Cut-cell Eta Model: History and Challenges Overcome

Authors

  • Fedor Mesinger Serbian Academy of Sciences ans Arts, Belgrade, e-mail: fedor.mesinger@gmail.com, https://orcid.org/0000-0002-8667-9012, https://www.sanu.ac.rs/en/member/mesinger-fedor/ https://orcid.org/0000-0002-8667-9012

DOI:

https://doi.org/10.11137/1982-3908_2023_46_56300

Keywords:

Cut-cell schemes, Finite-volume schemes, Topography representation

Abstract

Incentive for writing a limited area weather prediction model stemmed from the author’s several years stay at the University of California in Los Angeles, at the end of the sixties. Exposed to what he refers to as the Akio Arakawa approach, having had an idea for a scheme that was an improvement to what Arakawa was using, and being aware of the importance of topography for the weather of the country he was to continue his career in, led in 1973 to his first limited area 3D code, the forerunner of what was to become the Eta model. Refinements and enhancements introduced by the author in subsequent years and of the collaborator he acquired, Zaviša Janjić, resulted in the code that when installed at the then U.S. National Meteorological Center, attracted attention. Hallmarks of the model were Mesinger’s eta vertical coordinate, and Janjić’s transformation of the Arakawa horizontal advection scheme to the model’s semi-staggered B/E grid. In 1993 the Eta became the primary regional forecasting model of the U.S. Weather Bureau, and in 1998 its precipitation accuracy of 24-48 h forecasts became higher across all intensity thresholds than that of its predecessor, the Nested Grid Model (NGM) for its 00-24 h forecasts. Lately, the Eta is extensively used also as a regional climate model (RCM), mostly over the South American domain, and in near-real time as a tool for the North American Regional Reanalysis (NARR), run by the U.S. National Centers for Environmental Prediction/Climate Prediction Center. Several later unique numerical refinements of the Eta addressing problems noticed are summarized in a “before and after” fashion, and results are mentioned of its ensemble skill compared to that of its highly acclaimed driver European Centre for Medium-Range Weather Forecasts (ECMWF) model.

References

Antico, P.L., Chou, S.C. & Brunini, C.A. 2021, 'The foehn wind east of the Andes in a 20-year climate simulation', Meteorology and Atmospheric Physics, vol. 133, pp. 317-30, DOI:10.1007/s00703-020-00752-3.

Arakawa, A. 1966, 'Computational design for long-term numerical integration of equations of fluid motion: Two dimensional incompressible flow. Part I', Journal of Computational Physics, vol. 1, no. 1, pp. 119-43, DOI:10.1016/0021-9991(66)90015-5.

Arakawa, A. & Lamb, V.R. 1977, 'Computational design of the basic dynamical process of the UCLA general circulation model', in J. Chang (ed.), Methods in Computational Physics, Academic Press, 17, pp. 173-265.

Black, T.L. 1988, The step-mountain eta coordinate regional model: a documentation, NOAA/NWS National Meteorological Center, http://ftp1.cptec.inpe.br/pesquisa/grpeta/petamdl/Publications/Black.1988+_EtaDocumentation.pdf

Chang, J. (ed.). 1977, General Circulation Models of the Atmosphere: Methods in Computational Physics, Academic Press.

Charney, J.G., Fjørtoft, R. & von Neumann, J. 1950, 'Numerical integration of the barotropic vorticity equation', Tellus, vol. 2, no. 2, pp. 237-54, DOI:10.1111/j.2153-3490.1950.tb00336.x.

Chou, S.C, Dereczynski, C., Gomes, J.L., Pesquero, J.F., de Avila, A.M.H., Resende, N.C., Alves, L.F., Ruiz-Cárdenas, R., de Souza, C.R. & Bustamante, J.F.F. 2020, 'Ten-year seasonal climate reforecasts over South America using the Eta regional climate model', Anais da Academia Brasileira de Ciências, vol. 92, no. 3, pp. 1-24, DOI:10.1590/0001-3765202020181242.

Chou, S.C., Lyra, A, Mourão, C, Dereczynski, C, Pilotto, I., Gomes, J., Bustamante, J., Tavares. P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira. G., Nobre, P. & Marengo, J. 2014a, 'Evaluation of the Eta simulations nested in three global climate models', American Journal of Climate Change, vol. 3, no. 5, pp. 438-454, DOI:10.4236/ajcc.2014.35039.

Chou, S.C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G. & Marengo, J. 2014b, 'Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios', American Journal of Climate Change, vol. 3, no. 5, pp. 512-27, DOI:10.4236/ajcc.2014.35043.

Chou, S.C., Marengo, J.A., Lyra, A., Sueiro, G., Pesquero, J., Alves, L.M., Kay, G., Betts, R., Chagas, D., Gomes, J.L., Bustamante, J. & Tavares, P. 2012, 'Downscaling of South America present climate driven by 4-member HadCM3 runs', Climate Dynamics, vol. 38, no. 3-4, pp. 635–53, DOI:10.1007/s00382-011-1002-8.

