Spatial Analysis of the Impacts Caused by Changes in Land Use on the Estimation of Surface Temperature in the The City of Paracatu (MG)

Authors

DOI:

https://doi.org/10.11137/1982-3908_2024_47_55194

Keywords:

Urban climate, Territorial management, Remote sensing

Abstract

The increase in built-up areas, coupled with the suppression of vegetation without the necessary mitigating measures to curb the effects of urbanization, causes changes in the microclimate and directly impacts the health of the local population. In this sense, the present study aims to analyze the influence of land cover type on the variation of Land Surface Temperature (LST) estimation in the city of Paracatu, Minas Gerais (MG), in the years 1990 and 2020.For this, the maps provided by the Annual Mapping of Land Cover and Land Use of Brazil (MapBiomas) and images from the LANDSAT-5 (1990) and LANDSAT-8 (2020) satellites were used. Four images, distributed across seasons, were utilized to estimate LST for these periods, aiming to obtain a representative LST estimate for that year. For the calculation of the LST with bands 6 and 10, respectively of the LANDSAT-5 and 8 satellites, the SCP plugin of the QGIS software was used, and the process of recovery of the LST in the scenes used occurred through conversion of the values of the Digital Number (DN) into radiance at the Top of the Atmosphere (ToA), conversion of radiance into brightness temperature in ToA, correction of atmospheric effects and obtaining LST in Kelvin and, subsequently, in degrees Celsius. After that, the average between them was performed by means of normalization of each of the scenes, obtaining a representative mosaic for the LST of each year,thus enabling the estimation of the spatial behavior of the minimum, mean, and maximum values.. Finally, in order to verify the influence of Changes in Use and Occupation (LULC) on the spatial variation of the LST, the classes found in Vegetation, Exposed Soil, Urban Area and Water Resources were segmented, and it was found that, while the urban area of Paracatu had its territorial extension practically doubled, the vegetation class decreased by almost 25%, a fact that implied in the average increase of the LST by more than 5º C. the minimum and maximum values of these classes varied around 4.5 and 3º C, and it is possible to conclude that, in this interval of 30 years, Paracatu had no urban growth occurring exponentially and without the proper mitigations for the transformation of the microclimate, implying the need for measures that can curb these changes in strategic points of the municipality, as in the Bom Pastor neighborhood, which had its use and occupation totally changed in this temporal hiatus. In addition, in view of the estimates of economic growth in the city, it is believed that these measures should be taken as a matter of urgency, so that the results presented here can support the decisions of the managing public agencies.

Author Biographies

Arthur Santos, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP

Doutorando em Ciências Ambientais pela Universidade Estadual "Júlio de Mesquita Filho" (UNESP), atuando na linha de pesquisa de Geoprocessamento e Modelagem Matemática Ambiental. Mestre em Meio Ambiente e Qualidade Ambiental pela Universidade Federal de Uberlândia (UFU) (2020) e Engenheiro Ambiental e Sanitarista pela Universidade do Oeste Paulista (2018). No mestrado, desenvolveu pesquisa com enfoque no sensoriamento remoto voltado para análises da temperatura superficial e na formação de Ilha de Calor Urbano. Na graduação, trabalhou com o diagnóstico ambiental (por meio de mapeamento) e análise de índices espectrais em áreas ocupadas por atividade de mineração a céu aberto. Atualmente, vem aprofundando os seus estudos na área de Inteligência Artificial (IA), com enfoque nas Redes Neurais Artificiais (RNA) e em predições na agricultura. Em 2021, foi professor das disciplinas de Cartografia 1 e Gestão Ambiental para alunos do curso técnico em mineração pelo programa Trilhas de Futuro, do estado de Minas Gerais. Possui experiência profissional na área de gestão e monitoramento ambiental, banco de dados em ambiente SIG e tomada de decisão por meio de geotecnologias no setor sucroenergético.

