Hydrochemistry and Contamination in Sedimentary and Fractured-Rock Aquifers of The Upper Rio Negro Basin – Amazonas/Brazil

Authors

DOI:

https://doi.org/10.11137/1982-3908_2024_47_57965

Keywords:

Groundwater aquifer, Anthropic contamination, Amazon

Abstract

The Amazon region has the largest hydrographic network on the planet. However, cities and communities along rivers obtain water from tube wells without studying the chemical quality and, consequently, the potability of their water. In specific geological contexts, there is a significant probability of natural contamination by arsenic in groundwater in the region, already attested in previous works in the Solimões, Madeira and Amazonas rivers basins, but not yet found in the Negro river basin. As the Negro is the second largest river in the Amazon Basin, it has become necessary to study the chemical quality of its groundwater, relating it to the geology of the region. In this work, water samples were collected from 21 wells and 4 water springs used for human consumption, following the protocols proposed by the US – EPA. In the field, the physicochemical parameters of the in-situ water were measured, and alkalinity tests were carried out on the samples. The cations were analyzed at INPA and the anions at the Geological Survey of Brazil (SGB). From the 25 samples, 16 had analises results within acceptable ionic balance values, and 12 of the 16 had at least one of the following elements in concentration above World Health Organization and Brazilian Guideline Values: Al, As, Fe, Mn and Pb. The presence of values below the GV, but above what is considered natural, of NO3- in 66% of the contaminated points, associated with the shallow depth of most of the wells, installed in areas of recent sedimentary deposits and that do not show any or few signs of care demonstrate that the contamination in these localities is of anthropic origin. Two samples (16% of the contaminated samples) are from deep wells installed in fractured aquifers, which in this case indicate contamination of geogenic origin. Arsenic was found in association with iron and aluminum in a well installed in alluvial sediments, which indicates that more studies are needed for this specific geologic formation to know the quality of this water. For other locations and cities, short, medium and long-term measures are needed to prevent anthropogenic contamination of aquifers.

Author Biographies

Lucindo Antunes Fernandes Neto, Departamento de Geociências, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Brazil

   

Ingo Wahnfried, Departamento de Geociências, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Brazil

 

References

Amini, M., Abbaspour, K., Berg, M., Winkel, L., Hug, S.J., Hoehn, E., Yang, H. & Johnson, C.A. 2008, ‘Statistical modeling of global geogenic arsenic contamination in groundwater’, Environmental Science & Technology, vol. 42, no. 10, pp. 3669-75, DOI:10.1021/es702859e.

Bertolo, R. A., Hirata, R., & Fernandes, A. 2007, Hidrogeoquímica das águas minerais envasadas no Brasil, Revista Brasileira de Geociências, 37(3), 515-529.

Brasil, Ministério da Saúde 2021, Portaria GM/MS nº 888, de 4 de maio de 2021, viewed 31 January 2023, <https://bvsms.saude.gov.br/bvs/saudelegis/gm/2021/prt0888_07_05_2021.html>.

CETESB 2022, Qualidade das águas subterrâneas do estado de São Paulo, CETESB, São Paulo, <https://cetesb.sp.gov.br/aguas-subterraneas/wp-content/uploads/sites/13/2023/10/Qualidade-das-Aguas-Subterraneas-no-Estado-de-Sao-Paulo-2022.pdf>.

CPRM. 2007, Mapa de domínios/subdomínios hidrogeológicos do Brasil, CPRM.

De Meyer, C. M., Wahnfried, I., Rodriguez, J. M. R., Kipfer, R., Avelino, P. A. G., Deza, E. A. C., & Berg, M. 2023, Hotspots of geogenic arsenic and manganese contamination in groundwater of the floodplains in lowland Amazonia (South America), Science of the Total Environment, 860, DOI 10.1016/j.scitotenv.2022.160407

Eiras, J., Becker, C., Souza, E., Gonzago, F., Da Silva, J., Daniel, L., Matsuda, N. & Feijo, F. 1994, ‘Bacia do Solimões’, Boletim de Geociencias da Petrobras, vol. 8, no. 1, pp. 17-45.