Côté, J., Jablonowski, C., Bauer, P. & Wedi, N. 2015, 'Numerical methods of the atmosphere and ocean', in Seamless Prediction of the Earth System: From Minutes to Months, World Meteorological Organization WMO No. 1156 pp. 101-24.

DiMego, G. 2006, WRF-NMM & GSI Analysis to replace Eta Model & 3DVar in NAM Decision Brief, U.S. National Centers for Environmental Prediction <https://www.emc.ncep.noaa.gov/WRFinNAM/ Update_WRF-NMM_replacing_Eta_in_NAM2.pdf>.

Egger, J. 1972, 'Numerical experiments on the cyclogenesis in the Gulf of Genoa', Beiträge zur Physik der Atmosphäre, vol. 45, pp. 20-346.

Gallus Jr., W.A. & Klemp, J.B. 2000, 'Behavior of flow over step orography', Monthly Weather Review, vol. 128, no. 4, pp. 1153-64, DOI:10.1175/1520-0493(2000)128%3C1153:BOFOSO%3E2.0.CO;2.

Hogan, R.J., O’Connor, E.J. & Illingworth, A.J. 2009, 'Verification of cloud-fraction forecasts', Quarterly Journal of the Royal Meteorological Society, vol. 135, no. 643, pp. 1494-511, DOI:10.1002/qj.481.

Janjić, Z.I. 1984, 'Nonlinear advection schemes and energy cascade on semi-staggered grids', Monthly Weather Review, vol. 112, no. 6, pp. 1234-45, DOI:10.1175/1520-0493(1984)112%3C1234:NASAEC%3E2.0.CO;2.

Janjić, Z.I. 1990, 'The step-mountain coordinate: physical package', Monthly Weather Review, vol. 118, no. 7, pp. 1429-43, DOI:10.1175/1520-0493(1990)118%3C1429:TSMCPP%3E2.0.CO;2.

Janjić, Z.I. 1994, 'The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes', Monthly Weather Review, vol. 122, no. 5, pp. 927-45, DOI:10.1175/1520-0493(1994)122%3C0927:TSMECM%3E2.0.CO;2.

Junker, N.W., Hoke, J.E. & Grumm, R.H. 1989, 'Performance of NMC's regional models', Weather and Forecasting, vol. 4, no. 3, pp. 368-90, DOI:10.1175/1520-0434(1989)004%3C0368:PONRM%3E2.0.CO;2.

Kalnay, E., Baker, W., Kanamitsu, M., Petersen, R., Rao, D.B. & Leetmaa, A. 1993, 'Modeling plans at NMC for 1993-1997', 13th Conference on Weather Analysis and Forecasting, Vienna, VA, American Meteorological Society, pp. 340-43.

Kreiss, H. & Oliger, J. 1973, Methods for the Approximate Solution of Time-Dependent Problems, WMO/ICSU Joint Organizing Committee.

Latinović, D., Chou, S.C., Rančić, M., Medeiros, G.S. & Lyra, A.A. 2019, 'Seasonal climate and the onset of the rainy season in western-central Brazil simulated by Global Eta Framework model', International Journal of Climatology, vol. 39, no. 3, pp. 1429-45, DOI:10.1002/joc.5892.

Lyra, A., Tavares, P., Chou, S.C., Sueiro, G., Dereczynski, C.P., Sondermann, M., Silva, A., Marengo, J. & Giarolla, A. 2018, 'Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution', Theoretical and Applied Climatology, vol. 132, pp. 663–82, DOI:10.1007/s00704-017-2067-z.

McDonald, B.E., Horel, J.D., Stiff, C.J. & Steenburgh, W.J. 1998, 'Observations and simulations of three downslope wind events over the northern Wasatch Mountains', 16th Conference on Weather Analysis and Forecasting, American Meteorological Society, Phoenix pp. 62-4.

Mellor, G.L. 1985, 'Ensemble average, turbulence closure', in S. Manabe (ed.), Advances in Geo- physics, Issues in Atmospheric and Ocean Modeling. Part B: Weather Dynamics, Academic Press, pp. 345-57.

Mesinger, F. 1977, 'Forward-backward scheme, and its use in a limited area model', Contributions to Atmospheric Physics, vol. 50, pp. 200–10.

Mesinger, F. 1984, 'A blocking technique for representation of mountains in atmospheric models', Rivista di Meteorologia Aeronautica, vol. 44, pp. 195-202.

Mesinger, F. 1993a, Sensitivity of the definition of a cold front to the parameterization of turbulent fluxes in the NMC's Eta Model, Research Activities in Atmospheric and Oceanic Modelling, WMO, Geneva, pp. 436-8.

Mesinger, F. 1993b, Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure, Research Activities in Atmospheric and Oceanic Modelling, WMO, Geneva, CAS/JSC WGNE Rep. 18, pp. 428-9.