Henzo Simionatto, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP

Mestrando no Programa de Pós-graduação em Engenharia Civil (PPGEC) pela Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP. Possui graduação em Engenharia Ambiental e Sanitária pela Universidade do Oeste Paulista (2020). Participa do grupo de pesquisa do CNPQ Recursos Hídricos, Ecotoxicologia e Tecnologias Ambientais sob liderança da Profa. Dra. Juliana Heloisa Pinê Américo Pinheiro. Atualmente, vem aprofundando os seus estudos com análises de dados de Sensoriamento Remoto (SR) e avaliação da qualidade dos recursos hídricos.Possui experiência profissional na área de Engenharia Ambiental, atuando principalmente nos seguintes temas: Avaliação dos Impactos Ambientais; Gerenciamento dos Recursos hídricos em ambiente SIG.

References

Ahmadi, S., Alizadeh, H., & Mojaradi, B. 2022, Land surface temperature assimilation into a soil moisture-temperature model for retrieving farm-scale root zone soil moisture, Geoderma, vol. 421, no. 115923, pp. 1-18. viewed 03 october 2022, <https://doi.org/10.1016/j.geoderma.2022.115923>.

Aminzadeh, M., & Dani, O. 2014, Energy partitioning dynamics of drying terrestrial surfaces, Journal of hydrology, vol. 519, pp. 1257-1270, viewed 03 october 2022, <https://doi.org/10.1016/j.jhydrol.2014.08.037>.

ARCGIS – ARC Geographic Information System 2022, ArcGis: Software, viewed 03 october 2022, <https://www.esri.com/software/arcgis/index.html>.

Artis, D.A., & Carnahan, W.H. 1982. Survey of emissivity variability in thermography of urban areas. Remote Sens Environ, vol. 12, pp. 313-329, viewed 03 october 2022, <https://doi.org/10.1016/0034-4257(82)90043-8>.

Azevedo, S.R., Souza, C.M., Shimbo, J., & Alencar, A. 2018. MapBiomas initiative: Mapping annual land cover and land use changes in Brazil from 1985 to 2017, AGU Fall Meeting Abstracts, vol. 2018, pp. B22A-04, viewed 03 october 2022, <https://ui.adsabs.harvard.edu/abs/2018AGUFM.B22A..04A/abstract>.

Carlson, T.N., & Ripley, D.A. 1997, On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens Environ, vol. 62, pp. 241-252, viewed 03 october 2022, <https://doi.org/10.1016/S0034-4257(97)00104-1>.

Carrasco, R.A., Pinheiro, M.M.F., Marcato JR, J., Cicerelli, R.E., Silva, P.A., Osco, L.P., & Ramos, A.P.M. 2020, Land use/land cover change dynamics and their effects on land surface temperature in the western region of the state of São Paulo, Brazil, Regional Environmental Change, vol. 20, no. 96, viewed 03 october 2022, <https://doi.org/10.1007/s10113-020-01664-z>.

Govind, N., & Ramesh, H. 2019, The impact of spatiotemporal patterns of land use land cover and land surface temperature on an urban cool island: A case study of Bengaluru, Environmental monitoring and assessment, vol. 191, pp. 1-20. viewed 03 october 2022, <https://link.springer.com/article/10.1007/s10661-019-7440-1>.

IBGE – Instituto Brasileiro de Geografia e Estatística 2020, Produto Interno Bruto dos Municípios. Paracatu – MG, viewed 03 october 2022, <https://www.ibge.gov.br/estatisticas>.

IBGE – Instituto Brasileiro de Geografia e Estatistica 2020, Censo demográfico 1991, viewed 03 january 2024, <https://www.ibge.gov.br/estatisticas/sociais/trabalho/25089-censo-1991-6.html?edicao=25090>.

IBGE – Instituto Brasileiro de Geografia e Estatistica 2020, Censo demográfico 2022, viewed 03 january 2024, <https://www.ibge.gov.br/estatisticas/sociais/trabalho/22827-censo-demografico-2022.html>.

IBGE – Instituto Brasileiro de Geografia e Estatistica 2020, Estimativas populacionais, viewed 03 january 2024, <https://www.ibge.gov.br/cidades-e-estados/mg/paracatu.html>.

INMET – Instituto Nacional de Meteorologia 2020, Normais climatológicas do Brasil, viewed 03 october 2022, <https://portal.inmet.gov.br/normais>.