Fernandes Neto, L.A. 2018, ‘Análise de contaminações geogênicas sazonais em águas subterrâneas na região do Careiro da Várzea – AM’, Bachelor Thesis, Universidade Federal do Amazonas.

Galvão, P., Demétrio, J., Souza, E.L. de, Pinheiro, C.S.S. & Baessa, M.P.M. 2012, ‘Hidrogeologia e geometria dos aquíferos das formações cretáceas Içá e Solimões, Bacia Paleozoica do Solimões, na região de Urucu, Amazonas’, Revista Brasileira de Geociências, vol. 42, pp. 142-53, DOI:10.5327/Z0375-75362012000500012.

Maia, M. & Marmos, J. 2010, Geodiversidade do estado do Amazonas, CPRM, Manaus.

Mobus, G. 2014, Qualigraf – Software para auxiliar na análise e interpretação gráfica de dados hidroquímicos. Funceme-Fundação Cearense de Meteorologia e Recursos Hídricos, versão 10, viewed 31 January 2023, <https://qualigraf.funceme.br/>.

Nogueira, A.C.R., Arai, M., Horbe, A.M.C., Horbe, M.A., Silveira, R.R., Silva, J.S. & Motta, M.BA. 2003, ‘Influência Marinha nos Depósitos da Formação Solimões na Região de Coari (Amazonas): Registro da Transgressão Miocênica na Amazônia Ocidental’, VIII Simpósio de Geologia da Amazônia, sessão temática: Sedimentologia e Estratigrafia, Amazonas, pp 468-73.

Pereira, L.A.D.A.C. & Cajazeiras, C.C.A. 2012, ‘Caracterização dos principais aquíferos da região sudoeste da Amazônia Ocidental’, Águas Subterrâneas, pp. 1-4.

Reis, N., Almeida, M., Riker, S. & Ferreira, A. 2006, Geologia e recursos minerais do estado do Amazonas, CPRM, Manaus.

Santos, J.O.S. & Araújo, H. de. 1978, ‘Algumas características químicas do magmatismo Parima/Tapuruquara’, Acta Amazon, vol. 8, no. 4, pp. 639-56, DOI:10.1590/1809-43921978084639.

Silveira, R.R. da. 2005, ‘Cronoestratigrafia e interpretação paleoambiental de depósitos Miocenos da Formação Solimões, região de Coari, AM’, PhD thesis, Universidade Federal do Amazonas, Manaus.

Smedley, P. & Kinniburgh, D. 2002, ‘A review of the source, behaviour and distribution of arsenic in natural waters’, Applied Geochemistry, vol. 17, no. 5, pp. 517-68, DOI:10.1016/S0883-2927(02)00018-5.

Souza, E., Galvão, P., Pinheiro, C., Baessa, M.P.M., Demétrio, J.G.A. & Brito, W.R.R. 2013, ‘Síntese da hidrogeologia nas bacias sedimentares do Amazonas e do Solimões: Sistemas Aquíferos Içá-Solimões e Alter do Chão’, Geologia USP, vol. 13, no. 1, pp. 107-17, DOI:10.5327/Z1519-874X2013000100007.

US-EPA. 2015, Groundwater Sampling, SESD Operating Procedure.

Varnier, C., Rocha, G.A., Campos, J. E., Albuquerque Filho, J. L., Simonato, M. & Hirata, R. 2019, Nitrato nas águas subterrâneas: desafios frente ao panorama atual, SIMA/IG, São Paulo.

Veras, R. 2012, ‘Petrologia de granitóides dos arredores da Missão Tunuí, NW do Amazonas, Província Rio Negro, Cráton Amazônico’, PhD thesis, Universidade Federal do Amazonas, Manaus.

WHO – World Health Organization 2017, Guidelines for drinking-water quality. WHO chronicle, Fourth Edition 38(4), 104-8.

Yoshida, T., Yamauchi, H. & Sun, G.F. 2004, ‘Chronic health effects in people exposed to arsenic via the drinking water: Dose–response relationships in review’, Toxicology and Applied Pharmacology, vol. 198, no. 3, pp. 243-52, DOI:10.1016/j.taap.2003.10.022.

Downloads

Published

2024-03-28