3/3.2/286/286.htm>.

Sartori, M.G.B. 2016, O Vento Norte, DR Publicidade Editora, Santa Maria.

Shestakova, A. & Moiseenko, K. 2018, 'Hydraulic regimes of flow over mountains during severe downslope windstorms: Novorossiysk bora, Novaya Zemlya bora, and Pevek Yuzhak', Izvestiya, Atmospheric and Oceanic Physics, vol. 54, no. 4, pp. 344–53, DOI:10.1134/S0001433818040291.

Shestakova, A., Toropov, P.A. & Matveeva, T.A. 2020, 'Climatology of extreme downslope windstorms in the Russian Arctic', Weather and Climate Extremes, vol. 28, no. 1, e100256, DOI:10.1016/j.wace.2020.100256.

Smith, C., Hatchett, B.J. & Kaplan, M. 2018, 'A surface observation based climatology of diablo-like winds in California’s wine country and western Sierra Nevada', Fire, vol. 1, no. 2, pp. 1–9, DOI:10.3390/fire1020025.

Stefanello, M., de Lima Nascimento, E., da Rosa, C.E., Degrazia, G., Mortarini, L. & Cava, D. 2020, 'A micrometeorological analysis of the vento norte phenomenon in southern Brazil', Boundary-Layer Meteorology, vol. 176, no. 3, pp. 415–39, DOI:10.1007/s10546-020-00540-x.

Sun, H., Clark, T.L., Stull, R.B. & Black, T.A. 2006, 'Two-dimensional simulation of airflow and carbon dioxide transport over a forested mountain: Part ii. carbon dioxide budget analysis and advection effects', Agricultural and forest meteorology, vol. 140, no. 1, pp. 352–64, DOI:10.1016/j.agrformet.2006.03.016.

USGS - United States Geological Survey, Earth Resources Observation and Science (EROS) Center 2022, USGS EROS Archive - Digital Elevation - Shuttle Radar Topography Mission (SRTM) Non-Void Filled, viewed 10 Octuber 2022, <https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-non?qt-science_center_objects=0#qt-science_center_objects>.

Wang, W., Zhou, W., Li, X., Wang, X. & Wang, D. 2016, 'Synoptic-scale characteristics and atmospheric controls of summer heat waves in China', Climate dynamics, vol. 46, no. 9, pp. 2923–41, DOI:10.1007/s00382-015-2741-8.

Whiteman, C.D. 1982, 'Breakup of temperature inversions in deep mountain valleys: Part i. observations', Journal of Applied Meteorology and Climatology, vol. 21, no. 3, pp. 270–89, DOI:10.1175/1520-0450(1982)021%3C0270:BOTIID%3E2.0.CO;2

Würsch, M. & Sprenger, M. 2015, 'Swiss and Austrian foehn revisited: A lagrangian-based analysis', Meteorologische Zeitschrift, vol. 24, no. 3, pp. 225–42, DOI:10.1127/metz/2015/0647.

Downloads

Published

2023-04-12

Issue

Section

Meteorology