Ismail, M. H., Aik, D. H. J., Alias, M. A., Muharam, F. M., & Zaki, P. H. 2021, Land Use/Land Cover (LULC) Changes in Cameron Highlands, Malaysia: Explore the Impact of the LULC Changes on Land Surface Temperature (LST) Using Remote Sensing, Climate Impacts on Sustainable Natural Resource Management, vol. 14, pp. 279-301, viewed 03 october 2022, <https://doi.org/10.1002/9781119793403.ch14>.

Jiang, L., & O'Neill, B.C., 2017, Global urbanization projections for the shared socioeconomic pathways Global Environ, Global Environ. Change, vol. 42, pp. 193-199, viewed 03 october 2022, <https://doi.org/10.1016/j.gloenvcha.2015.03.008>.

Kafy, A., Saha, M., Fisal, A., Rahaman, Z.A., Rahman, M.T., Lui, D., Fattah, M. A., Rakib, A.A., AlDousari, A.E., Rahaman, S.N., Hasan, M.Z., & Ahasan, M.A.K. 2022, Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms, Building and Environment, vol. 217, no. 109066, viewed 03 october 2022, <https://doi.org/10.1016/j.buildenv.2022.109066>.

Khan, M., Qasim, M., Tahir, A.A., & Farooqi, A. 2023, Machine learning-based assessment and simulation of land use modification effects on seasonal and annual land surface temperature variations, Heliyon, vol. 9, n. 12, pp. e23043, viewed 03 october 2022, <https://doi.org/10.1016/j.heliyon.2023.e23043>.

Laird, N.F., Kristovich, D.A.R. 2002, Variations of sensible and latent heat fluxes from a Great Lakes buoy and associated synoptic weather patterns, Journal of Hydrometeorology, vol. 3, no. 1, pp. 3-12, viewed 03 october 2022, <https://doi.org/10.1175/1525-7541(2002)003%3C0003:VOSALH%3E2.0.CO;2>.

Lopes, H.S., Remoaldo, P.C., Ribeiro, V., & Martin-Vide, J. 2022, Análise do ambiente térmico urbano e áreas potencialmente expostas ao calor extremo no município do Porto (Portugal), Cuadernos de Geografía: Revista Colombiana de Geografía, vol. 31, no. 2, viewed 03 october 2022, <https://doi.org/10.15446/rcdg.v31n2.91309>.

Lunetta, R.S. 1995, Relative radiometric normalization of (MSS) Landsat multispectral scanner (MSS) data using an automatic scattergram-controlled regression, Photogramm Eng Remote Sens, vol. 10, no. 1, pp. 1255-1260, viewed 03 october 2022, <https://www.asprs.org/wp-content/uploads/pers/1995journal/oct/1995_oct_1255-1260.pdf>.

Macintyre, H.L., Heaviside, C., Taylor, J., Picetti, R., Symonds, P., Cai, X.M., & Vardoulakis, S. 2018, Assessing urban population vulnerability and environmental risks across an urban area during heatwaves–Implications for health protection. Science of the Total Environment, vol. 610, pp. 678-690, viewed 03 october 2022, <https://doi.org/10.1016/j.scitotenv.2017.08.062>.

Monteiro, C.A.F. 1997, Teoria e Clima Urbano, IGEOG/USP (Série Teses e Monografias, 25), São Paulo.

Nagendra, H., Bai, X., Brondizio, E.S., & Lwasa, S. 2018, The urban south and the predicament of global sustainability, Nature Sustainability, vol. 1, pp. 341-349, viewed 03 october 2022, <https://doi.org/10.1038/s41893-018-0101-5>.

NASA - National Aeronautics and Space Administration 2013. NTRS - NASA Technical Reports Server. On the relationship between thermal emissivity and the Normalized Difference Vegetation Index for natural surfaces, viewed 10 may 2024, <https://ntrs.nasa.gov/citations/19930062068>.

ONU – Organização das Nações Unidas 2019, World urbanization prospects 2018: Highlights, viewed 03 october 2022, <https://population.un.org/wup/publications/Files/WUP2018-Highlights.pdf>.