Mesinger, F. 2004, 'The Eta model: design, history, performance, what lessons have we learned?', Symposium on the 50th anniversary of operational numerical weather prediction, University of Maryland, 14-17 June 2004, https://www.ncep.noaa.gov/nwp50/Agenda/Tuesday/

Mesinger, F. 2008, 'Bias adjusted precipitation threat scores', Advances in Geosciences, vol. 16, pp. 137-42, DOI:10.5194/adgeo-16-137-2008.

Mesinger, F. 2010, 'Several PBL parameterization lessons arrived at running an NWP model', International Conference on Planetary Boundary Layer and Climate Change, vol. 13, e012005, DOI: 10.1088/1755-1315/13/1/012005.

Mesinger, F. 2022, Vertical resolution of the surface layer versus finite-volume and topography issues, Boundary-Layer Meteorology, vol. 187, no. 5, DOI:10.1007/s10546-022-00745-2.

Mesinger, F. & Arakawa, A. 1976, Numerical methods used in atmospheric models, WMO/ICSU Joint Organizing Committee, Geneva, Switzerland. GARP Publications Series no. 17, vol. 1.

Mesinger, F., Black, T.L., Plummer, D.W. & Ward, J.H. 1990, 'Eta model precipitation forecasts for a period including tropical storm Allison', Weather and Forecasting, vol. 5, no. 3, pp. 483-93, DOI:10.1175/1520-0434(1990)005%3C0483:EMPFFA%3E2.0.CO;2.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C., Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., Berbery, E.H., Ek, M.B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D. & Shi, W. 2006, 'North American Regional Reanalysis', Bulletin of the American Meteorological Society, vol. 87, no. 3, pp. 343-60, DOI:10.1175/BAMS-87-3-343.

Mesinger, F., Chou, S.C., Gomes, J., Jovic, D., Bastos, P., Bustamante, J.F., Lazic, L., Lyra, A.A., Morelli, S., Ristic, I. & Veljovic, K. 2012, 'An upgraded version of the Eta model', Meteorology and Atmospheric Physics, vol. 116, no. 3-4, pp. 63-79, DOI:10.1007/s00703-012-0182-z.

Mesinger, F., Janjic, Z.I., Nickovic, S., Gavrilov, D. & Deaven, D.G. 1988, 'The step-mountain coordinate: model description, and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment', Monthly Weather Review, vol. 116, no. 7, pp. 1493-518, DOI:10.1175/1520-0493(1988)116%3C1493:TSMCMD%3E2.0.CO;2.

Mesinger, F. & Jovic, D. 2002, The Eta slope adjustment: Contender for an optimal steepening in a piecewise-linear advection scheme? Comparison tests, NOAA/NCEP Office Note 439, US Department of Commerce, Washington.

Mesinger, F. & Lobocki, L. 1991, 'Sensitivity to the parameterization of surface fluxes in NMC’s eta model', 9th Conf on Numerical Weather Prediction, American Meteorological Society, Denver, pp. 213-6.

Mesinger, F. & Veljovic, K. 2013, 'Limited area NWP and regional climate modeling: a test of the relaxation vs Eta lateral boundary conditions', Meteorology and Atmospheric Physics, vol. 119, no. 1-2, pp. 1-16, DOI:10.1007/s00703-012-0217-5.

Mesinger, F. & Veljovic, K. 2017, 'Eta vs. sigma: Review of past results, Gallus-Klemp test, and large-scale wind skill in ensemble experiments', Meteorology and Atmospheric Physics, vol. 129, no. 6, pp. 573-93, DOI:10.1007/s00703-016-0496-3.

Mesinger, F. & Veljovic, K. 2020, 'Topography in weather and climate models: Lessons from cut-cell Eta vs. European Centre for Medium-Range Weather Forecasts experiments', Journal of the Meteorological Society of Japan, vol. 98, no. 5, pp. 881-900, DOI:10.2151/jmsj.2020-050.

Phillips, N.A. 1959, 'An example of non-linear computational instability', in The Atmosphere and the Sea in Motion, Rockefeller Institute Press, New York, pp. 501-4.

Richtmyer, R.D. & Morton, K.W. 1967, Difference Methods for Initial-Value Problems, Interscience Publishers, New York.

Salmon, R. 2004, 'Poisson-Bracket approach to the construction of energy- and potential-enstrophy-conserving algorithms for the shallow-water equations', Journal of the Atmospheric Sciences, vol. 61, no. 16, pp. 2016-36, DOI:10.1175/1520-0469(2004)061%3C2016:PATTCO%3E2.0.CO;2.

Sundström, A. 1973, Theoretical and practical problems in formulating boundary conditions for a limited area model, Stockholm University, Stockholm.

Zhang, H. & Rančić, M. 2007, 'A global Eta model on quasi-uniform grids', Quarterly Journal of the Royal Meteorological Society, vol. 133, no. 623, pp. 517-28, DOI:10.1002/qj.17.

Downloads

Published

2023-06-02

Issue

Section

Meteorology