Parastatidis, D., Mitraka, Z., Chrysoulakis, N., & Abrams, M. 2017, Online global land surface temperature estimation from Landsat, Remote Sensing, vol. 9, no. 12, 1208, viewed 03 october 2022, <https://doi.org/10.3390/rs9121208>.

QGIS – Q Geographic Information System 2019, Open Source Geospatial Foundation Project, viewed 03 october 2022, <https://www.qgis.org/it/site/>.

QGIS – Q Geographic Information System 2021, Open Source Geospatial Foundation Project, viewed 03 october 2022, <https://www.qgis.org>.

Rezende, P.S. 2016, Metodologia para avaliação da vulnerabilidade socioambiental: estudo da cidade de Paracatu (MG). 194 f. Dissertação (Mestrado em Ciências Humanas) - Universidade Federal de Uberlândia, Uberlândia, http://doi.org/10.14393/ufu.di.2016.49

Saha, S., Saha, A., Das, M., Saha, A., Sarkar, R., & Das, A. 2021, Analyzing spatial relationship between land use/land cover (LULC) and land surface temperature (LST) of three urban agglomerations (UAs) of Eastern India, Remote Sensing Applications: Society and Environment, vol. 22, no. e100507, viewed 03 october 2022, <https://doi.org/10.1016/j.rsase.2021.100507>.

Saha, J., Ria, S.S., Sultana, J., Shima, U.A., Seyan, M.M.H., Rahman, M.M. 2024, Assessing seasonal dynamics of land surface temperature (LST) and land use land cover (LULC) in Bhairab, Kishoreganj, Bangladesh: A geospatial analysis from 2008 to 2023. Case Studies in Chemical and Environmental Engineering, vol. 9, e100560, viewed 03 october 2022, <https://doi.org/10.1016/j.cscee.2023.100560>.

Santos, A.P., Santil, F.L.P., Carbone, S., & Silva, C.R. 2022a. The influence of urban and mineral expansion on surface temperature variation, Acta Scientiarum, Technology, vol. 45, n.1, e60114, viewed 03 october 2022, <https://doi.org/10.4025/actascitechnol.v45i1.60117>.

Santos, A., Santil, F., Oliveira, P., & Roveda, J. 2021. Utilização da Lógica Fuzzy como suporte ao Zoneamento Ambiental: um estudo de caso em Paracatu – MG. Revista Brasileira De Geografia Física, vol. 14, no. 4, pp. 2352-2368, viewed 03 october 2022, <https://doi.org/10.26848/rbgf.v14.4.p2352-2368>.

Santos, A., & Simionatto, H. 2023. Methodological proposal for evaluating the transformation of urban microclimate in medium-sized cities: A case study in the urban mesh of the municipality of Paracatu, Minas Gerais. RAEGA - O Espaço Geográfico em Análise, vol. 57, pp. 46-65, viewed 03 october 2022, <https://doi.org/10.5380/raega.v57i0.88156>.

Santos, A.P., Simionatto, H.H., Arantes, L.T., Simonetti, V.C., Oliveira, R.A., Sales, J.C.A., & Silva, D.C.C. 2023, The Influence of Land Use and Land Cover on Surface Temperature in a Water Catchment Sub-Basin, Sociedade & Natureza, vol. 35, no. 1, viewed 03 october 2022, <https://doi.org/10.14393/SN-v35-2023-69161>.

Santos, A.P., Simionatto, H.H., & Xisto, L.A.D. 2022b, Técnicas de PDI Aplicadas Para a Identificação e Extração Automática de Atividades Antrópicas, Revista Brasileira De Geografia Física, vol. 15, no. 4, pp. 2121-2137, viewed 03 october 2022, <https://doi.org/10.26848/rbgf.v15.4.p2121-2137>.

Sayão, V.M., Santos, N.V., Mendes, W.S., Marques, K.P.P., Safanelli, J.L., Poppiel, R.R., & Demattê, J.A.M. 2020, Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil, Geoderma Regional, vol. 22, e00313, viewed 03 october 2022, <https://doi.org/10.1016/j.geodrs.2020.e00313>.

Shen, X., Liu, Y., Liu, B., Zhang, J., Wang, L., Lu, X., & Jiang, M. 2022. Effect of shrub encroachment on land surface temperature in semi-arid areas of temperate regions of the Northern Hemisphere, Agricultural and Forest Meteorology, vol. 320, e108943, viewed 03 october 2022, <https://doi.org/10.1016/j.agrformet.2022.108943>.

Sobrino, J.A., Jiménez-Muñoz, J.C., & Paolini, L. 2004, Land surface temperature retrieval from LANDSAT TM 5, Remote Sens Environ, vol. 90, pp. 434-440, viewed 03 october 2022, <https://doi.org/10.1016/j.rse.2004.02.003>.

Sresto, M.A., Siddika, S., Fattah, M.A., Morshed, S.R., & Morshed, M.M. 2022, A GIS and remote sensing approach for measuring summer-winter variation of land use and land cover indices and surface temperature in Dhaka district, Bangladesh, Heliyon, vol. 8, e10309, viewed 03 october 2022, <https://doi.org/10.1016/j.heliyon.2022.e10309>.

Steeneveld, G., Klompmaker, J.O., Groen, R.J.A., & Holtslag, A.A.M. 2018, An urban climate assessment and management tool for combined heat and air quality judgements at neighbourhood scales, Resources, Conservation and Recycling, vol. 132, pp. 204-217, viewed 03 october 2022, <https://doi.org/10.1016/j.resconrec.2016.12.002>.

Tajfar, E., Bateni, S.M., Lakshmi, V., & Ek, M. 2020, Estimation of surface heat fluxes via variational assimilation of land surface temperature, air temperature and specific humidity into a coupled land surface-atmospheric boundary layer model, Journal of Hydrology, vol. 583, e124577, viewed 03 october 2022, <https://doi.org/10.1016/j.jhydrol.2020.124577>.

USGS – United States Geological Survey 2016, Earth Explorer, viewed 03 october 2022, <https://earthexplorer.usgs.gov/>.

Vandamme, S., Demuzere, M., Verdonck, M., Zhang, Z., & Coillie, F.V. 2019, Revealing kunming’s (china) historical urban planning policies through local climate zones, Remote Sensing, vol. 11, no. 14, e1731, viewed 03 october 2022, <https://doi.org/10.3390/rs11141731>.

Wang, Y.C., Hu, B.K.H., Myint, S.W., Feng, C.C., Chow, W.T.L., Passy, P.F. 2018, Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar, Sci Total Environ, vol. 643, pp. 738-750, viewed 03 october 2022, <https://doi.org/10.1016/j.scitotenv.2018.06.209>.

Weng, Q., Lu, D., & Schubring, J. 2004. Estimation of land surface temperature vegetation abundance relationship for urban heat island studies, Remote Sens Environ, vol. 89, pp. 467-448, viewed 03 october 2022, <https://doi.org/10.1016/j.rse.2003.11.005>.

Williams, T.B. 1991, Microclimatic temperature relationships over different surfaces, Journal of Geography, vol. 90, no. 6, pp. 285-291, viewed 03 october 2022, <https://doi.org/10.1080/00221349108979321>.

Yang, S., Wang, L., Stathopoulos, T., & Marey, A.M. 2023. Urban microclimate and its impact on built environment – A review, Building and Environment, vol, 238, e110334, viewed 03 october 2022, <https://doi.org/10.1016/j.buildenv.2023.110334>.

Zago, N. 2016, Migração rural-urbana, juventude e ensino superior, Revista Brasileira de Educação, vol. 21, pp. 61-78, viewed 03 october 2022, <https://doi.org/10.1590/S1413-24782016216404>.

Zhang, W., Li, Y., Li, Z., Wei, X., Ren, T., Liu, J., & Zhu, Y. 2020, Impacts of climate change, population growth, and urbanization on future population exposure to long-term temperature change during the warm season in China, Environmental Science and Pollution Research, vol. 27, pp. 8481-8491, viewed 03 october 2022, <https://doi.org/10.1007/s11356-019-07238-9>.

Downloads

Published

2024-10-18

Issue

Section

Environmental Sciences